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Abstract Indoor localization of mobile agents us-
ing wireless technologies is becoming very impor-
tant in military and civil applications. This paper
introduces an approach for the indoor localization
of a mini UAV based on Ultra-WideBand tech-
nology, low cost IMU and vision based sensors.
In this work an Extended Kalman Filter (EKF)
is introduced as a possible technique to improve
the localization. The proposed approach allows to
use a low-cost Inertial Measurement Unit (IMU)
in the prediction step and the integration of vision-
odometry for the detection of markers nearness
the touchdown area. The ranging measurements
allow to reduce the errors of inertial sensors due
to the limited performance of accelerometers and
gyros. The obtained results show that an accuracy
of 10 cm can be achieved.

Keywords UAV · Indoor localization ·
Vision based odometry · EKF

1 Introduction

In last few years, Unmanned Aerial Vehicles
(UAVs) have attracted attention in different
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fields, both civilian and military. They are able to
perform tasks in hostile environments were access
to humans is impossible or dangerous.

Precision navigation for these vehicles is a crit-
ical aspect that needs to be deeply analyzed.

In outdoor environments, UAV can localize
itself exploiting different space-based satellite
navigation systems, such as Global Positioning
System (GPS). But the precision of satellite navi-
gation systems is very limited, especially in civilian
applications. The position accuracy that can be
achieved with GPS is ≤ 1 m in military applica-
tions, and around 10 m in civilian applications.
However using a technique known as differential
GPS (D-GPS) or EGNOS corrections, in which a
separate base receiver is fixed at a known point,
civilian accuracy may be improved to 5 m. Al-
though this is not as good as can be achieved using
high frequency radar, it may still be adequate for
some applications [1].

In order to improve the accuracy, different
methods have been developed. Some of these
improve the satellite accuracy by mean of data-
fusion with inertial navigation systems (INS) [2,
3]. Others methods are based on vision [4, 5] or
a combination of INS and Vision [6].

In GPS-denied and especially in indoor envi-
ronments UAV localization can be successfully
carried out exploiting combinations of wireless
sensor networks, inertial navigation systems and
vision-based odometry.
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Wireless sensor networks can be exploited
successfully not only for communication between
devices but also for localization purposes. In par-
ticular the IEEE 802.15.4a specifies two addi-
tional physical layers (PHYs): a PHY using ultra-
wideband (UWB) and a PHY using chirp spread
spectrum (CSS) both with a precision time-based
ranging capability [7–10].

The UWB PHY is operating in three frequency
bands: below 1 GHz, between 3 and 5 GHz, and
between 6 and 10 GHz providing high ranging
accuracy thanks to its large bandwidth. Further-
more, the UWB technology provides high data
transfer, low power consumption, high spatial ca-
pacity of wireless data transmission and sophisti-
cated usage of radio frequencies. UWB technol-
ogy is based on sending and receiving carrier-less
radio impulses using extremely accurate timing
and it can be used in such applications where high
bandwidth signals must be transmitted between
devices.

The CSS PHY is operating in 2.4 GHz ISM
band and does not support ranging features but
the first 802.15.4a CSS chip (nanoLOC) devel-
oped by Nanotron has the ranging as additional
(proprietary) function. It offers a unique solution
for devices moving at high speeds because of its
immunity to Doppler Effect and provides commu-
nication at longer ranges.

Concerning ranging measurements, in [11] a
review of existing ranging techniques is provided.
A RF Location System measures distances or
angles between known points and an unknown
position using several methods to obtain ranging
measurement:

– Time of Arrival (ToA);
– Time Difference of Arrival (TDoA);
– Time of Flight (ToF);
– Angle of Arrival (AoA);
– Received Signal Strength Indication (RSSI).

An important drawback is that all these suffer
from problems such as:

– Reflections;
– Multipath;
– Non-line-of-sight (NLOS) measurements: for

communications, any signal path transfers

useful information but for positioning only
direct path signal can be used.

Concerning algorithms, the most used tech-
niques are based on Kalman filter, especially on
Extended Kalman Filter [12–14]. But, although
the Extended Kalman filter is capable of pro-
viding real-time vehicle position updates, it is
based on linear system models that might suffer
from linearization when dealing with nonlinear
models.

Other solutions are based on Unscented Trans-
formation and Particle Filter. The main drawback
for both is essentially the high computational load
that usually prevents to use them in real-time ap-
plications. The UKF preserves the linear update
structure of Kalman Filter. It uses only second
order moments, which may not be sufficient for
some nonlinear systems. In addition the number
of sigma points used in UKF is small and may
not represent adequately complicated distribu-
tions. Moreover Unscented Transformation of the
sigma-points is computationally heavy and then
not suitable for real-time aerial navigation appli-
cations [2].

This paper presents an extension of our pre-
vious work [15] based on the development of
Localization Algorithm for Mobile Agents using
Nanotron CSS System [16]. The limitation was
the small bandwidth of the Nanotron CSS system
(80 MHz) with a ranging accuracy in indoor envi-
ronments of ±2 m.

This paper studies the indoor localization of a
small and low-cost UAV (AR.Drone from Parrot)
using the UbiSense UWB Real-Time Localization
System and low-cost IMU in conjunction with
an Extended Kalman Filter (EKF) in order to
improve the position accuracy.

The paper is organized as follows. In the
next section a concise overview of the hard-
ware/software used in this work is provided.
Section 3 deals with the low-cost IMU characteri-
zation focusing the attention on the bias and scale
factor problem. In Section 4 the kinematic model
of the quadrotor is proposed. Then in Section 5
the EKF algorithm is analyzed while Section 6
deals with the improvement of the EKF with vi-
sual odometry. In the last section some experi-
mental results are discussed.
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2 Hardware/Software Setup

2.1 The UWB UbiSense Real-Time Localization
System

The Ubisense Real-Time Localization System
(RTLS) is a precision measuring instrument.
Each sensor contains an array of 4 UWB an-
tennas used for receiving the radio pulses from
the tags (device to localize). The sensors per-
form ranging measurements using two different
methodologies:

– TDoA;
– AoA.

This combination of methods provides a flexible
system of localization in both indoor and outdoor
environments, even in 3 dimensions.

The UbiSense location system is capable of
15 cm of accuracy (with 95 % of confidence level)
and a maximum tag-sensor distance of 160 m. The
tag update rate can vary from 10 updates/sec to
1 update/hour [17]. In addition the tag includes
features for easy identification such as a motion
detector sensor that activates the tag only when
it moves [18]. The sensors are connected to a
controller PC (in which the localization server en-
gine runs) through a PoE (Power over Ethernet)
switch as shown in figure (Fig. 2).

2.2 The Parrot AR.Drone

The AR.Drone (Fig. 1) is a small and low-cost
quadcopter developed by Parrot. This quadro-
tor, currently available to the general public, is
equipped with two cameras (one facing forward,
the other horizontally downwards), a sonar height
sensor and a flight-controller running proprietary
software for communication and command han-
dling based on Linux.

Commands and images are exchanged via a
WiFi ad-hoc connection between the host ma-
chine and the AR.Drone.

The bottom camera is characterized by the fol-
lowing properties:

– 64 degree diagonal lens;
– Video frequency: 60 frames per second;
– Resolution: 176 × 144 pixels (QCIF).

Fig. 1 The Parrot AR.Drone quadcopter with body frame
axis orientation

The inertial measurement unit is composed by:

– A 3 axis digital MEMS (Bosh BMA150) ac-
celerometer positioned at the center of gravity
of the AR.Drone body. The accelerometer is
used in a +/ − 2 g range and the acceleration
measurements are acquired by an on-chip 10
bit ADC (see Table 1)

– A two axis MEMS gyroscope (InvenSense
IDG500)

– A precise piezoelectric gyroscope (Epson
XV3700) for the yaw angle and heading
control.

Both gyroscopes measure up to 500◦/s. These are
analog sensors which outputs are acquired by the
12bits ADC and sent to the flight controller. Using
particular settings the AR.Drone is able to send
all the information provided by the sensors to
the host PC. These data (called “navdata”) take
more bandwidth but contain also raw data from
the ADC converter of the IMU.

Each set of data is identified by a tag id com-
prised between 0 and 20. By default only some
data (identified by tag = 0) are provided in out-

Table 1 Bosh BMA 150 accelerometer specifications

Range ±2 g/±4 g/±8 g
Bias ±60 mg
Non-orthogonality ±2 %
Bandwidth 25–1500 Hz
Offset temperature drift 1 mg/K
Output noise 0.5 mg/

√
Hz
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put. Others data of interest in this work are iden-
tified by tag = 2 and tag = 3 which are defined as
follow:

– tag = 2 (NAVDATA_RAW_MEASURES_
TAG) ADC output values from IMU called
raw_data

– tag = 3 (NAVDATA_PHYS_MEASURES_
TAG): IMU data (calibrated with the internal
calibration algorithm) called phys_data

2.3 The Hardware Setup

The hardware architecture is composed by 2 PC.
The first PC hosts the UbiSense Location En-
gine and provides trilateration data on a UDP
Server. The second PC, in which the drone control
program runs, is connected to the first computer
by Ethernet cable and to the AR.Drone through
wireless network.

Ubisense Sensors and computers are connected
together on the same local area network as re-
ported in figure (Fig. 2).

2.4 The Software Setup

The software used in this work is mainly com-
posed of three distinct modules:

– Ranging UDP Server: This application, devel-
oped using the UbiSense libraries, provides
data from the Location Engine. At each time
step the application generates a record con-
taining trilateration data in double precision;

– AR.Drone Control Software: This module rep-
resents an extension of the AR.Drone C#
SDK available in [19] improved with routines
for:

– Storing automatically frames from the bot-
tom camera of the AR.Drone (this feature
will be used in the vision module);

– Retrieving raw data from the AR.Drone
in real time (ADC output from the ac-
celerometer and the gyroscope);

– Sending commands to the drone using
Joystick/Keyboard;

– Combining trilateration data from Rang-
ing UDP Server with the data provided by
the AR.Drone in a unique data packet.

This application is also responsible of sending
commands to the drone and the execution
delays in this software (that might origin from
image elaboration) could interfere with the
drone maneuverability. In order to avoid this
drawback, the estimation of the drone position
is performed by a dedicated Localization Al-
gorithm module (LAM).
From a point of view of data, this applica-
tion can be seen as a data concentrator that
provides, at each time step k, all the data to
the LAM.

– Localization Algorithm Module: This module
gets the data packet from the AR.Drone Con-
trol Software (NavData, frames and UbiSense
trilateration) and elaborates them. As above
mentioned, the communication between mod-

Fig. 2 The hardware
architecture used
during tests
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Fig. 3 The software architecture

ules using UDP sockets is useful if the data
receiving is not a crucial factor (otherwise the
TCP sockets should be used). In our applica-
tion this is not a critical factor.

Figure 3 summarizes the Software Architecture.

2.5 Testing of Localization Algorithm
in Simulation Environment

The localization algorithm developed in this work
has been first tested in the new version of the
3D Simulation Environment developed in [20–
22]. This Simulation Environment, based on Sim-
plySim©SimplyCube [23] is a modular framework
mainly oriented to the development and fast pro-
totyping of cooperative Unmanned Aerial Vehi-
cles. The framework combines the high realism of
the simulation carried out in a three-dimensional
virtual environment (in which the most important
physic laws act) with the easiness of Simulink for
fast prototyping of control systems. Furthermore
it now includes modules for vision analysis and
path-planning with State Flow Machines.

3 IMU Characterization

An IMU is generally composed by two orthogonal
sensor triads. A triad consists of three mono-axial
accelerometers, the other consists of three mono-
axial gyroscopes. The two triads are nominally
parallel and the origin of the gyroscope is defined
as the origin of the accelerometer triad.

In recent years inertial sensors based on MEMS
(Micro Electro-Mechanical Systems) technology
have found applications in many different fields,
thanks especially to their low cost and very small
size [24]. But low cost sensor are generally char-

acterized by poor performances. The most impor-
tant drawbacks of a MEMS IMU are bias, scale
factor and cross-axis misalignements.

In order to obtain good positioning accuracy it
is necessary to deeply analyze the behavior of the
sensors and realize special test calibrations, both
in static and kinematic conditions.

3.1 The Accelerometer Mathematical Model

The acceleration along an axis can be expressed
by the following relationship (Eq. 1), in which the
thermal drift is not considered :

z̈a = z̈ + g + εa + Sag (1)

where

– z̈a is the measured acceleration in output to
the sensor;

– z̈ is the true value of the acceleration (at the
considered point);

– g is the gravity acceleration;
– εa is the bias;
– Sa is the scale factor.

3.2 The Bias Estimation

The standard method used for calibrating IMUs
was traditionally a mechanical platform rotating
the IMU into different pre-defined orientations
and angular rates. But these tests often require the
use of specialized and expensive equipment.

A common not-expensive way to make an
IMU calibration is the six-position static test [24,
25]. The six-position method requires the iner-
tial system to be mounted on a leveled surface
with each axis pointing alternately up and down.
The bias can be calculated using the following
equations:

εa = z̈down − z̈up

2
(2)

where z̈down and z̈up are respectively two static
measurements carried out holding the z axis of the
accelerometer downward and upward.
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Fig. 4 Temperature
trend for AR.Drone
accelerometer

3.3 The Scale Factor Estimation

The scale factor can be described by the following
relationship (Eq. 3):

Sa = z̈down − z̈up − 2g
2g

(3)

where g is the gravitational acceleration. A similar
mechanism is applied in order to estimate the
scale factor along the other two axis.

3.4 The Thermal Drift of the IMU

The IMU accelerometers and gyros are very sen-
sitive to temperature as shown by Nebot and
Durrant-Whyte [26]. As the temperature of the

IMU changes, the associated bias and drift will
change until the temperature reaches a steady
value.

Considering the acceleration along the z axis in
static condition the IMU temperature increases as
an exponential law (see Fig. 4). The correspond-
ing ADC output for zup and zdown accelerations
are shown in Figs. 5 and 6. As the temperature
reaches a stationary value the ADC output stops
to change. The bias and scale factor can be then
calculated using stationary ADC output.

This is not critical in our application. Data are
considered only when the thermal steady state of
IMU is reached. After the heating of the sensor,
the εa and Sa coefficients are supposed constant
over a long period.

Fig. 5 ADC output
with z axis upward
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Fig. 6 ADC output with
z axis downward

3.5 Comparison Between Calibrated Data
and AR.Drone phys_data

In order to verify the calibration procedure de-
scribed in the previous paragraphs, a f light-test
has been carried out. The experiment consisted
in collecting data from the AR.Drone during the
hovering of the quadrotor. Because during take
off the quadcopter can shows some drifts along x
and y axis from the point of departure, data have
been collected since the AR.Drone reached the
default hovering altitude (1 m).

In Figs. 7 and 8 the red Gaussian describes
the distribution of the acceleration values along
x and y axis of the phys_data provided by the
AR.Drone, while the blue dashed Gaussian de-
scribes the distribution of the acceleration values
obtained with the procedure described above.

Table 2 summarizes mean values (μ) and stan-
dard deviations (σ ) for each series of data, com-
paring data calibrated and data provided by the
AR.Drone.

Figures 7 and 8 show that with the calibration
algorithm the accelerometer performance is sig-
nificantly improved (bias mean error on each axis
<0.05 m/s2).

4 The Kinematic Model of the Quadrotor

4.1 Axis Convention

To describe the motion of the UAV it is neces-
sary to define a suitable coordinate system. For
most problems dealing with aircraft motion, two
coordinate systems are used. The first coordinate

Fig. 7 Comparison
between calibrated data
and phys_data—x axis
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Fig. 8 Comparison
between calibrated data
and phys_data—y axis

system is fixed to the earth and may be consid-
ered for the purpose of localization. The second
coordinate system is fixed to the UAV and is
referred as a body coordinate system (in strap-
down configuration).

In order to translate the acceleration from body
frame to Navigation frame, the Direct Cosine Ma-
trix is used (Eq. 4)

Rw
b =

⎡
⎣

cθcψ sφsθcψ − cφsψ sφsψ + cφsθcψ
cθsψ cφcψ + sφsθsψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

⎤
⎦

(4)

where s represents sin, c represents cos and
φ, θ, ψ , known as Euler Angles, are named roll,
pitch and yaw (see Fig. 9).

Applying the rotation matrix Rw
b (Eq. 4), the

accelerations on the world frame are (Eq. 5):

aworld = Rw
b abody + G (5)

Table 2 Comparison between acceleration values pro-
vided by AR.Drone and the calibrated acceleration values

Data Mean μ Std. σ

Acc x (phys_data) 0.3107 0.6884
Acc x (calibrated data) 0.0427 0.7203
Acc y (phys_data) 0.3425 0.6186
Acc y (calibrated data) 0.0114 0.6186

where G is the gravity vector in world frame,
expressed as (Eq. 6):

G = [0 0 − g]T (6)

and g is the gravity acceleration.

4.2 The Mathematical Model

Starting from the physical law that describes the
uniform change of speed of a point p in one
dimension:

p(t) = p(t − 1) + �p(t) = p(t − 1) +
∫∫ t

t−1
α(τ) dτ

(7)

Fig. 9 Euler angles
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the kinematic model used in the Kalman Filter at
discrete time can be expressed as:

xk+1 = xk + �Tvxk + �T2

2
axk (8)

yk+1 = yk + �Tvyk + �T2

2
ayk (9)

where
{
vxk, vyx

}
and

{
axk, ayk

}
are respectively

velocities and accelerations at step k.

5 The Extended Kalman Filter

The Kalman Filter is suitable for the estimation
of x and y coordinates of a mobile device (tag)
on the basis of ranging measurements made be-
tween the tag and at least three known points
(anchors). Like the Kalman filter, the Extended
Kalman Filter (EKF) is also carried out in two
steps: prediction and estimation.

A fundamental issue with the EKF is that the
distributions of the various random variables are
no longer normal after undergoing their respec-
tive nonlinear transformations. The EKF is an ad
hoc state estimation that only approximates the
optimality of Bayes rule by linearization.

Let denote with (δx,i, δy,i) (i = 1, ..., n) the x and
y coordinates of the anchors and with T = (tx, ty)

T

the unknown tag coordinates. The distance be-
tween an anchor and the tag is calculated in the
following way:

di =
√

(tx − δx,i)
2 + (ty − δy,i)

2 (10)

The tag position can be obtained by trilateration
as follows:

H ·
(

tx

ty

)
= z (11)

where

H =
⎛
⎜⎝

2 · ax,1 − 2 · ax,2 2 · ay,1 − 2 · ay,2
...

...

2 · ax,1 − 2 · ax,n 2 · ay,1 − 2 · ay,n

⎞
⎟⎠ (12)

and

z =
⎛
⎜⎝

d2
2 − d2

1 + a2
x,1 − a2

x,2 + a2
y,1 − a2

y,2
...

d2
n − d2

1 + a2
x,1 − a2

x,n + a2
y,1 − a2

y,n

⎞
⎟⎠ (13)

In the Extended Kalman Filter (EKF) the state
transition and observation models need not be
linear functions of the state but may instead be
differentiable functions:

x̃k+1 = f(x̂k, uk, wk),

ỹk+1 = h(x̃k+1, vk+1)
(14)

where x̃k and ỹk denote respectively the approxi-
mated a priori state and observation and x̂k the a
posteriori estimate of the previous step.

The state vector contains the predicted tag co-
ordinates and velocities along x and y axis:

xk = (
xk yk vxk vyk

)T
(15)

Referring to the state estimation, the process is
characterized by the statistical variables wk and vk

that represent respectively the process noise and
measurement noise. Wk and vk are supposed to
be independent, white and normally distributed
with given covariance matrix Qk and Rk. The
observation vector yk represents ranging measure-
ments made between tag and anchors, and defines
the entry parameter of the filter. Because in the
analyzed system the predictor equation contains a
linear relationship, the process function f can be
expressed as a linear function:

xk+1 = Axk + Buk + wk (16)

where the transition matrix A is defined as fol-
lows:

A =

⎛
⎜⎜⎝

1 0 �T 0
0 1 0 �T
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (17)

and T is the time sample.
The input control vector contains the linear

acceleration (uk) of the quadcopter:

uk =
(

uaxk

uayk

)
(18)

Sensor measurements at time k are modeled
in the Kalman Filter by the following equation
(measurement model):

zk = Hxk + vk (19)
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Fig. 10 Sensor fusion algorithm flow-chart

Because the UbiSense SDK provides only the
(x,y,z) coordinate of the estimated position of the
tag, the H matrix is:

H =
[

1 0 0 0
0 1 0 0

]
(20)

The following flow chart shows how the sensor
fusion algorithm works (Fig. 10):

6 Improving the Extended Kalman Filter
with Vision-based Odometry

Today the vision-based odometry approach repre-
sents one of the most promising methodology to

improve the accuracy and precision of unmanned
aerial vehicles localization. An interesting review
of methods for visual odometry is [27].

The approach here adopted is based on ar-
tificial well-known markers in terms of size and
position in the considered environment. This kind
of approach is suitable in the case of indoor lo-
calization. Feature based approaches based on
SIFT/SURF and their variants are suggested for
complex environments as the outdoor [28].

The first step (offline) is represented by the
calibration of image sensor to derive intrin-
sic/extrinsic parameters of the camera. This step
is performed using a standard chessboard pattern
viewed from different point of view. The calibra-
tion is based on the Zhang approach [29].

In real-time the artificial marker are detected
and geo-referred using the following approach:

– Get current frame;
– Convert from RGB to grayscale color space

using the Principal Component Analysis to
obtain high contrast image;

– Smoothing of image using a 3 × 3 Gaussian
kernel;

– Adaptive thresholding;
– Polygon extraction;
– Shape Filtering (only polygons with four con-

nected segments are considered);
– Extraction of perspective transform from 4

corners;
– Warp the image using the perspective trans-

formation;
– Calculation of pose given a the set of extracted

object points using the camera matrix and the

Fig. 11 An example of
target detection using the
bottom side AR.Drone
webcam
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Fig. 12 An example of
QRCode used to improve
the localization task in
the considered indoor
environment

distortion coefficient derived in the calibra-
tion stage;

– Decode if possible the content of marker if the
QR-code is present.

In Fig. 11 an example of marker detection from
bottom side AR.Drone camera is shown. The
marker is square in shape with the side of 22 cm
and 2 cm thick line. The idea is to use a set of well
known marker optionally with coded information
as shown in Fig. 12 using a QR-code.

The detection and recognition stages are per-
formed online using a dedicated computer due
to the constraints of computing unit installed on
the AR.Drone. The time required to detect and
recognize the marker is approximately 100 ms
on a Intel Core 2 Duo machine running Win-
dows 7 operating system. The extracted AR.drone
pose referred to the detected marker is then used
into the EKF to correct the estimation of posi-
tion changing the weight of ranging and inertial
data/measurements. The obtained results show
that accuracy ≤0.1 m can be achieved. The bot-
tom camera of AR.Drone was used due to future
extension that focuses on the capability of take-
off/landing from a mobile ground rover equipped
with a well-known marker. This kind of camera
is useful to improve these tasks which requires
accuracy not available by the UWB sensors.

7 Experimental Results

In this section the results of some tests carried
out in indoor environment are presented (Fig. 13).
The reason of this choice is for the performances

evaluation of the algorithm even in presence of
multipath. The 2-D Cartesian coordinates of an-
chors have the following values (expressed in
meters):

A1 = [0.18 0.79]T

A2 = [1.79 8.11]T

A3 = [7.31 9.28]T

A4 = [4.62 0.23]T

(21)

Fig. 13 Map of the indoor environment
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Fig. 14 Experimental
result—test n◦1

Fig. 15 Experimental
result—test n◦2

Fig. 16 Experimental
result—test n◦2—x axis
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Fig. 17 Experimental
result—test n◦2—y axis

The initial position of the mobile agent is
[3.3 1.8]T m. The speed of the UAV is set to the
maximum AR.Drone velocity: 5 m/s.

The step time used in localization algorithm is
0.1 s in order to exploit the maximum update rate
of the UbiSense Tag [17].

While the mobile agent moves along the path,
the UWB tag node measures ranging from the
four anchors and then a trilateration of (x,y)
position is provided to the Localization Algo-
rithm Module from the UbiSense Location En-
gine through the Ranging UDP Server.

7.1 Experimental Results without Vision-based
Odometry

Figure 14 shows the position estimation (red line)
using calibrated IMU data and ranging measure-
ments (blue dots). As comparison, also the posi-
tion estimation based on odometry (green dashed
line) is reported.

7.2 Fault Simulation on Ranging Measurements

In Fig. 15 a more complex test has been car-
ried out. The quadrotor is controlled to fly along
a square path. During the flight a fault of the
ranging sensors is simulated. In order to simulate
the fault the localization algorithm is constrained
to use the last available measure of trilateration
provided by the Ranging UDP server through the
AR.Drone Control Software. When the localiza-

tion algorithm detects the fault (the same trilater-
ation data over an interval T f ) it automatically in-
creases the covariance matrix of the measurement
process R and the error estimation covariance ma-
trix P. In this way the quadcopter is constrained
to localize itself using mainly odometric data. In
Fig. 15 blue dots and black triangles represent
respectively the ranging measurement before and
after the fault.

Figures 16 and 17 show the x and y axis individ-
ually. The fault occurs at T f = [8 : 10] s. During
the fault the quadcopter is able to localize itself
with an error around 1 m. When the ranging sys-
tem is re-established, the filter is able to correctly
re-estimate the quadrotor position in less than
5 steps.

Fig. 18 Experimental result using also visual odometry
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Fig. 19 Experimental
result using also visual
odometry—x axis

Fig. 20 Experimental
result using also visual
odometry—y axis

7.3 Experimental Results with Vision-based
Odometry

In this section an experimental result of the
quadrotor position estimation with vision-based
odometry is reported. The marker is positioned
at (x, y) = [3.5 7.1] m. The initial position of
the quadrotor is (x, y) = [3.15 2.9] m. After take
off, the quadrotor moves toward the marker.
Figure 18 shows a comparison of the position
estimation with and without the vision odometry.

If the marker is recognized by the bottom
camera, the localization algorithm increases the
weight of the vision odometry in the position
estimation. At each frame, a boolean variable

indicating the detection of the marker is asso-
ciate. Figures 19 and 20 show the x and y axis
individually.

When the quadrotor reaches the marker po-
sition, (t = 3.5 s), if the marker is detected, the
boolean variable is set to true and the EKF re-
duces drastically the localization error, calculating
at each time step the �x and �y position from the
marker considering also the current body attitude.

8 Conclusion and Future Works

In this paper an Extended Kalman Filter for
indoor localization using a 802.15.4a Wireless
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Network, low-cost UAV and vision-based odom-
etry was presented.

The calibration for MEMS is a critical aspect
that needs to be carried out in order to improve
the a priori state estimation. The calibration pro-
cedure provided an improvement of the MEMS
sensor performances using a low-cost devices.

The obtained results reinforce the necessity of
integrate additional sensors to obtain better re-
sults in terms of accuracy and precision.

In case of indoor environments the integration
of a Laser Range Finder could significantly im-
prove the overall performance.

The vision based system is based on the detec-
tion and recognition of artificial landmarks which
can be installed in indoor environments but the
approach can be easily extended to natural land-
marks [28].

Future works will be steered to extend the set
of sensors integrating visual information based
on high-definition camera and to optimize the
code to improve the overall performances. The
integration of landing/take-off on/from a mobile
ground platform will be also implemented com-
bining ranging and visual data.
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