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Abstract In this paper, a hierarchical framework
for task assignment and path planning of multiple
unmanned aerial vehicles (UAVs) in a dynamic
environment is presented. For multi-agent scenar-
ios in dynamic environments, a candidate algo-
rithm should be able to replan for a new path to
perform the updated tasks without any collision
with obstacles or other agents during the mission.
In this paper, we propose an intersection-based
algorithm for path generation and a negotiation-
based algorithm for task assignment since these
algorithms are able to generate admissible paths
at a smaller computing cost. The path planning
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algorithm is also augmented with a potential field-
based trajectory replanner, which solves for a de-
touring trajectory around other agents or pop-up
obstacles. For validation, test scenarios for mul-
tiple UAVs to perform cooperative missions in
dynamic environments are considered. The pro-
posed algorithms are implemented on a fixed-
wing UAVs testbed in outdoor environment and
showed satisfactory performance to accomplish
the mission in the presence of static and pop-up
obstacles and other agents.

Keywords Task assignment - Path planning -
Multi-UAYV coordination - Multiple UAVs -
Flight experiment

1 Introduction

UAYVs are nowadays deployed for various mis-
sions including surveillance and security enforce-
ment. As UAVs are deployed in more compli-
cated missions, they may fly in areas filled with
obstacles, which may not be known a priori. Also,
when a mission becomes more complicated, it
is desirable to “share the burden” by multiple
UAVs. In such scenarios, UAVs should be able to
fly through the desired waypoints without crash-
ing into obstacles or other agents. Therefore, task
assignment and path planning are two essential
elements of mission planning and execution for
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multiple UAVs. Mixed Integer Linear Program-
ming (MILP) is a powerful method for task assign-
ment because it can handle dynamic systems with
discrete decision variables and there are many
efficient solvers available. Bellingham used MILP
for task assignment to handle waypoint visiting
problems [1]. However, the complexity of the
problem rapidly grows as the number of variables
increases and therefore it is often not suitable
for real-time applications. Furthermore, since the
MILP is formulated with object functions for the
entire system, it needs to be implemented as a cen-
tralized system, which may not function well when
the central control station or communication links
are broken.

Path planning is an important requirement for
collision-free operation for UAVs. A path planner
should satisfy completeness, optimality, compu-
tational tractability, and scalability. In addition,
the collision and threat avoidance is required for
multi-agent scenarios and there are varieties of
algorithms for this purpose. Shim applied model
predictive control (MPC) algorithm to a collision
avoidance problem of sixteen homogeneous ro-
tary UAVs [2, 3]. Schouwenaars et al. used mixed
integer programming for multi-vehicle path plan-
ning [4]. Richards showed an aircraft trajectory
planning with collision avoidance using MILP [5].

Also, some variations of MILP have been ap-
plied to this problem. Earl and D’Andrea devel-
oped an iterative MILP approach [6] and Jain
and Gossmann proposed hybrid MILP/CP (Con-
strained Programming) models for a class of the
optimization problems [7]. Chang and Shadden
introduced the gyroscopic forces for collision
avoidance, which is similar to the potential field
approach [8].

In this paper, we propose a hierarchical frame-
work for efficient path planning and task assign-
ment for multiple UAVs in dynamic environments.
The proposed path planning algorithm is based
on the shortest-path principle in Euclidean space,
which is combined with A* search algorithm.
Since the path planner is not able to handle any
pop-up obstacles or other agents in real time,
it is augmented with a potential field-based col-
lision avoidance layer, which is responsible for
solving a detouring trajectory around the detected
obstacles.

@ Springer

For task assignment, we propose a negotiation-
based algorithm, which searches for a solution
by negotiating for lower costs to perform the
given task at individual agent level. Initially, each
agent chooses their first task depending on the
cost, which is directly proportional to the dis-
tance to the task. The choices of all other agents
are notified to each agent and, when there are
contflicts, the costs of conflicting agents are com-
pared, and the agent with the lowest cost has
the priority to claim the task while the remaining
agents repeat the same process until all conflicts
are resolved. The proposed algorithms are com-
putationally light enough to handle real-time path
planning in partially known environment.

The proposed algorithms are first validated in
simulations, where multiple UAVs are required
to perform the given tasks while avoiding obsta-
cles and other agents. Then, we perform a flight
test using the same algorithms implemented for
real world operation with multiple fixed-wing air-
planes in outdoor environment with no-fly zones
and pop-up threats. The proposed algorithms
were shown to be capable of real-time path plan-
ning and task assignment in outdoor environment
even with simulated dynamic obstacles.

2 Problem Formulation

Tasks can be defined as a set of actions to accom-
plish a job, a problem, or an assignment. It can
be represented as a number of lower-level goals
that are necessary for achieving the overall goal
of the system [9, 10]. In this paper, each task is
defined as visiting a waypoint, through which at
least one agent should pass once. First of all, we
need to establish the rules for task assignment and
path planning [11]:

(a) Obstacles are defined as the objects that ob-
struct the motion. In our research, they are
represented as polygons, which can model
real-world obstacles more accurately than
circles or ellipses.

(b) The environment is modeled as a two-
dimensional Euclidean space.

(¢) UAVs must avoid all obstacles.



J Intell Robot Syst (2013) 70:303-313

305

(d) All UAVs must remain in admissible areas,
i.e., clear from the obstacles with a margin.
Therefore, paths of all UAVs solved by the
proposed procedure should be admissible.
Paths can intersect, but should not lead to
collision among UAVs.

(e) The task assignment and the path planning
should run in real time.

In the following section, we will present the
task assignment and the path planning algorithms
based on rules listed above.

3 Negotiation-Based Task Assignment

During the last decade, many auction and negoti-
ation algorithms have been developed for task as-
signment problems [12-15]. The task assignment
algorithm in this paper is based on the negotiation
algorithm. The proposed method should generate
a feasible solution within a reasonable time for
real-time applications. In addition, this algorithm
is an event trigger-based process, which means that
it runs only when an agent sends a message to
invoke this algorithm. This is a desirable attribute
for decentralized systems running in real time.
Events can be classified into three cases: i) a
mission is given to the system and the agents start
to achieve the goal of a mission, ii) a task in a
given mission is accomplished by an agent, and
iii) a given mission is completely finished. If an
event occurs in the mission, the presented task as-
signment process is activated. In that case, whole

agents can be assigned with the different tasks,
and this result is dependent on the conditions of
tasks. On the other hand, the costs for negotiation
are defined by using Eq. 1. This formula consists
of two parts: the distance from the current lo-
cation of an agent to the task location and the
characteristics of an agent and the assigned task,
i.e., the capability set of an agent and type of the
task. The total cost is a linear combination of these
two elements, and there are weights assigned for
each term:

J, task = Wd-] dist T Wc-] character (1)

In Eq. 1, J4y is the cost related with the distance
between the current position of an agent and the
location of the given task. If there are tasks with
different characteristics, Jcnaracrer can be given with
different costs to affect the behaviors of all agents
in this scenario. Herein this paper, without loss of
generality, we assume the cost is dependent on the
distance only so that J.jgacer in Eq. 1 is to zero.

The negotiation-based task assignment is per-
formed in the following manner. Initially, each
agent chooses their first task with the lowest cost,
which is a function of the distance to the task.
The choices of all other agents are notified to
each agent and, when there are conflicts, i.e., more
than one agents choose the same task, the costs
of conflicting agents are compared, and the agent
with the lowest cost has the priority to claim the
task while the remaining agents repeat the same
compare-and-claim process until all conflicts are
resolved.

Fig. 1 Negotiation-based

task allocation for three
UAVs with three tasks

UAV #1

UAV #2

UAV #3

Task Assignment

Send the message

Request for task assignment
Before Calculate the cost Calculate the cost Calculate the cost
Negotiation individually individually individually

15t Negotiation

cost :: 40.68 @ Task A

cost :: 40.96 @ Task A

cost :: 42.09 @ Task C

cost :: 40.68 @ Task A

cost :: 42.09 @ Task C

2nd Negotiation

cost ::41.60 @ Task C

cost :: 42.09 @ Task C

cost :: 40.68 @ Task A

cost :: 41.60 @ Task C

¥

cost :: 45.76 @ Task B
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In Fig. 1, an example with three UA Vs is given.
At first, each UAYV chooses their task and the cost
is compared. At the first negotiation, UAV #1 and
#2 choose the same Task A and they negotiate to
find UAYV #1 has lower cost. So UAV #2 is forced
to choose a task other than A, and it chooses Task
C with cost 41.60. This choice now conflicts with
that of UAV #3 with cost 42.09, which is higher
than the cost of UAV #2. Therefore, UAV #3 is
forced to choose Task B with cost 45.76.

This approach has no guarantee to converge
to the global minimum with an exception that
it does converge to the global minimum when
the number of the agent is equal to the number
of tasks. However, this algorithm demands lower
computing loads and suitable for decentralized
scenarios with limited communication bandwidth.

4 Intersection-Based Path Planning

In the Euclidean space, the shortest path between
two points is the straight line that connects these
points. Denoting these points as x and x,, the cost
function to find minimal distance—path can be
written as

min J = dist (X;, Xg) = | x; — Xg . (2)

However, if there are any obstacles or forbidden
regions on the line, the shortest path is not admis-
sible and a detouring path should be computed.

In order to find an admissible path in this sit-
uation, the intersection point by the path from
Eq. 2 and the boundary of obstacles are used.
The first step of the proposed algorithm is to find
the intersection point. If an obstacle in the two-
dimensional space is modeled as a polygon, then
the intersection point x,, in Fig. 2 can be found
easily. In such a case, a new path that passes the
boundary points of a detected obstacle, xp;; or
Xz should be found. Therefore, these two points
are the candidates of waypoints for path plan-
ning. The proposed algorithm uses A* approach
expressed as Eq. 3.

fx) =gx +hx)
= |Ixs — Xpll + ”Xg — Xy ” (3)
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Fig. 2 Intersection point between shortest path and an
obstacle

In Eq. 3, x, is the boundary point of detected edge
so that the first term of Eq. 3 is the distance from
the starting point to a waypoint candidate and the
other is the distance from the waypoint candidate
to the goal point. If the detected line is not the first
since the operation started, this equation should
be modified to Eq. 4 because the vehicle is already
assigned to a waypoint.

fx) =gx+h(x

N

= Z [xiar — Xi—nac] + | xg — x| 4)

i=1

In the two-dimensional space, the suboptimal
waypoints and the candidate waypoints appear
as a pair, and the suboptimal waypoints receive
a higher priority for calculation. If multiple ob-
stacles are located in the area, the intersection
point which is the closest among the intersection
points and the obstacle of that point is considered.
Since A* algorithm is used in this procedure, it
is possible to find the globally optimal path using
the nodes found using the intersection method
described above. Therefore, the nodes related to

Table 1 Pseudo code for path planning

Algorithm 1 Intersection-based path planning

1: P < InitializePath(xy, x¢)

2 X < Xg

3: while dist(xg, X;) > dadmissibie dO
4: xp < DrawLine(xg, x;)

5. if x,, exist

6: x; < SelectOptimalNode(xg, X, X1, X2, ..., X;)
7: P < AddPath (P, x;)

8: endif

9: i<i+1
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Fig.3 Result from the proposed line-based oath planning.
(solid lines: suboptimal paths selected as the optimal path
candidates, dashed line: optimal path solved from the pro-
posed algorithm)

the intersection points are used for the path plan-
ning, and the procedure from Egs. 2 to 4 will be
repeated until the solved node reaches the goal
point (for detailed description on the algorithm,
see Table 1).

Figure 3 shows a simulation result obtained
using the proposed path planning algorithm. In
this scenario, the area is filled with ten arbitrarily
shaped obstacles. The dashed line is the solved
path, and the solid lines are the candidate paths
to compute the shortest path. First of all, the
algorithm finds a path that passes on the left side
of an obstacle. However, the priority is switched
after this path meets another obstacle and a new
candidate path is found. After several iterations,
this algorithm determines that the path should be
modified, and the final path is again replaced with
the dashed line, which is the optimal path.

5 Potential Field-Based Collision Avoidance

The collision avoidance is a dynamic path genera-
tion technique, which finds an admissible path to
avoid the collision among agents in the given envi-
ronment. The algorithm proposed here is based on
the potential field approach with some improve-
ments explained below. Almost all algorithms re-
lated on the potential field are based on the dis-

tance between the vehicle and target points at one
time frame. However, in case of moving threats or
obstacles, it is desirable to consider the relative di-
rection of motion as well. The proposed algorithm
utilizes the cost function for the potential field as
the function of the distance and direction of the
obstacle using the normal vector as

J= fn(x,v,n). 5)

The main procedure of this algorithm is de-
scribed as below. First of all, a set of path can-
didates over a finite horizon into the future are
constructed. For each path, the cost is computed
with respect to the attraction forces from the
waypoints or goal points, and the repulsion forces
from the agents. Among those candidates, the best
candidate that has the lowest cost can be selected,
and an UAV moves in one step along the selected
path. This procedure is iterated until the UAV
reaches to the target point.

The cost function for the waypoints generated
from the path planning can be expressed as Eq. 6.
Note that Eq. 6 is not dependent on the vehicle’s
heading angle. In order to prevent Eq. 6 from
dominating other terms, a denominator that di-
vides by the distance from the waypoint to the
current position of an UAV is included.

Tuvaypoint = 1 — exp < waaypoint — XAt “ ) (6)

” Xwaypoint — X¢ ”

The cost function for the obstacles and threats is
expressed as Eq. 7, and again it is independent
from the vehicle’s heading. If the angle between
the normal vector and velocity vector is close to
zero, i.e., the vehicle approaches to the object,
the cost function grows exponentially. However, if
this angle is close to 180 degrees, the cost function
decreases rapidly because the UAV moves apart
from the object. In a similar reason explained
above, a denominator is included to divide the
term by a magnitude vector from the object to the
present position of an UAV. In Eq. 7, Copsacte 18
a positive real number to introduce a adequate
margin for any discrepancy between the actual
obstacle and its polygon-based approximation and
n; is the normal vector which connects the edge
of an obstacle and UAVs. Therefore, 6 ,pgqcie In
Eq. 7 is the angle between the normal vector n;
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and velocity vector v, o, after the finite time, and
0 obsiacte affects the cost for obstacles.

Jobstucle,i

= (05 €08 Oppstacte + 0.5+ Cobstacle)

s exp (_ In| )
”Xt - Xobslable”

where
Oobstacte = cos™' e o7
obstacle ]| 1Weacll
T
n=[E: Ey E ]|, —Xiia ?

6 Integrated Architecture for Multi-UAV
Coordination

Figure 4 explains how the task assignment layer,
path planner, and collision avoidance layer pre-
sented so far are integrated altogether. The in-
tegration of the negotiation-based task assign-
ment and the intersection-based path planner is
a crucial step for architecting a mission-planning
framework for multi-agent scenarios. In our re-
search, the task assignment layer needs to commu-
nicate with the path planner to receive the cost for
task assignment, which is a function of distance to
reach the destination. During the task assignment,
the path planning layer is repeatedly called until a
feasible solution for task assignment is found.

The next step is, if any unmapped obstacle is
detected, to find a collision-free path using the
original path computed by the path planner. It
is noted that the path planner and the collision
avoidance layer may appear to do a similar task
of finding a conflict-free path. However, the colli-
sion avoidance layer finds a path locally detouring
from the original path found by the path planner,
which only uses the obstacle information known
before starting the mission. Therefore, these two
algorithms work in a complementary manner to
generate the collision-free path efficiently.

As mentioned, these two procedures are in a
hierarchical relationship and the path planning
algorithm is invoked when the situation is in three
cases: before carrying out the mission, a new
task is allocated on an agent participating in the
mission, and new obstacles or threats suddenly

@ Springer

Task Assignment

- Task scheduling and allocation

- Cooperation between UAVs

- Find the suboptimal solution for task scheduling
- Decentralized method

AN

< L =

N
Path Planning

cost

- Obstacle Avoidance

- Considering Environments

- Nointeractions between UAVs

- Searching an admissible path to reach to a task

- Solutions are used as cost in task assignment layer

NN

interlocking

Collision Avoidance

- Low-level trajectory planning

- Focus on the interaction between UAVs

- Can consider pop-up obstacles

- Searching an admissible trajectory to reach to
waypoints from the path planning

Fig. 4 Integration of task assignment, path planning, and
collision avoidance layers

appear, or “pop up”. The collision avoidance al-
gorithm is activated when the agent go to the
target point while following the path. For multi-
UAYV scenarios, the collision avoidance between
two agents should be considered. The presented
avoidance algorithm is then used to generate a
collision-free path. In this result, the vehicle’s
kinematic constrains such as maximum turns rates
or minimum turn radii. We assume the flight
controller is capable of reaching the waypoints,
which is the vertices of the generated path. In case
the vehicle cannot reach the required waypoints
promptly, the task assignment layer redistributes
the task among the agents in the neighborhood. It
is noted that our proposed method can be further
improved by explicitly considering the vehicle’s
characteristics.
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Fig.5 Task assignment in totally known environment (t =
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1 is assigned with three tasks (task 4, task 7, and
task 9) and participated in the whole negotiation
process.

UAYV #2 is also assigned with three tasks (task
5, task 6, and task 8) and UAV #3 is assigned
with four tasks (task 1, task 2, task3, and task 10)
during the mission. At fifth negotiation, UAV #1
sends the information of the determined task to
UAYV #2 and chooses to undertake task 4 because
it is better that UAV #2 carries out task 5. Such a
task swapping also occurs at the ninth negotiation
process between UAV #1 and UAV #2.

There are nine peaks in the plot of elapsed
time for negotiation process (Fig. 6). Although
the maximum computation time (=0.9) of the first
process is greater than the iterated time to run
the proposed algorithm, it does not affect the
real-time process because it is executed prior to
commencing the mission. The computation time
for negotiation process was quite less than the iter-
ation time, so it shows that the proposed algorithm
can be used for the real-time process. However,
it is noted that the result cannot guarantee the
globally optimal solution because the proposed
algorithm is a greedy one and operated in a de-
centralized manner.

8 Flight Experiments and Validations

As the final step of validation, the proposed
framework is evaluated using three fixed-wing

—— VAV
Al —7- UAV2
—4—UAV3

z direction [m]
©x 3 B 2 3 3
888888
T

x direction [m]

UAYVs as shown in Fig. 7. The experiment is con-
ducted in the following steps. Each UAV commu-
nicates with the ground station through its own
onboard modem. After the flight computer is ini-
tialized, the vehicle is launched using a bungee
cord. After the vehicle climbs to a prescribed alti-
tude, it begins loitering in a circular pattern until a
task is assigned. When all agents are airborne and
ready to accept the task commands for the mis-
sion, the ground station starts the task algorithm,
which receives all agents’ position and heading
and sends the task commands back to each agent
over the wireless network.

When the UAVs receive the task command
from the ground, the onboard flight controller
steers the vehicle to visit the commanded loca-
tion. A task is declared completed if the UAV
passes the commanded location within a pre-
scribed bound. When the UAV receives a new
task request while flying to a task location previ-
ously assigned, the flight controller commands the
vehicle to fly to the newly received task waypoint,
simply ignoring the previous request.

Here, we first consider a scenario of three
UAVs to visit six check points for reconnaissance
with a no-fly zone on the left (Fig. 8). The experi-
ment result is shown in Figs. 8 and 9. In these plots,
the trajectories of three UAVs performing the
scenario as well as the task points and simulated
obstacles are shown. Initially, the three agents are
located at the lower right area of the map and
then start flying to the upper left direction upon
receiving the task commands.

Fig.9 A snapshot and a three-dimensional graph of the trajectories of three UA Vs in a dynamic task assignment experiment
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Table 2 Task assignment procedure for experiment with
three UAVs

UAV #1 UAV #2 UAV #3
Step 1 TASK 1 TASK 5 TASK 3
Step 2 TASK 3 TASK 6 TASK 5
Step 3 TASK 6 TASK 4 TASK 3
Step 4 TASK 6 TASK 4 TASK 2
Step 5 TASK 2 Finish TASK 4
Step 6 TASK 2 Finish Finish

Table 2 shows how the tasks are assigned to
three UAVs during the mission. Based on the
initial positions of the agents, tasks are initially
assigned to the agents as shown in step 1. When
task 1 is completed by UAV #1, the remaining
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tasks are assigned to all UAVs as shown in step
2. This time, UAV #3 completes task 5. The
remaining tasks are again assigned to all other
UAVs and this process repeats until all tasks are
completed at step 7. In this example, only UAV
#1 and #3 perform the tasks while UAV #2 did
not have a chance to perform any of the tasks it
was bidding for due to the cost higher than that of
other UAVs’ bids.

In the second scenario, we evaluated the ob-
stacle avoidance capability against pop-up threat,
which was not known during the initial path plan-
ning stage. Here, two UAVs fly into an area with
four pop-up threat zones. The experiment result is
shown in Fig. 10, where the two UAVs were com-
manded to perform the given tasks while avoiding
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Fig. 10 A flight test result of a scenario with two UAVs with a no-fly zone and pop-up threats
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the pop-up threats using the potential field-based
collision avoidance algorithm.

From this experiment, the proposed framework
is shown to be capable of performing a dynamic
task assignment in the presence of pop-up threats
as well.

9 Conclusion

In this paper, a hierarchical framework for task
assignment, path planning, and real-time collision
avoidance is proposed. The task assignment layer
is based on a negotiation-based algorithm and
the path planner is constructed by combining the
shortest-path principle with A* search algorithm.
The real-time collision avoidance algorithm for
pop-up threats or unmapped obstacles is based
on potential field. The proposed framework is
first validated in simulations and then in a se-
ries of experiments using real fixed-wing UAVs
in outdoor environment. In this experiment, the
group of UAVs was able to accomplish the given
missions by visiting all of the task points even
in the presence of known obstacles and pop-up
threats. The proposed algorithm is expected to be
readily applicable to various multi-UAV scenarios
in real environment unlike many algorithms that
function only in sterile conditions.
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