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Abstract A vision-based terrain referenced navi-
gation (TRN) system is addressed for autonomous
navigation of unmanned aerial vehicles (UAVs).
A typical TRN algorithm blends inertial naviga-
tion data with measured terrain information to
estimate vehicle’s position. In this paper, however,
we replace the low-cost inertial navigation system
(INS) with a monocular vision system. The ho-
mography decomposition algorithm is utilized to
estimates the relative translational motion using
features on the ground with simple assumptions.
A numerical integration point-mass filter based on
Bayesian estimation is employed to combine the
translation information obtained from the vision
system with the measured terrain height. Numer-
ical simulations are constructed to evaluate the
performance of the proposed method. The re-
sults show that the precise autonomous navigation
of unmanned aircrafts is achieved by the vision-
based TRN algorithm.
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1 Introduction

In practice, navigation systems such as an inertial
navigation system (INS) and a global positioning
system (GPS) are used to estimate the position
of a vehicle. However, due to initial errors and
measurement errors, the position estimate of the
INS will drift away from the actual position of
UAVs [1]. Also, the position data of the GPS can
be unavailable by the blocking or the jamming of
the external satellite signals. In order to overcome
the drawback of the INS and the GPS, in this pa-
per, we propose a vision-based terrain referenced
navigation (TRN) system. TRN is the concept
of using terrain information in order to estimate
the position of vehicles such as UAVs. A typical
TRN algorithm blends INS data with measured
terrain information and matches with the stored
digital terrain elevation database (DTED). In this
framework, the accuracy and the quality of the
TRN system relies on the performance of the INS.
That is, low-cost UAVs that are not equipped with
the high quality INS cannot obtain accurate data.
For this reason, we replace the low-cost INS with
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a vision system using a monocular camera. Thus,
the low-cost UAVs can gather the position infor-
mation using a camera and a radar altimeter with
the DTED map. There are several approaches
to construct the TRN algorithm. For instance,
an extended Kalman filter (EKF) [2], a bank
of Kalman filter [3], an unscented Kalman filter
(UKF) [4], a particle filter (PF) [5] and a point-
mass filter (PMF) [1] have been applied to the
TRN problems. In spite of computational burden,
we employ the point-mass filter. The point-mass
filter is a quantized version of Bayesian estimation
and is robust to various terrain profiles and large
initial errors. The input data of the point-mass
filter is the translational motion of the UAVs
and the vision system is utilized to estimate the
motion.

The information obtained from camera images
suffices for precise motion estimation based on
visual information [6], called visual odometry.
Current approaches to estimating the vehicle state
through a camera system utilize the motion of fea-
ture points in an image. A geometric approach is
proposed in [7, 8] that uses a series of homography
relationships to estimate position and orientation
with respect to an inertial pose. In this paper, we
present visual odometry of monocular camera sys-
tem using homography relationship as a reliable
substitute for the INS on the propagation stage of
the TRN filter.

The point-mass filter based TRN algorithm is
stated and derived in Section 2 and the vision sys-
tem using homography relationships is described
in Section 3. The integration of the TRN with the
vision system is implemented in Section 4 and the
performance of the proposed approach is evalu-
ated in Section 5. Finally, conclusions are drawn in
the last section.

2 Terrain Referenced Navigation

2.1 System Model

The translational motion of the UAV obeys a
simple linear equation

xt+1 = xt + ut + wt (1)

where xt, ut, wt denote the current UAV position,
the translational movement, a white Gaussian
process noise respectively. And the terrain height
yt relates to the current UAV position xt with a
white Gaussian measurement noise vt.

yt = z (xt) + vt (2)

where wt and vt are mutually independent white
processes and are distributed according to the
normal distribution pwt and pvt . These two Eqs. 1
and 2 yield the nonlinear estimation model.

2.2 Bayesian Estimation

The estimation problem associated with the TRN
is to find the best matched position in the DTED
using the set of measurements (Fig. 1). Using a
statistical view of the problem, the probability
density function (PDF) for the states gives all
information one can ask for regarding the char-
acteristics of the states [1]. Thus, the a posteriori
density function pxt|Yt (x) contains all information
about the states xt given the collected set of mea-
surements. We can define the observation set Yt

collected until present time t

Yt = {yi}t
i=0 (3)

The distribution of a generic random variable z
conditioned on another related random variable
w [1] is

p (z|w) = p (z, w)

p (w)
= p (w|z) p (z)

p (w)
(4)

Fig. 1 Terrain referenced navigation
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If we know the a priori p(xt|Yt−1), then the poste-
rior can be derived using Eq. 4

p (xt|Yt) = p (yt|xt, Yt−1) p (xt|Yt−1)

p (yt|Yt−1)
(5)

where p(yt|Yt−1) is a normalizing constant and the
joint PDF for the state at time xt and xt+1 can be
calculated using Eq. 4

p (xt+1, xt) = p (xt+1|xt) p (xt) (6)

By marginalizing on the state xt, the finalized
Bayesian formulas for the time update and mea-
surement update are represented as follows

p (xt|Yt) = α−1
t pvt (yt − z(xt)) p (xt|Yt−1)

p (xt+1|Yt) =
∫

pwt (xt+1 − xt − ut) p (xt|Yt)dxt

(7)

where

αt =
∫

pvt (yt − z (xt)) p (xt|Yt−1)dxt (8)

Given the posterior in Eq. 7, the estimate can
be found by the minimum mean square error
(MMSE) estimation

x̂t =
∫

xt p (xt|Yt) dxt (9)

2.3 Point Mass Filter

In order to implement the finalized Bayesian es-
timation formulas, an approximation technique
such as a grid based point-mass filter is employed.
We introduce N grid points over the position
domain R2 and all integral operations in Eq. 7 to
Eq. 9 are approximated by a finite sum over the
gird points

∫
f (xt) dxt ≈

N∑
k=1

f (xt (k)) δ2 (10)

where δ is the resolution of the grid points. As a
result, we can rewrite the Bayesian formulas into
approximated form

p (xt(k)|Yt) = α−1
t pvt (yt − z (xt (k))) p

× (xt (k) |Yt−1)

p (xt+1 (k) |Yt) =
N∑

n=1

pwt (xt+1 (k) − xt (n) − ut) p

× (xt (k) |Yt) δ2 (11)

where

αt =
N∑

k=1

pvt (yt − z (xt (k)))p (xt (k) |Yt−1) δ2 (12)

And the MMSE yields

x̂t =
N∑

k=1

xt (k) p (xt (k) |Yt)δ
2 (13)

The grid points have the form of a uniform mesh
of size (m × n) over R2.

3 Homography Decomposition

Translation of the UAV between two time in-
stances can be obtained by constructing homog-
raphy relationship from two successive images of
monocular camera planted on the UAV. Consider
a body-fixed coordinate frame Fc that defines the
position and attitude of a camera, with respect to a
navigation frame Fn. The rotation and translation
of Fc, with respect to Fn, is defined as R ∈ R3×3

and T ∈ R3, respectively. The camera rotation and
translation of Fc between two time instances, t0
and t1, is denoted by R01, T01. During the camera
motion, a collection of n (where n ≥ 4) coplanar
and noncolinear static feature points are assumed
to be visible in a plane. The assumption of four
coplanar and noncolinear feature points is only
required to simplify the subsequent analysis and is
made without loss of generality. If four coplanar
target points are not available, then the subse-
quent development can also exploit a variety of
solutions for more noncoplanar points [9–12].
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Consider a feature point Xi (t)=[Xi, Yi, Zi]T ∈
R3∀i ∈ {1, ..., n} defined in Fc. Standard geometric
relationships can be applied to the coordinate
systems depicted in Fig. 2 to develop the following
relationship

Xi (t1) = R01Xi (t0) + T01 (14)

The relationship Eq. 14 can be rewritten as

X (t1) = R01X (t0) + T01

= R01X (t0) + T01
1

d (t0)
NT (t0) X (t0)

=
(

R01 + 1

d (t0)
T01NT (t0)

)
X (t0)

= HX (t0) (15)

where H ∈ R3×3 is the Euclidean homography
matrix, NT(t0) is the constant unit vector normal
to the plane P from Fc at time t0, and d(t0) is
the constant distance between the plane P and
Fc along NT(t0). Further details on the Euclidean
homography can be found in [13].

Using standard projective geometry the Euclid-
ean coordinate Xi(t) can be expressed in image-
space pixel coordinates as pi (t) = [ui, vi, 1]T ∈ R3.
After normalizing the Euclidean coordinates as

xi (t) =
[

Xi

Zi
,

Yi

Zi
, 1

]T

(16)

the relationship Eq. 14 becomes

xi (t1) = Zi (t0)
Zi (t1)

Hxi (t0) = αi Hxi (t0) (17)

Fig. 2 Euclidean relationships between two camera poses

The projected pixel coordinates are related to the
normalized Euclidean coordinates xi(t) by the pin-
hole camera model [13] as

pi (t) = Axi (t) (18)

where A is an invertible, upper triangular camera
calibration matrix defined as

A =

⎡
⎢⎢⎣

a −acosϕ u0

0
b

sinϕ
v0

0 0 1

⎤
⎥⎥⎦ (19)

In Eq. 19, u0 and v0 ∈ R denote the pixel coordi-
nates of the principal point (the image center as
defined by the intersection of the optical axis with
the image plane), a and b ∈ R represent scaling
factors of the pixel dimensions, and φ ∈ R is the
skew angle between camera axes.

By using Eq. 18, the Euclidean relationship in
Eq. 17 can be expressed as

pi (t1) = αi AH A−1pi (t0)

= αiGpi (t0) = GLpi(t0) (20)

Sets of linear equations can be developed from
Eq. 20 to determine the projective and Euclidean
homography matrix GL and H up to a scalar
multiple. We need to construct the homography
matrix H from the pixel measurements pi(t0) and
pi(t1).

In order to eliminate the unknown scale in Eq. 20,
multiplying both sides by the skew-symmetric ma-
trix p̂ (t0) ∈ R3×3, we obtain the equation

p̂ (t1) GLp (t1) = 0 (21)

This equation is called planar epipolar constraint,
or also the (planar) homography constraint. Since
Eq. 21 is linear in GL, by stacking the entries of
GL as a vector,

Gs
L ≡ [

GL11 GL21 GL31 GL12 GL22 GL32

× GL13 GL23 GL33
]T (22)

we may rewrite Eq. 21 as

aTGs
L = 0 (23)

where the matrix a ∈ R9×3 is the Kronecker prod-
uct of p̂ (t1) and p(t0),

a ≡ p (t0) ⊗ p̂ (t1) (24)
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Since the matrix p̂ (t1) is only of rank 2, so is the
matrix a. Thus, even though Eq. 21 has three rows,
it only imposes two independent constraints on
GL. With this notation, given n pairs of images{(

pi (t0) , pi (t1)
)}

from points on the same plane P
by defining

χ ≡ [a1 a2 ... an]T ∈ R3n×9 (25)

we may combine all the equations in Eq. 21 for all
the image pairs and rewrite them as

χGs
L = 0 (26)

In order to solve uniquely (up to a scalar factor)
for GL, we must have rank(χ) = 8. Since each pair
of image pair of image points gives two constrains,
we expect that at least four point correspondences
would be necessary for a unique estimate of GL.

Thus, if there are more than for image cor-
respondences of which no three in each image
are collinear, we may apply standard linear least-
squares estimation to find

min
∥∥χGs

L

∥∥2 (27)

to recover GL up to a scalar factor. When we com-
pute singular value decomposition (SVD) of χ ,

χ = Uχ�χ Vχ (28)

Gs
L is defined to be the ninth column of Vχ . GL

is obtained by unstacking the nine elements of Gs
L

into a square 3 × 3 matrix. GL can be recovered
up to a form as

G = ±A
(

R + 1

d
TNT

)
A−1 (29)

by normalizing GL by its second-largest singular
value σ 2 as

G = GL

σ2
(30)

To get the correct sign, we may impose the posi-
tive depth constraint as follows

pi (t1)T G pi (t0) > 0, ∀i = 1, ..., n (31)

Lastly, the homography matrix is obtained by
following relationship with the camera calibration
matrix as

H = A−1GA (32)

Various techniques [13, 14] can be used to decom-
pose the homography matrix to obtain αi, NT(t0),
T01/d(t0) and R01. The decomposition methods
generally return two physically valid solutions.
The correct solution can be chosen by knowledge
of the correct value for the normal vector or by
using an image taken at a third pose. The distance
d(t0) can be measured separately by the radar
altimeter.

4 Visions-based Terrain Referenced Navigation

The vison-based TRN algorithm can be yielded
by replacement of the INS with the vision system.
The estimation model is rewritten by

xt+1 = xt + T01t + wvision
t

yt = z (xt) + vt (33)

where T01t is the translational solution of the ho-
mography decomposition. In this framework, since
the feature points are taken from the different
terrain height we set the nominal feature height to
the terrain height below the UAV. This assump-
tion yields errors to T01t . However, the proposed
TRN algorithm bounds the errors and derives the
best estimate. Figure 3 shows the diagram of the
proposed vision based TRN algorithm.

5 Numerical Simulation

5.1 Simulation Condition

In order to evaluate the proposed algorithm, we
construct two scenarios using different terrain

Vision system
(homography decomposition)

DTED

Radar 
Altimeter

PMF
tu

( )th x

ty

ˆtx

Fig. 3 Vision-based TRN architecture
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Table 1 Simulation condition

Object Parameters Value

UAV Crusing altitude 2 km
Speed 30 m/s

DTED Resolution 3 arcsec
Size 5 km × 5 km

Camera Field of view 45 deg
Sampling 1 Hz
Pixel random noise (1σ ) 0.5 pixel

Radar Random noise (1σ ) 5 m
altimeter Bias 0.7 m

INS Accelerometer random 0.22 m/s/
√

hr
noise (1σ )

Accelerometer bias 1 mg
Gyro random noise (1σ ) 0.125 deg /

√
hr

Gyro bias 0.1 deg/hr

profiles: 1) smooth terrain and 2) rough terrain.
In each scenario, we compare the error character-
istic of the pure INS, vision only and vision-based
TRN. The feature points are generated randomly
and the average number of the points is 5 in each
100 m × 100 m area. The INS model is referred to
[2] (Table 1).

5.2 Scenario I

This scenario is composed with the smooth terrain
profile.

Figure 4 shows the smooth terrain map used in
scenario I. The UAV flies over the map from the
south to the north. Also we perform the Monte
Carlo simulation in 1000 times. From the results,
we can find that the proposed vision-based TRN
algorithm bounds the error of the vision system
(Figs. 5, 6, 7 and 8). During the Monte Carlo
simulation, the RMS error is around 30 m and
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Fig. 4 Smooth DTED map
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the CEP is about 13 m (Figs. 9 and 10). The
mean of the terminal error is biased since the
terrain profile is smooth. The error of the INS and
the homography relation drifts away without the
terrain aided navigation. We assumed that there
are no initial errors in the vision system. After
40 s, there is a trend that filtered position follows
the solution of homography decomposition. This
is the limit of the TRN algorithm over the smooth
area. In other words, the terrain information is not
observable.

5.3 Scenario II

This scenario is constructed with the rough ter-
rain. As mention previously, the TRN algorithm
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estimate more accurate position in the rough ter-
rain than the smooth terrain. And the errors from
the vision system increase in the rough terrain.
Figure 11 shows the rough terrain map used in
scenario II. The UAV flies over the map from the
south to the north. In this scenario, also, we per-
form the Monte Carlo simulation in 1000 times.
The results show that the proposed algorithm
works properly (Figs. 12, 13, 14 and 15).

Compared to the results of scenario I, the accu-
racy of the estimate is improved. The RMS error is
reduced to 25 m and the CEP is 7 m (Figs. 16 and
17). And the mean of the terminal position error
is unbiased and there is no trend of following the
trajectory of the vision system. This is affected by
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the rough terrain profile. If the terrain the UAV
flies over is smooth, there are small differences
in heights between different locations. It indicates
that the terrain profile has low observability for
estimating precise position.

In this study, we have not considered the error
of a digital terrain map explicitly. We assume that
it is included in the error of the radar altimeter.

6 Conclusion

We proposed a vision-based TRN system to re-
place the low-cost INS and to overcome the
drawback of the vision system using homography
relationship. The optimal Bayesian estimation for-
mulas were derived and the point-mass filter was
applied to approximate the Bayesian algorithm.
The vision system was considered, which uses the
monocular camera and employs the homography
decomposition in order to calculate the transla-
tional motion. The numerical simulation was per-
formed to evaluate the proposed algorithm and
the results showed that we can acquire the accu-
rate navigation information with a camera, a radar
altimeter and a DETD map. As a future research,
we can consider about the effect of the DTED
map error and the radar altimeter accuracy over
water or wet area.
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