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Abstract This paper provides a solution to the
problem of ground target tracking using an un-
manned aerial vehicle (UAV) with control input
constraints. Target tracking control with input
constraints is an important and challenging topic
in the study of UAVs. In order to achieve pre-
cise target tracking in the presence of constant
background wind and target motion, this paper
proposes a saturated heading rate controller based
on a guidance vector field while the airspeed is
held constant. This proposed approach guarantees
the global convergence of the UAV to a desired
circular orbit around a target. To estimate un-
known constant background wind and target mo-
tion, an adaptive observer with bounded estimate
is developed. Simulation results demonstrate the
effectiveness of the proposed approach.
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1 Introduction

In recent years, the research of UAVs has re-
ceived much attention, as there are many potential
applications in both military and civilian fields
[2, 4, 6, 7]. Ground target tracking is an important
application of UAVs, and several control strate-
gies have been developed in the literature, such as
vector field approach [9, 11], good helmsman ap-
proach [18], MPC based approach [3], etc. Despite
great progress has been made, practical and the-
oretical challenges are still abundant. Therefore,
this paper will focus on the problem of ground tar-
get tracking using a fixed wing UAV with control
input constraints.

In [12] and [13], Park et al. propose a non-
linear guidance logic to achieve path following
for curved trajectory. In this approach, a refer-
ence point on the desired path is designated, and
a lateral acceleration command is generated ac-
cording to the direction of the reference point
with respect to the vehicle velocity. In [10], tar-
get tracking using a mobile robot is proposed,
where global asymptotical stability is guaranteed.
In [18], “good helmsman” approach is introduced
to achieve path following. In this approach, the
vehicle kinematics is represented by a Serret-
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Frenet formulation in terms of path parameters,
and then a course rate controller is designed to
bring the UAV from its current path to the desired
path in the Serret-Frenet frame. Furthermore, in
order to estimate the unknown wind, a linear
observer is constructed. However, the estimate of
the unknown wind is not bounded. Rafi et al. [15]
propose an autonomous navigation algorithm to
guide the UAV with physical constraints to follow
a moving target.

Recently, Lyapunov guidance vector field ap-
proaches, which stem from potential field work,
are introduced to guide the UAV to achieve tar-
get tracking [5, 8, 9, 11, 20]. In [11], the desired
course angle of the UAV is generated by us-
ing a Lyapunov vector field approach. A sliding
mode course rate controller is applied to track the
desired course angle so that the UAV achieves
circular target tracking. In [8], a heading rate con-
troller is used to track the desired heading gen-
erated by a vector field approach while holding
a constant airspeed. However, the control input
constraints are not explicitly considered in the
proof. Another different Lyapunov guidance vec-
tor field approach is introduced in [5] to guide
the UAV to fly a circular orbit around a target.
Both stationary target tracking and moving target
tracking are studied based on the proposed Lya-
punov guidance vector field. Based on the work
in [5], Summers et al. [20] provide the formal
proof of heading and standoff radius convergence
with heading error located in the second and third
quadrants. Moreover, they propose an adaptive
approach to estimate the unknown background
wind and target motion. However, the proof for
the global convergence of the UAV to the desired
orbit is still lack. The recent study in [21] proposes
an adaptive control approach to achieve standoff
target tracking in the presence of unknown back-
ground wind and target motion. In this approach,
a variable heading rate controller is utilized while
the airspeed is held constant. However, the head-
ing rate input constraint is not taken into account.

This paper studies the problem of ground target
tracking using a fixed wing UAV with control
input constraints. The motion of the fixed wing
UAV with lower level autopilots (altitude hold,
velocity hold and heading rate hold autopilots)
is described by its kinematic model. Background

wind and target motion are considered during
controller design. A guidance vector field is intro-
duced to generate the desired relative course an-
gle. Based on this vector field, a saturated heading
rate controller, accounting for the physical con-
straint of the UAV, is proposed to regulate the ac-
tual relative course angle to the desired one while
the airspeed is held constant. This proposed ap-
proach guarantees that the UAV with an arbitrary
initial state can asymptotically converge to a de-
sired circular orbit around the target. A rigorous
proof for global convergence is also provided in
this paper. In order to estimate unknown constant
background wind and target motion, an adap-
tive observer is developed to guarantee bounded
estimate.

The remainder of this paper is organized as
follows. Section 2 introduces the UAV model and
the guidance vector field approach. Section 3 pro-
poses a saturated heading rate controller, and
the complete proof for the convergence of the
UAV to the desired circular orbit is provided. In
Section 4, an adaptive observer for unknown wind
and target motion is developed. In Section 5, the
proposed approach is illustrated via the simula-
tion results. Finally, the conclusions are given in
Section 6.

2 Problem Statement

In this section, a commonly used UAV model
[1, 14] with control input constraints is firstly in-
troduced. Then the desired relative course rate is
derived based on a guidance vector field. After
that, the condition that the desired relative course
rate reaches saturation will be analyzed.

2.1 UAV Model

This paper assumes that the altitude of the UAV
is held constant. The kinematic model describing
the relative motion of an UAV with respect to a
moving target in the presence of background wind
is given by the following equations

ẋr = u1 cos ψ + Wx − ẋt

ẏr = u1 sin ψ + Wy − ẏt

ψ̇ = u2 (1)
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where, as illustrated in Fig. 1, (xr, yr) ∈ R
2 is

the two-dimensional relative position of the fixed
wing UAV with respect to the moving target, ψ ∈
[−π, π) is the UAV heading angle, (ẋt, ẏt) ∈ R2 is
target velocity, (Wx, Wy) ∈ R2 is background wind
velocity and u1, u2 are the two control input sig-
nals which are commanded airspeed and heading
rate respectively.

Due to the stall condition, the thrust limita-
tion and the roll angle limitation of the fixed
wing UAV [16, 17], the following input constraints
should be enforced on the UAV

0 < vmin ≤ u1 ≤ vmax; |u2| ≤ ωmax. (2)

Note from the UAV model 1 that, target ve-
locity and background wind velocity affect the
UAV kinematics in the same way. For the sake of
simplicity, these two velocities can be combined
to a single velocity term (Tx, Ty) = (ẋt − Wx, ẏt −
Wy) which is called moving target velocity [5] in
the following content. The kinematic model of the
UAV can be rewritten as

ẋr = u1 cos ψ − Tx,

ẏr = u1 sin ψ − Ty,

ψ̇ = u2. (3)

In this paper, it is assumed that the airspeed
is held constant, i.e. u1 = v0, as well as that the
moving target velocity is constant and slower than
the airspeed, i.e. T2

x + T2
y < v2

0 . By combining the

Fig. 1 Geometry of ground target tracking in wind

moving target velocity with the airspeed, the fol-
lowing UAV kinematic model is obtained:

ẋr = vr cos χ, ẏr = vr sin χ, χ̇ = λ(ψ)u2 (4)

where χ denotes the relative course angle de-
picted in Fig. 1, vr denotes the relative speed, and

vr =
(
v2

0 + T2
x + T2

y − 2v0(Tx cos ψ + Ty sin ψ)
) 1

2
,

χ = arctan 2(v0 sin ψ − Ty, v0 cos ψ − Tx),

λ(ψ) = v2
0 − v0(Tx cos ψ + Ty sin ψ)

v2
r

≥ 1

2
.

The UAV model can also be expressed in polar
coordinates as
[̇
r
rθ̇

]
=

[
ẋr cos θ + ẏr sin θ

−ẋr sin θ + ẏr cos θ

]

=
[

vr cos(χ − θ)

vr sin(χ − θ)

]
(5)

where r = (x2
r + y2

r )
1
2 is the horizontal distance

between the UAV and the target, and θ is the
clock angle (see Fig. 1).

2.2 Guidance Vector Field

Guidance vector field is utilized to generate a de-
sired relative course angle which guides the UAV
to fly around a designated ground target with a
desired distance rd. A guidance vector field which
is similar to that in [5] is introduced as follows:

χd = θ + φ (6)

where θ =
{

arctan2(yr, xr) if r > 0
χ if r = 0

and φ =
2arctan( r

rd
).

From Eq. 6, it can be observed that when r → 0,
the desired relative course angle approaches the
direction along the radius away from the origin,
and when r → ∞, the desired relative course di-
rectly points to the origin. It can also be known
that the desired relative course angle is discon-
tinuous at the point r = 0. It will be shown that
if the UAV follows this vector field, then it will
converge to the desired circular orbit asymptoti-
cally. Consider the following Lyapunov function
candidate

V(r) = (r − rd)
2. (7)
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Differentiating this Lyapunov function leads to
the following equation

V̇ = 2(r − rd)ṙ = −2vr(r − rd)
2(r + rd)

r2 + r2
d

≤ 0. (8)

By LaSalle invariance principle, r asymptoti-
cally converges to the desired distance rd. It is
worth noting that the above result is derived un-
der the assumption that the relative course angle
is aligned with the desired relative course angle
generated by the vector field. However, there gen-
erally exists an angle error between the actual rel-
ative course angle and the desired relative course
angle. The relative course error can be defined by

χe = χ − χd ∈ [−π, π). (9)

When r > 0, the desired relative course rate can
be obtained by taking the derivative of Eq. 6 as

χ̇d = θ̇ + φ̇ = vr

r
sin(χ − θ) + ∂φ

∂r
ṙ

= vr

r
[sin(χe + φ) + sin(φ) cos(χe + φ)]. (10)

It is observed from Eq. 10 that when r → 0, χ̇d

may approach infinity while there exists a relative
course error. When r = 0, the desired relative
course rate can not be derived from Eq. 6. Thus,
this paper defines the desired relative course rate
at the point r = 0 as follows:

χ̇d = 4vr

rd
. (11)

In order to guarantee that the desired relative
course rate without relative course error is fea-
sible to track, it is assumed that the maximum
heading rate satisfies the following condition:

wmax ≥ 4(v0 + (T2
x + T2

y)
1
2 )2

v0rd
. (12)

3 Ground Target Tracking

This section focuses on designing the heading rate
controller to achieve ground target tracking. A
saturated heading rate controller is proposed and
the global convergence of target tracking is rigor-
ously proved.

Due to the physical constraint of the fixed wing
UAV, the heading rate control input may reach
saturation. In this paper, a new saturated heading
rate controller is proposed as follows:

u2 =
{

w if |w| ≤ wmax

sgn(w)wmax if |w| > wmax
(13)

where w = −kχe + χ̇d
λ(ψ)

and k > 0. Formula 13
shows that, the proposed controller includes a
feedback term and a feedforward term when it is
not saturated. Obviously, this controller satisfies
the kinematic constraint of the fix wing UAV.

In this paper, the airspeed of the UAV is as-
sumed to be constant. However, the relative speed
vr varies as the heading changes. Moreover, the
variation of the relative speed has a significant
influence on the relative course rate. Therefore,
the relation between the relative speed and the
heading has to be explored. The following lemma
is introduced to indicate this relation.

Lemma 1 If the moving target velocity is slower
than the airspeed, i.e., v2

0 ≥ T2
x + T2

y , then vr
λ(ψ)

≤
(v0+(T2

x+T2
y)

1
2 )2

v0
.

Proof By assumption, the moving target velocity
and the airspeed of the UAV are constant. Thus,
ψ is the only variable in vr and λ(ψ). Let

f (ψ) = vr

λ(ψ)

= (v2
0 + T2

x + T2
y −2v0(Tx cos ψ + Ty sin ψ))

3
2

v2
0 −v0(Tx cos ψ + Ty sin ψ)

For the sake of simplicity, the following
notations are introduced: T = (T2

x + T2
y)

1
2 , η =

arctan2(Tx, Ty) and ξ = sin(ψ + η). Then f (ψ)

can be rewritten as

f (ψ) = (v2
0 + T2 − 2v0Tξ)

3
2

v2
0 − v0Tξ

(14)

Differentiating the function f (ψ) with respect
to ξ , it is obtained that

fξ (ψ) = v0T(v2
0 + T2 −2v0Tξ)

1
2 (T2 +v0Tξ −2v2

0)

(v2
0 −v0Tξ)2

Because ξ ∈ [−1, 1], it can be observed that
fξ (ψ) < 0. When ξ = −1, the function f (ψ)
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reaches the maximum. Therefore, f (ψ) ≤ (v0+T)2

v0
,

which completes the proof of Lemma 1.
Lemma 1 will be used to provide a bound for

the relative course rate while the heading rate in-
put constraint is provided. Next, the performance
of the UAV under the proposed controller will be
explored.

Firstly, the condition that the UAV locates at
the position r = 0 at t = t0 needs to be discussed.
According to the definition of the vector field,
the relative course error χe = 0 when r = 0. More-
over, it can be obtained that

lim
t→t+0

χd(t) = lim
t→t+0

θ + lim
r→0

φ = lim
t→t+0

arctan2(yr, xr)

= lim
t→t+0

arctan2(ẏr, ẋr)

= χ(t0) = χd(t0). (15)

and when χe = 0, the desired relative course rate
at t ≥ t0:

χ̇d = 4vrr3
d

(r2 + r2
d)

2
. (16)

Equation 15 implies that the desired relative
course χd is right continuous at r = 0 with respect
to t. Thus if the relative course rate is chosen as
χ̇ = χ̇d, the UAV will always follow the vector
field, i.e. χ = χd for t ≥ t0. According to Lemma
1, the following can be derived

u2 = χ̇d

λ(ψ)
= 4vrr3

d

(r2 + r2
d)

2λ(ψ)

≤ 4(v0 + T)2

v0rd
. (17)

It can be observed from Eq. 17 that the pro-
posed heading rate controller Eq. 13 provides
the desired relative course rate. Therefore, if the
UAV locates at the position r = 0 at t0, the pro-
posed heading rate controller will guarantee the
UAV to follow the vector field for t > t0, which
in turn implies that the UAV will converge to the
desired circular orbit.

Now, it is ready to consider the condition that
the UAV locates at the position r > 0. Since χ̇d

is the feedforward term of the heading rate con-
troller, it is necessary to analyze its property. It
is noted from Eq. 10 that, the desired relative
course rate is related to the relative course error.

The following lemma will study this relation and
provide bounds for the desired relative course
rate. ��

Lemma 2 For the system given by Eq. 4 and the
vector f ield given by Eq. 6, there exists a positive
constant k1 > 0 such that,

χ̇d ≤ λ(ψ)wmax + k1 sin χe, χe ∈ [−π, 0) (18)

and

χ̇d ≥ −λ(ψ)wmax + k1 sin χe, χe ∈ [0, π) (19)

Proof According to Lemma 1 and the maximum
heading rate Eq. 12, the following inequality can
be obtained.

λ(ψ)wmax ≥ 4(v0 + T)2λ(ψ)

v0rd
≥ 4vr

rd

The proof will be discussed on two cases in
terms of the relative course error.

Case 1 χe ∈ [0, π)

When χe = 0, χ̇d = 4v0r3
d

(r2+r2
d)2 ≥ −λ(ψ)wmax +

k1 sin χe, which implies that k1 can be any positive
constant.

When χe ∈ (0, π), f (χe, r) is defined as follows:

f (χe, r)

= 1

sin χe

(
χ̇d + 4vr

rd

)

= 1

sin χe

{
vr

r
[sin(φ + χe) + sin φ cos(φ + χe)]

+ 4vr

rd

}
.

If f (χe, r) has a positive lower bound, it im-
plies that there exists a positive constant k1 which
makes the inequality 19 hold. Next, f (χe, r) is
shown to have a positive lower bound. Partial
differentiating the function f (χe, r) with respect to
χe, it yields that

∂ f (χe, r)
∂χe

= −4vrr3
d

(r2 + r2
d)

2 sin2 χe
+ −4vr cot χe

rd sin χe
(20)
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It is noted from Eq. 20 that, when cos χe =
−r4

d

(r2+r2
d)2 , f (χe, r) reaches its minimum value with

respect to χe. Then the following inequality can be
obtained.

f (χe, r)

≥ f (χe, r)|
cos χe= −r4

d
(r2+r2

d)2

≥ vr

r

[
r4

d − r4 − 4r2r2
d

(r2 + r2
d)

2

]
+ 4vr

rd

[
1 − r8

d

(r2 + r2
d)

4

] 1
2

≥ vr

rd

[
r5

d − r4rd − 4r2r3
d

r(r2 + r2
d)

2
+ 4(r4 + 2r2

dr2)

(r2 + r2
d)

2

]

= vr

rd

[
1 + r5

d − r4
dr − 4r3

dr2 + 6r2
dr3 − rdr4 + 3r5

r(r2 + r2
d)

2

]

For the sake of simplicity, let x = r
rd

> 0, and it
yields that

f (χe, r) ≥ f (x)

= vr

rd

[
1 + 1 − x − 4x2 + 6x3 − x4 + 3x5

x(x2 + 1)2

]

>
vr

rd
> 0

Thus, there exists a positive constant 0 < k1 ≤
min

{
vr
rd

}
such that the inequality 19 holds.

Case 2 χe ∈ [−π, 0)

The proof for this case is similar to the former
case. In order to simplify the proof procedure, the
following function is defined:

g(χe) =
{

χ̇d − λ(ψ)wmax − k1 sin χe,χe ∈ [−π, 0)

χ̇d + λ(ψ)wmax − k1 sin χe,χe ∈ [0, π)

(21)

It is noted from Eq. 21 that g(χe) = −g(χe + π)

when χe ∈ [−π, 0). Moreover, according to the
result of the case 1, it can be derived that

g(χe) = χ̇d + λ(ψ)wmax − k1 sin χe

≥ 0, χe ∈ [0, π).

If χe ∈ [−π, 0), then χe + π ∈ [0, π). With the
function 21, it yields that

g(χe) = χ̇d − λ(ψ)wmax − k1 sin χe

= −g(χe + π) ≤ 0,

which implies that the inequality 18 holds. Thus
the proof for this lemma is completed.

Lemma 2 analyzes the property of the desired
relative course rate. Based on this analysis, the
convergence of the relative course angle to the de-
sired relative course under the proposed heading
rate controller will be investigated in the sequel.

��

Lemma 3 If the control law (13) is applied to the
system 4, there exists a positive constant k2 > 0 with
k2 ≤ k

2 and k2 ≤ k1 such that χ̇e ≥ −k2 sin χe, χe ∈
[−π, 0); χ̇e ≤ −k2 sin χe, χe ∈ [0, π).

Proof According to the definition of χe, the deriv-
ative of the relative course error can be obtained
by

χ̇e = χ̇ − χ̇d. (22)

The heading rate controller Eq. 13 is trans-
formed to the constrained relative course rate
controller.

χ̇ = λ(ψ)ψ̇

=
{

� if |�| ≤ λ(ψ)wmax

sgn(�)λ(ψ)wmax if |�| > λ(ψ)wmax

(23)

where � = −kλ(ψ)χe + χ̇d. By combining the re-
sult of Lemma 2 and the constrained relative
course rate controller Eq. 23, the proof of Lemma
3 is given as follows:

Case 1 χe ∈ [−π, 0)

If −kλ(ψ)χe + χ̇d > λ(ψ)wmax, χ̇e = λ(ψ)wmax

− χ̇d ≥ − k1 sin χe ≥ −k2 sin χe;
else if −kλ(ψ)χe + χ̇d < −λ(ψ)wmax, χ̇e =

−λ(ψ)wmax − χ̇d ≥ −kλ(ψ)χe ≥ −k2 sin χe;
else | − kλ(ψ)χe + χ̇d| ≤ λ(ψ)wmax, χ̇e =

−kλ(ψ)χe ≥ − k2 sin χe.
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Case 2 χe ∈ [0, π)

If −kλ(ψ)χe + χ̇d > λ(ψ)wmax, χ̇e =
λ(ψ)wmax − χ̇d < −kλ(ψ)χe ≤ −k2 sin χe;

else if −kλ(ψ)χe + χ̇d < −λ(ψ)wmax, χ̇e =
−λ(ψ)wmax − χ̇d ≤ −k1 sin χe ≤ −k2 sin χe;

else | − kλ(ψ)χe + χ̇d| ≤ λ(ψ)wmax, χ̇e =
−kλ(ψ)χe ≤ −k2 sin χe. ��

Remark Lemma 3 provides the slowest conver-
gence rate bound for the relative course error.
In practice, the convergence rate may be much
faster than this given rate. For example, when

χe = π , it can be observed that χ̇d = 4vrr3
d

(r2+r2
d)2 and

χ̇e = min
{

kλ(ψ)π, λ(ψ)wmax + 4vrr3
d

(r2+r2
d)2

}
> 0.

Lemma 3 shows that the relative course error
will asymptotically converge to zero. However,
the time when the relative course error converges
to zero has not been determined. In addition, the
problem that whether the distance between the
UAV and the target will approach infinity while
the relative course error converges to zero needs
to be discussed. Therefore, the following lemma
is introduced to determine the bound of the dis-
tance r.

Lemma 4 Given an initial relative course error
χe0 ∈ (−π, π), if the control law 13 is applied to the
system 4, the distance r in Eq. 5 has an upper bound
rsup, where

rsup = r0 + v0 + T
k2

ln

∣∣∣∣∣
tan(

χe0

2 )

tan(
φ0

2 − π
4 )

∣∣∣∣∣ .

Proof It is noted from Lemma 3 that, for χe0 ∈
(−π, π), the relative course error χe varies accord-
ing to the following inequality:
∣∣∣tan

(χe

2

)∣∣∣ ≤
∣∣∣tan

(χe0

2

)∣∣∣ e−k2t. (24)

Case 1 |χe0| ∈ [0, π
2 ]

It is assumed that the initial distance r0 > rd. If
r > rd and χe0 ∈ [0, π

2 ], cos(φ + χe) < 0. Then it is
observed from Eq. 5 that r < r0. If χe0 ∈ [−π

2 , 0],

it can be derived from Eq. 24 that r has an upper
bound as follows:

r ≤ (v0 + T)t1 + r0. (25)

where t1 = 1
k2

ln

∣∣∣∣
tan(

χe0
2 )

tan(
φ0
2 − π

4 )

∣∣∣∣ and φ0 = arctan( r0
rd

).

Case 2 |χe0| ∈ ( π
2 , π)

For this case, the time t2 when the relative
course error |χe0| decreases to π

2 is analyzed. It can
be obtained from Eq. 24 that

t2 = 1

k2
ln

∣∣∣tan(
χe0

2
)

∣∣∣ . (26)

Combining these two cases, the upper bound of
the distance r can be computed via the following
calculation.

r ≤ rsup = r0 + (v0 + T)(t1 + t2)

= r0 + v0 + T
k2

ln

∣∣∣∣∣
tan(

χe0

2 )

tan(
φ0

2 − π
4 )

∣∣∣∣∣ . (27)

In this lemma, the condition that χe = −π is
not considered. In fact, when χe = −π , χ̇e > 0,
which implies that after a short time t3, the relative
course error χe ∈ (−π, π). It also implies that r ≤
rsup + (v0 + T)t3 when the initial relative course
error χe0 = −π .

Now, it is ready to prove the stability of the
proposed vector field approach with control in-
put constraints in the presence of moving target
velocity. ��

Theorem 5 Given an initial relative course error
χe0 ∈ (−π, π), the system given by Eqs. 4 and 2
with u2 given by Eq. 13 and χd given by Eq. 6
asymptotically converges to the desired trajectory,
i.e. r → rd and χ → χd.

Proof Consider the Lyapunov function candidate:

V = 1

2
(r − rd)

2 + μ

2
χ2

e . (28)

The proof will be provided on two cases in
terms of the relative course error χe.

Case 1 |χe| ∈ ( π
2 , π)
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Differentiating the function V with respect to
time, it yields that

V̇ = (r − rd)ṙ + μχeχ̇e

≤ (r − rd)vr cos(φ + χe) − μk2χe sin χe

< (rsup + rd)(v0 + T) − μk2
π

2
sin χe0.

Let μ ≥ 2(rsup+rd)(v0+T)

k2π sin χe0
, then V̇ < 0.

Case 2 |χe| ∈ [0, π
2 ]

V̇ = (r − rd)ṙ + μχeχ̇e

≤ −μk2χe sin χe − (r − rd)
2(r + rd)vr cos(χe)

r2 + r2
d

− 2(r − rd)rrdvr sin(χe)

r2 + r2
d

≤ −μk2χe sin χe − (r − rd)
2(r + rd)vr

r2 + r2
d

− 2vr(r − rd) sin
χe

2
sin

(χe

2
+ φ

)

≤ − (r − rd)
2(r + rd)vr

r2 + r2
d

+ 2vr|r − rd|
∣∣∣sin

χe

2

∣∣∣

− 2μk2 sin2
(χe

2

)

Let μ ≥ (r2
sup+r2

d)(v0+T)

k2(rsup+rd)
, then

V̇ ≤ −μk2 sin2
(χe

2

)

−
{[

(r + rd)vr

r2 + r2
d

] 1
2

|r − rd|

−
[
(r2 + r2

d)vr

r + rd

] 1
2 ∣∣∣sin

(χe

2

)∣∣∣
⎫
⎬
⎭

2

≤ 0. (29)

It can be observed from the cases 1 and 2
that, when μ≥max

{
2(rsup+rd)(v0+T)

k2π sin χe0
,

(r2
sup+r2

d)(v0+T)

k2(rsup+rd)

}
,

the corresponding time derivative of the Lya-
punov function V is always nonpositive, i.e. V̇ ≤ 0.
It is also noted from Eq. 29 that, V̇ = 0 implies
that r = rd and χe = 0. By LaSalle’s Invariance
principle, it can be obtained that r → rd and χ →
χd asymptotically. ��

Remark Theorem 5 does not consider the con-
dition that χe=−π . However, when χe=−π , χ̇e>

0, which implies that χe = −π is not an equilib-
rium point and can asymptotically converge to 0.
Moreover, the condition that r = 0 also has been
discussed in this section. Therefore, the proposed
heading rate controller can guarantee the global
convergence of the UAV to the desired circular
orbit.

4 Adaptive Estimate for Moving Target Velocity

In the previous section, the ground target tracking
in the presence of known constant moving target
velocity is discussed. In this section, an adaptive
observer will be developed to estimate unknown
moving target velocity. Generally, the UAV air-
speed is faster than the moving target velocity and
the proposed control approach also requires that
the moving target velocity is slower than the nom-
inal airspeed v0. Therefore, during the estimation,
the estimate of the moving target velocity should
be bounded.

The UAV kinematic model 3 is used in this
section with an unknown moving target velocity
(Tx, Ty). Here, Tx and Ty are constant and it is
assumed that there exists an upper bound T∗ such
that |Tx| ≤ T∗ and |Ty| ≤ T∗. (T̂x, T̂y) is intro-
duced to denote the estimate of (Tx, Ty), and then
the actual moving target velocity and its estimate
are defined as follows [20]:

Tx = T∗ tanh ϕx, Ty = T∗ tanh ϕy (30)

T̂x = T∗ tanh ϕ̂x, T̂y = T∗ tanh ϕ̂y (31)

where ϕx and ϕy are unknown constants, as well as
ϕ̂x and ϕ̂y are the corresponding estimates. Here,
hyperbolic function tanh(x) is introduced to bound
the estimates.

The adaptive observer can be formulated by the
following equations:
{ ˙̂xr = u1 cos ψ − T̂x + k3 x̃r

˙̂yr = u1 sin ψ − T̂y + k4 ỹr

(32)

where x̃r = xr − x̂r and ỹr = yr − ŷr.
By combining the UAV model 3 and the pro-

posed adaptive observer Eq. 32 with the adaptive
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update laws ˙̂ϕx and ˙̂ϕy, the corresponding error
dynamics is derived as follows:

˙̃xr = −T̃x − k3 x̃r, ˙̃yr = −T̃y − k4 ỹr;
˙̂ϕx = −γ x̃r, ˙̂ϕy = −γ ỹr.

(33)

where T̃x = Tx − T̂x and T̃y = Ty − T̂y. Now, it
is ready to verify the stability of the adaptive
observer. Consider the following function

V = 1

2
x̃2

r + 1

2
ỹ2

r + 1

γ
T∗(log cosh ϕ̂x − ϕ̂x tanh ϕx)

+ 1

γ
T∗(log cosh ϕ̂y − ϕ̂y tanh ϕy). (34)

By differentiating this function V with respect
to time t, it is obtained that

V̇ = x̃r ˙̃xr + ỹr ˙̃yr + 1

γ
T∗( ˙̂ϕx tanh ϕ̂x − ˙̂ϕx tanh ϕx)

+ 1

γ
T∗( ˙̂ϕy tanh ϕ̂y − ˙̂ϕy tanh ϕy)

= x̃r(−T̃x − k3 x̃r) + ỹr(−T̃y − k4 ỹr)

− 1

γ
T̃x ˙̂ϕx − 1

γ
T̃y ˙̂ϕy

= −k3 x̃2
r − k4 ỹ2

r ≤ 0.

Next, it will be shown that the function V
is lower bounded. Firstly, the following function
f (x) = log cosh x − x tanh x0 is defined. Differ-
entiating the function f (x) with respect to x, it
yields that

fx(x) = df (x)

dx
= tanh x − tanh x0. (35)

It is observed from Eq. 35 that, when x = x0,
f (x) reaches the minimum. Thus, the third and
the fourth terms in the function 34 have minimum
values when ϕ̂x = ϕx and ϕ̂y = ϕy. Hence,

V ≥ T∗

γ

(
log cosh ϕx − ϕx tanh ϕx

+ log cosh ϕy − ϕy tanh ϕy
)

≥ −2T∗

γ
log 2. (36)

Therefore, the function V is lower bounded.
Moreover, V̈ = 2k3 x̃r(T̃x + k3 x̃r) + 2k4 ỹr(T̃y +
k4 ỹr) is bounded. Thus, by Barbalat’s lemma [19],

Fig. 2 Target tracking control architecture based on an
adaptive observer

it can be shown that V̇ → 0 as t → ∞, which also
implies that x̃r → 0 and ỹr → 0.

In addition, ¨̃xr = − ˙̃Tx − k3 ˙̃xr = k3(T̃x +
k3 x̃r) − 4T∗γ x̃r

(eϕ̂x +e−ϕ̂x )2 , which implies that ¨̃xr is
bounded. By Barbalat’s lemma, it can be obtained
that, ˙̃xr = −T̃x − k3 x̃r → 0, which in turn implies
that T̃x → 0. Similarly, it can also be shown that
T̃y → 0.

Based on this proposed adaptive observer, the
corresponding controller for ground target track-
ing is designed as Eq. 13. The overall control
architecture is illustrated in Fig. 2.

5 Simulation Results

In this section, simulation results are presented
to demonstrate the effectiveness of the proposed
approach. The simulation includes four scenarios:
scenario one describes ground target tracking with
known constant moving target velocity; both of
scenario two and scenario three describe ground
target tracking where the measurement noise of
the relative position and the uncertainty of the
moving target velocity are taken into account. It is
assumed that the nominal moving target velocity
is known in scenario two while it is unknown
in scenario three. In scenario four, the moving
target velocity is not constant and varies with time.
Table 1 shows the specifications of the UAV and
control law parameters.



426 J Intell Robot Syst (2013) 69:417–429

Table 1 Specifications of the UAV and control law
parameters

Parameter Value

Nominal airspeed v0 20 m/s
Maximum heading rate wmax 0.5 rad/s
Desired distance rd 400 m
Heading rate feedback gain k 0.2
Target velocity (2, 3) m/s
Background wind (−5, −2) m/s
Upper bound T∗ 10 m/s

5.1 Scenario One

In this scenario, the UAV starts the mission of
ground target tracking at the relative position
(xr, yr) = (10, 0)m with initial heading angle ψ0 =
π
2 . Figure 3 shows the trajectory of the UAV with
respect to the moving target in the presence of
background wind. It can be observed from Fig. 3
that the UAV finally converges to the desired
circular orbit. Correspondingly, Fig. 4 shows the
trajectory of the UAV with respect to the in-
ertial coordinate frame. As illustrated in Fig. 5,
the heading rate controller reaches saturation at
the beginning of the tracking mission and finally
heading rate converges to the desired heading
rate. In addition, as depicted in Fig. 6 that the
relative course error asymptotically converges to
zero even in the presence of large initial relative
course error. It is worth noting that, a sinusoidal
function is used to bound the convergence rate in
the Section 3, but usually the actual convergence
rate is much faster than this bound.
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Fig. 3 Trajectory w.r.t target
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Fig. 4 Trajectory w.r.t inertial frame

5.2 Scenario Two

In scenario one, the relative position of the UAV
with respect to the target and the moving tar-
get velocity are assumed to be known accurately.
However, the measurement noise and the uncer-
tainty of the wind always exist in practice. There-
fore, the measurement noise of the relative po-
sition (xr, yr) and the uncertainty of the moving
target velocity (Tx, Ty) have to be considered.
In this scenario, bounded random uncertainties
δTx, δTy ∈ (−2, 2)m/s are added to the moving
target velocity and zero mean random measure-
ment errors with a variance � = 4 are introduced
as the noise in the relative position measurement.
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Fig. 5 Heading rate control input
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Fig. 6 Relative course error

Moreover, it is well known that the heading rate
of the UAV is dependant on the roll angle. Thus,
in this scenario, ψ̈ = k5(ψ̇c − ψ̇) will be used to
approximate the dynamics of the heading rate,
where ψ̇c is the commanded heading rate Eq.
13 and k5 = 1. Figure 7 shows that the distance
between the UAV and the target converges to
the neighborhood of the desired distance rd. As
depicted in Fig. 8, the heading rate still reaches
saturation at the beginning of the mission. When
the control gain k5 is small enough, the heading
rate will not reach saturation. However, it will
take much longer time for the UAV to converge
to the desired orbit.
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Fig. 7 Actual distance
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Fig. 8 Heading rate

5.3 Scenario Three

In this scenario, the nominal moving target ve-
locity is unknown. Thus, an adaptive observer is
designed to estimate the unknown moving tar-
get velocity. The actual moving target velocity
is (7 + δTx, 5 + δTy)m/s and the relative position
measurement noise is the same as that in scenario
two. It can be observed from Fig. 9 that although
the moving target velocity is unknown and is not
constant, the UAV still can converge to the neigh-
borhood of the desired orbit. Figure 10 shows
that, the adaptive estimate for the moving target
velocity does not converge to the nominal veloc-
ity as the moving target velocity is not constant.
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Fig. 9 Actual distance
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Fig. 10 Adaptive estimate

However, the adaptive estimate varies around the
nominal velocity (7, 5)m/s.

5.4 Scenario Four

In this scenario, the moving target velocity is un-
known and varies with time. Thus, the adaptive
observer is still used to estimate the unknown
moving target velocity. The actual moving tar-
get velocity is (7 cos(π t/150), 5 cos(π t/250))m/s.
Figure 11 shows that the distance between UAV
and target oscillates in the vicinity of the desired
distance due to the time varying moving target ve-
locity. However, the proposed adaptive observer
can accurately estimate this moving target velocity
as shown in Fig. 12.
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Fig. 12 Adaptive estimate

6 Conclusions

This paper shows that a saturated heading rate
controller based on guidance vector field is able to
achieve stable ground target tracking in the pres-
ence of background wind. The global asymptotical
convergence of the system with any initial position
and heading angle is guaranteed by the proposed
saturated heading rate controller. In addition, a
constrained adaptive observer is constructed to es-
timate unknown moving target velocity. The con-
strained adaptive estimate makes the proposed
saturated heading rate controller feasible. Simu-
lation results show that the proposed approach
is robust to the uncertainty of the system and
suitable for the dynamic model.
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