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Abstract In this paper, an efficient Model Predic-
tive Control (eMPC) algorithm deploying fewer
prediction points and less computational require-
ment is presented in order to control a small
or miniature unmanned quadrotor helicopter. A
model reduction technique associated with the
dynamics of an unmanned quadrotor helicopter
is also put forward so as to minimize the bur-
den of calculations in application of MPC into an
airborne platform. For three-dimensional tracking
control of the quadrotor helicopter, simulation re-
sults corresponding to the algebraic formulation—
presented in this paper—versus the standard MPC
formulation commonly found in the literature
further illustrate effectiveness of this study. Un-
successful implementation of the standard for-
mulation on the testbed due to computational
burden proves the necessity and advantages of
this new approach. Eventually, to demonstrate
effectiveness of the developed MPC algorithm,
the suggested algebraic-based MPC framework
is successfully implemented on an unmanned
quadrotor helicopter testbed (known as Qball-
X4) available at the Networked Autonomous Ve-
hicles Lab (NAVL) of Concordia University for
tracking control of the unmanned aerial vehicle.
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1 Introduction

Unmanned helicopters have become increasingly
popular platforms for the study of Unmanned
Aerial Vehicles (UAVs) from the control view-
points. With the abilities such as hovering or ver-
tical take-off and landing, unmanned helicopters
substantially extend the scope of potential civil-
ian as well as military applications such as aerial
reconnaissance, border patrol, life saving, and for-
est surveillance or fire fighting where it is highly
risky for human pilots to intervene. Successful
fulfillment of such missions is closely tied with
existence of autopilot control systems. For the
control of a quadrotor helicopter, various control
techniques have been proposed. Initially starting
with linear control algorithms such as LQR con-
trol [1] or PID control [2], linear methods are
proved not to have good performance for the non-
linear quadrotor system. The problem of nonlin-
ear control design has been addressed using sev-
eral methods such as feedback linearization [3],
sliding mode control [4] and back-stepping con-
trol [5]. However, among those nonlinear control
methods, none of them are capable of explicitly
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dealing with operational constraints prevalent in
a control system.

“Model Predictive Control, or Model-Based
Predictive Control (MPC or MBPC as it is
sometimes known), is the only advanced control
technique—that is, more advanced than standard
PID control—to have had a significant widespread
impact on industrial process control” [6]. The ca-
pability of routinely dealing with equipment and
performance constraints allows for closer opera-
tion to a control system’s limits, thus achieving the
most profitable operation. In addition, expand-
ability of the basic formulation to multivariable
plants without any major modification, simplic-
ity of tuning, and the straightforwardness of its
underlying idea, are certainly some of the main
reasons that render this controller advanced.

Predictive control was developed and used in
the industry for nearly 20 years before attracting
much serious attention from the academic control
community. An extensive study of the literature
reveals that the era of model predictive control
can be broken down into three decades of de-
velopments and achievements. The first decade is
characterized by the fast-growing industrial adop-
tion of the technology, primarily in the refining
and petro-chemical sectors. The second decade
saw a number of significant advances in under-
standing the MPC from a control theoretician’s
viewpoint, while the third decade’s main focus
has been on the development of “fast MPC algo-
rithms” [7].

Recent advances in predictive control have led
to its implementation onto faster dynamic sys-
tems and unstable plants, providing solutions to
bring orders of magnitude improvement in the
efficiency of the online computation so that the
technology can be applied to systems and plants
requiring very fast sampling rates, typical exam-
ples of which are frequently appeared in the field
of aerospace design and innovation [8]. In addi-
tion, there has also been research into various
model reduction techniques to minimize compu-
tational demands in order to render the MPC ap-
plicable to lightweight airborne platforms [9]. This
study aims to partially address the main drawback
of the MPC design, namely reliance on availabil-
ity of high computational power to handle bur-
den of online repetitive calculations. To this end,

a closed-loop prediction scheme will be offered
for calculation of the predicted output yp. This
scheme will essentially reduce the computational
load due to its linear structure. A model reduction
technique will be adopted based on some simpli-
fying assumptions so that this closed-loop linear
prediction scheme can be made use of. Also, as
suggested by [9] it will be benefitted from reduced
number of prediction points that are not evenly
placed along the prediction horizon—as required
by the standard MPC variants.

The rest of the paper is organized as follows.
Section 2 describes the formulation of an algebraic
model predictive control. Section 3 explains math-
ematical modeling of the quadrotor helicopter,
and suggests a scheme for its model reduction to
minimize computational demands. An overview
of the testbed hardware is brought in Section 4.
Section 5 presents simulation results correspond-
ing to the algebraic framework developed, versus
the standard MPC formulation commonly found
in the literature in order to make comparison. This
is followed by successful implementation of the
algebraic MPC formulation onto the quadrotor
helicopter in the form of an altitude-hold con-
troller. Finally, Section 6 draws the conclusion and
outlines the future extensions of this work.

2 An Efficient Model Predictive Control
Formulation

2.1 The Idea of “Predictive Control”

In what follows, the basic idea of an algebraic
predictive control will be presented. For the sake
of simplicity, discussion is confined to the control
of a single-input single-output system. The idea
and formulation set out herein can be applied to
multi-input multi-output systems without loss of
generality.

Though a continuous version of this MPC de-
sign approach exists as well, a discrete-time setting
will be discussed and applied. This makes it easily
transformable to an executable code which can
be easily programmed on a microcontroller as a
prospective airborne flight computer.
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As mentioned, a discrete-time setting is as-
sumed, and the current time step is represented by
k. A set-point trajectory which is the ideal or ex-
pected behavior of the control system is denoted
by s(t). Distinct from the set-point trajectory is
the reference trajectory that starts at the cur-
rent output y(k), and defines a second trajectory
along which the plant should return to the set-
point trajectory after a disturbance has made the
system depart from the specific flight conditions.
Therefore, the reference trajectory determines an
important behavioral aspect of the closed-loop
control system. Here, an exponential reference
trajectory is assumed with a time constant denoted
by Tref specifying the speed of response as:

ε(k + i) = e−iTs/Trefε(k) (1)

where Ts is the sampling interval for both the
discretization of the equations of motion repre-
senting dynamics of the quadrotor helicopter as
well as the update rate of prediction.

There also exists an internal model which is
employed to predict the behavior of the plant
ahead of time over a prediction horizon starting
at the current time. This predicted behavior is
based on the assumed input trajectory û(k + 1|k),
k = 0, 1, . . . , Hp − 1, that is to be applied over
the prediction horizon but not applied yet, and
the concept behind is to calculate the input that
results in the best predicted performance. It has
been assumed that the internal model is linear.
Selection of a proper sampling interval guarantees
an acceptable agreement between the nonlinear
model of the quadrotor helicopter and its dis-
cretized representation. In order to calculate the
input trajectory, current output measurement y(k)

is required. This implies that the control system is
assumed to be strictly proper; that is to say, y(k)

depends on the values of past inputs having al-
ready applied but not on the current input û(k|k).

The elements of the input trajectory are se-
lected such as to bring the plant output ŷ(k + i)
to the corresponding value of the reference tra-
jectory r(k + i) at specific time intervals which
are not necessarily “evenly distributed”. In its
simplest form, the input trajectory is chosen so
that the plant output coincides with the reference
trajectory at the end of the prediction horizon,

namely (k + Hp). Further, the input trajectory
may be determined such that the plant output
comes to the required reference trajectory at all
sampling intervals along the prediction horizon at
k + 1, k + 2, . . . , k + Hp. For the case of a single
coincidence point there is several input trajec-
tories which achieve this but based on the cri-
teria at hand one can be chosen, for instance
the one which minimizes the control effort. With
this wide possible range of selection, it is in fact
preferable to impose some simple structure on
the input trajectory. For example, the values of
the input trajectory may be allowed to vary over
the first four steps of the prediction horizon, but
to remain constant thereafter: û(k + 3|k) = û(k +
4|k) = · · · = û(k + Hp1|k). In this case there exist
four parameters to choose, namely û(k|k), û(k +
1|k), û(k + 2|k), û(k + 3|k).

In practice, however, it is quite commonplace
that there are more coincidence points than pa-
rameters to choose; that is to say, more equa-
tions to be satisfied than the number of avail-
able variables, and consequently impossible to
find an exact solution. This implies lack of an
exact future input trajectory capable of bringing
the plant output to the reference trajectory at all
coincidence points. That is the reason why some
sort of approximate solution is sought, looking
into a specific cost function. This can be a least-
squared optimization problem, namely one that
minimizes the sum of the squares of the error∑i

1 [r(k + i|k) − ŷ(k + i|k)]2, where i corresponds
to the set of coincidence points [6, 10].

2.2 The Internal Linear Model

As the name implies, the centerpiece of a model
predictive controller is a mathematical model of
the real plant which best represents behavioral
characteristics of the control system under study.
This internal model is used to predict the free
response of the plant; that is the response that
would be obtained at the ith coincidence point if
the future input trajectory stays at the latest value
having already been applied to the plant u(k1).
To this end, for a state-space representation of
the internal model, the current values of states
or their estimations are needed. Assuming S(i) to
be the response of the internal model at some ith
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coincidence point to a unit step function, as long
as a linear time-invariant system is considered, the
predicted output at the ith coincidence point is:

ŷ(k + i|k) = ŷ f (k + i|k) + S(i)�û(k|k) (2)

where

�û(k|k) = û(k|k) − u(k − 1) (3)

It is intended to achieve:

ŷ(k + i|k) = r(k + i|k) (4)

Therefore, the optimal change of input is given by:

�û(k|k) = r(k + i|k) − ŷ f (k + i|k)

S(i)
(5)

In a slightly complicated pattern for the input
trajectory, the input is allowed to change over the
first Hu steps of the prediction horizon, û(k|k),
û(k + 1|k), . . . , û(k + Hu − 1|k); and remains con-
stant thereafter, û(k + Hu − 1|k) = û(k + Hu|k)

= û(k + Hu + 1|k) = . . . = û(k + Hp − 1|k). This
yields analogues results as obtained for the previ-
ous simpler input trajectory structure at the time
step k + Pi over the prediction horizon:

ŷ(k + Pi|k) = ŷ f (k + Pi|k) + H(Pi)û(k|k)

+ H(Pi − 1)û(k + 1|k) + . . .

+ H(Pi − Hu + 2)û(k + Hu − 2|k)

+ S(Pi − Hu + 1)û(k + Hu − 1|k)

(6)

where H( j) = S( j) − S( j − 1) is the unit pulse
response coefficient of the system after j time
steps. The reason why pulse response coefficients
appear in this expression rather than step re-
sponse coefficients is that each of the input val-
ues û(k|k), û(k + 1|k), . . . , û(k + Hu − 2|k) is to
be applied for only one sampling interval. Only
the last one, û(k + Hu − 1|k), remains unchanged
until step Pi, and its effect is therefore obtained
by multiplying it by the step response coefficient
S(Pi − Hu + 1).

Since H( j) = S( j) − S( j − 1), Eq. 6 can be
rewritten as:

ŷ(k + Pi|k) = ŷ f (k + Pi|k) + S(Pi)�û(k|k)

+ S(Pi − 1)�û(k + 1|k) + . . .

+ S(Pi − Hu + 1)�û(k + Hu − 1|k)

(7)

by writing the same relation for each of the co-
incidence points and regrouping terms on both
sides of the equation, the predicted output at the
coincidence points in the matrix-vector form is:

Y = Y f + ��U (8)

where

Y =

⎡

⎢
⎢
⎢
⎣

ŷ(k + P1|k)

ŷ(k + P2|k)
...

ŷ(k + Pc|k)

⎤

⎥
⎥
⎥
⎦

;

�U =

⎡

⎢
⎢
⎢
⎣

�û(k|k)

�û(k + 1|k)
...

�û(k + Hu − 1|k)

⎤

⎥
⎥
⎥
⎦

and

� =

⎡

⎢
⎢
⎢
⎣

S(P1) S(P1 − 1) . . . S(1) 0
S(P2) S(P2 − 1) . . . S(1) 0

...
...

...
...

...

S(Pc) S(Pc − 1) . . . . . . S(Pc − Hu + 1)

⎤

⎥
⎥
⎥
⎦

As stated earlier, it is intended to achieve Eq. 4.
In the case of having more equations to be sat-
isfied—corresponding to the number of coinci-
dence points—than the number of available vari-
ables to be calculated, the solution of a least-
squared optimization problem is sought.

Having determined a future input trajectory,
only the first element of that trajectory is to be
applied as the input signal to the plant and the
rest are neglected. Then the whole series of events
being repeated one sampling interval later; that
is, output measurement, prediction, and input tra-
jectory determination (Eq. 6). In the whole cycle
of calculation, the prediction equations are solved
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to determine the input trajectory, whereas output
measurement is required to obtain the reference
trajectory—which is different from the setpoint
trajectory—as well as the free response of the
plant.

2.3 Realization of Constraints

As is the case for the standard formulation, pre-
dictive control is to be readily employed to respect
constraints. Considering constraints on the inputs
or outputs, the simple “linear least-squared" so-
lution has to be replaced by a “constrained least-
squared” solution. Most formulations of predic-
tive control assume linear inequality constraints;
that is because even nonlinear constraints can
be approximated by one or more linear con-
straints. For the case of constraints in the form
of linear equalities, a quadratic programing prob-
lem evolves. This can be solved very reliably
and relatively quickly by means of a number of
efficient, computationally inexpensive optimiza-
tion software available to date.

In practice, there are usually three types of con-
straints existent in a control system. Limitations
that should be considered for actuator ranges
available for the control effort, those of possible
actuator slew rates, and constraints on the con-
trolled variables. That is equivalent to:

a1 < �U(k) < a2

b 1 < U(k) < b 2

c1 < Z (k) < c2

The following formulation represents the three
constraints, respectively;

E
[
�U(k)

1

]

≤ 0; F
[

U(k)

1

]

≤ 0;

G
[

Y(k)

1

]

≤ 0 (9)

where

U(k) = [
û(k|k)T û(k+1|k)T . . . û(k+ Hu −1|k)T

]

(10)

Assuming

Gc = 1

2
�U T��U + ϕT�U (11)

as the cost function of a quadratic programing op-
timization problem with �U being its optimized
solution, it is required to express all of the three
types of constraints in terms of �U(k).

Suppose F has the form

F = [
F1 F2 . . . FHu f

]
(12)

therefore, the second inequality of Eq. 9 can be
written as:

Hu∑

i=1

Fiû(k + i − 1|k) + f ≤ 0 (13)

since

û(k + i − 1|k) = u(k − 1) +
i−1∑

j=0

�û(k + j|k) (14)

the second inequality of Eq. 9 can be written as:

Hu∑

j=1

F j�û(k|k) +
Hu∑

j=2

F j�û(k + 1|k) + . . .

+ FHu�û(k + Hu − 1|k) +
Hu∑

j=1

F ju(k − 1)

+ f ≤ 0 (15)

By defining F̃i = ∑Hu
j=i F j and F̃ = [F̃1, F̃2, . . . ,

F̃Hu], then the second inequality of Eq. 9 can be
written as:

F̃�U(k) ≤ −F̃1u(k − 1) − f (16)

where the right-hand side of the inequality is
a vector which is known at time k. The same
methodology as discussed, can be applied to the
third inequality of Eq. 9 so as to convert it into a
linear inequality constraint on �U(k) [11].

Suppose G has the form

G = [
G1 G2 . . . GPc g

]
(17)
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therefore, the third inequality of Eq. 9 can be
written as:

G1Y f (k + 1|k)

Hu−1∑

i=0

S(P1 − i)�û(k + i|k)

+ G2Y f (k+2|k)

Hu−1∑

i=0

S(P2 − i)�û(k+ i|k) + . . .

+ GPc Y f (k + Pc|k)

Hu−1∑

i=0

S(Pc − i)�û(k + i|k)

+ g ≤ 0

By defining G̃ j = ∑Hu−1
i=0 S(P j − i) and G̃ = [G̃1,

G̃2, . . . , G̃Pc ], then the third inequality of Eq. 9
can be written as:

G̃�U(k) ≤ −
Pc∑

j=1

G jY f (k + j|k) − g (18)

where the right-hand side of the inequality is a
vector which is known at time k. By transforming
the first inequality of relations 9 into W�U(k) ≤
w and assembling this with Eqs. 16 and 18, the
problem becomes that of

min Gc = 1

2
�U T��U + ϕT�U (19)

subject to
⎡

⎣
F̃
G̃
W

⎤

⎦�U ≤
⎡

⎣
−F̃1u(k − 1) − f

− ∑Pc
j=1 G jY f (k + j|k) − g

w

⎤

⎦ (20)

3 Dynamical Equations of Quadrotor Helicopter

3.1 Nonlinear Model of a Quadrotor Helicopter

Based on the balance of forces and moments as
detailed in [12], equations of motion governing
dynamics of a quadrotor helicopter with respect
to an earth-fixed coordinate system can be repre-
sented as follows:

ẍ = (sin ψ sin φ + cos ψ sin θ cos φ)u1 − K1 ẋ
m

(21)

ÿ = (sin ψ sin θ cos φ − cos ψ sin φ)u1 − K2 ẏ
m

(22)

z̈ = (cos φ cos θ)u1 − K3ż
m

− g (23)

φ̈ = u3l − K4φ̇

Iz
(24)

θ̈ = u2l − K5θ̇

Iy
(25)

ψ̈ = u4c − K6ψ̇

Iz
(26)

where Ki, i = 1, 2, . . . , 6 are the drag coefficients
associated with the aerodynamic drag force, l is
the distance between the center of gravity of the
quadrotor and the center of each propeller, and c
is the thrust-to-moment scaling factor. Note that
the drag coefficients are negligible at low speeds.
Also, Ix, Iy, and Iz represent the moments of
inertia along x, y, and z directions. For computa-
tional convenience the inputs to the system ui, i =
1, 2, 3, 4 are defined as:
⎡

⎢
⎢
⎣

u1

u2

u3

u4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 1 1 1
0 −1 0 1

−1 0 1 0
1 −1 1 −1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

F1

F2

F3

F4

⎤

⎥
⎥
⎦ (27)

The actuators of the quadrotor helicopter are
brushless DC motors. The relation between the
PWM input applied and the thrust produced is:

Fi = Kmotor
wmotor

s + wmotor
uPWM (28)

where Kmotor is a positive gain and wmotor rep-
resents the actuator bandwidth. Table 1 contains
the nominal values of the quadrotor helicopter’s
system parameters.

Table 1 System specifications

Parameter Value Unit

m 1.4 kg
Ix 0.03 kg.m2

Iy 0.03 kg.m2

Iz 0.04 kg.m2

l 0.25 m
c 1 –
Kmotor 120 N
wmotor 15 rad/s



J Intell Robot Syst (2013) 70:27–38 33

3.2 Model Reduction to Minimize Computational
Demands

As stated earlier, due to the relatively high rate of
update desired for fast dynamic systems, success
of predictive control in aerospace applications is
highly dependent on the real-time computational
power of the airborne computer. Since in almost
all such applications the available onboard com-
putational capacity is limited, partially due to
weight considerations, any effort to reduce the
burden of calculations is crucial to render appli-
cation of the MPC to aerial systems—specifically
unmanned vehicles—feasible.

To this end, it has been tried to decouple the
six-degree-of-freedom equations of motion gov-
erning dynamics of the quadrotor so that the sys-
tem is described by four second-order differential
equations, in which the translational longitudi-
nal displacement x is coupled with the rotational
pitching motion θ , the translational lateral dis-
placement y is coupled with the rotational rolling
motion φ, and the translational vertical displace-
ment along the normal axis z is treated separately
and independently of the other two. That is to say:

ẍ = u1 sin θ

m
; ÿ = u1 sin φ

m
; z̈ = u1

m
− g (29)

φ̈ = u3l
Ix

; θ̈ = u2l
Iy

; ψ̈ = u4c
Iz

(30)

This way, dimensions of the system matrices in-
volved in the iterative calculations and that of the
optimization over a single time step lasting for
a fraction of a second, will be of the order of
one-third or less; otherwise, direct consideration
of a six-DOF motion corresponding to a quadro-
tor helicopter includes matrices of the order of
fourteen (two corresponding to each degree of
freedom plus those of DC motors). This individual
treatment of the modes of motion greatly affects
the execution time of onboard calculation. Also,
regarding the yawing motion ψ , it has been as-
sumed that a zero yaw angle is maintained at all
times; this can be achieved by integration of a
separate reaction-wheel mechanism—apart from
the four DC motors—to take over control of the
yawing motion.

With this new subset of equations, sin θ , sin φ,
and u1

m g will be taken as manipulated variables or
inputs of their corresponding equations (Eq. 29).
That is to say, u1 is initially calculated by means of
the third equation of Eq. 29 required for steady
and level flight. Then this value is substituted
in both the first and the second equations of
Eq. 29 as constant (over the prediction horizon),
remaining sin θ and sin φ as the only manipulated
variables. Next, the new versions of equations are
discretized with a proper discretization time step,
preserving dynamics of the quadrotor system. This
rate can vary from one equation to the other depen-
ding on how agile the system acts along that axis.

3.3 Validation of the Simplified Decoupled
Model vs. the Elaborate Coupled Model

In the previous section, based on some simplifying
assumptions, a model reduction technique was
used. However, the obtained decoupled model
holds as long as those underlying simplifying as-
sumptions are met; that is to say, the pitch angle
as well as the roll angle are maintained within the
vicinity of zero or thereabouts at all times. In other
words, there is a flight envelope inside which the
quadrotor is bound to stay over the course of a
flight.

As stated, in order to arrive at the simplified
decoupled equations of motion it is required to
keep the rotational angles—roll, pitch, and yaw—
as small as possible. But this is a qualitative image
of the requirement. However, for the purpose
of controller design this requirement should be
precisely specified quantitatively as well. The con-
troller that is designed based on the simplified
model will not be functioning properly once the
plant passes across or violates the boundaries of
the pitch and roll angles determined to be re-
spected for the validity of the employed model
reduction technique. This is also referred to as
flight envelope.

In this section, instead of conducting a set of
simulations to determine the flight envelope, a
single simulation is set up to reveal the validity
range of the decoupled model throughout a flight.
In this flight test the quadrotor is guided through
a series of consecutive square trajectories of in-
creasing sides. By increasing the sides of square
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trajectories while keeping the flight time over the
sides constant, setpoint changes will be increased
abruptly as the dimensions of the square trajecto-
ries become bigger. In order to accommodate such
abrupt changes of setpoint, the controller outputs
an input signal of increasing amplitude. Since the
controller’s outputs/the input signals to the plant
are sin θ and sin φ, soon they will reach a point
beyond which the decoupled model does not con-
form to the coupled full order model. This point
should be marked as the bottom-line of design.

As suggested in Fig. 1, if the quadrotor receives
a setpoint variation of 2 meters or more along
the longitudinal axis, the longitudinal controller
will output a pitch angle greater than 0.2618 rad
(15◦) to accommodate the setpoint change. This is
the maximum acceptable change of pitch angle, if
the decoupled simplified equations are to be used
for the purpose of design. The lateral dynamics
exhibits less sensitivity to variations in the roll
angle. This is illustrated in Fig. 2.

As the yaw angle does not contribute much to
the cross coupling of equations of motion, its vari-
ations will be neglected in the process of controller
design. In addition, it has been assumed that a
separate controller is employed to maintain a zero
yaw angle essentially at all times; this is pretty
manageable in practice.
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Fig. 1 Validation of the simplified decoupled model along x
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Fig. 2 Validation of the simplified decoupled model along y
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Therefore, a maximum of 2-m setpoint change
of translational longitudinal or lateral motion cor-
responding to the 0.2618 rad (15◦) change of either
pitch or roll angle specify the boundaries of the
pertinent flight envelope. However, this should
not be interpreted as an operational restriction
for the developed MPC control system, yet a
shortcoming of all other controllers rather than
MPC. As mentioned previously, MPC is one of
the rarest control techniques that can explicitly
deal with operational constraints. Therefore, once
the boundaries of sin θ and sin φ are given to
the controller as constraints on the manipulated
variable or U , setpoint variations of whatever
magnitude may be applied to the control system
of the quadrotor. That is possible because the con-
strained MPC controller will never output a con-
trol signal less than −0.2618 rad (−15◦) or greater
than +0.2618 rad (+15◦), maintaining −15◦ < θ <

+15◦ and −15◦ < φ < +15◦ at all times. This is
what distinguishes MPC from other controllers.
That is illustrated in Fig. 3. In spite of abrupt set-
point variations of great amplitude the developed
controller keeps the quadrotor on the trajectory.

4 QBALL-X4: An Unmanned Quadrotor
Helicopter

The Quanser’s Qball-X4, as shown in Fig. 4, is
a quadrotor helicopter platform suitable for a
wide variety of UAV research and development
applications. This innovative rotary-wing vehicle
design is propelled by four DC motors fitted with
10 inch propellers. The entire system is enclosed
within a spherical protective carbon fiber cage of
68 cm. The protective cage is a crucial feature of
such a system, since this unmanned aerial vehicle
is designed for use in an indoor laboratory where
there are typically many close-range hazards (in-
cluding other vehicles).

To have on-board sensor measurements and
drive the motors, the Qball-X4 utilizes Quanser’s
onboard avionics data acquisition card (DAQ),
the HiQ, and the embedded single-board com-
puter, Gumstix. The HiQ DAQ integrates a high-
resolution Inertial Measurement Unit (IMU) and
an avionics Input/Output (I/O) card designed to
accommodate a wide variety of research appli-

Fig. 4 The Quanser Qball-X4: a quadrotor helicopter
platform

cations. In addition, the on-board flight com-
puter’s open-architecture hardware and extensive
Simulink blocksets provide users with powerful
controls development tools.

QuaRC, Quanser’s real-time control software,
the interface to the Qball-X4 in MATLAB/Simu-
link environment, allows researchers and devel-
opers to rapidly develop and test controllers on
actual hardware through the MATLAB/Simulink
interface. QuaRC can target the Gumstix embed-
ded computer automatically, generating the code
and executing the designed controllers on-board
the vehicle. In other words, the controllers are de-
veloped in Simulink with QuaRC on the host com-
puter. Next, these models are coded, compiled
into executable codes, and eventually uploaded on
the target (Gumstix) seamlessly [13].

During flights, while the controller is executing
on the Gumstix, users can tune parameters in
real time and observe sensor measurements from
a host ground station computer (PC or laptop).
System’s main components include:

• Qball-X4: as explained previously;
• HiQ: QuaRC aerial vehicle data acquisition

card (DAQ);
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• Gumstix: The QuaRC target computer. An
embedded, Linux-based system with the
QuaRC runtime software installed;

• Batteries: Two 3-cell, 2500 mAh Lithium-
Polymer batteries; and

• Real-Time Control Software: The QuaRC-
Simulink control system development soft-
ware.

5 Simulation and Experimental Results
on Qball-X4

In this section, simulation and experimental re-
sults corresponding to the two MPC design ap-
proaches are illustrated: firstly based on the stan-
dard formulation employed in [14] and secondly
based on the formulation detailed in this paper.

5.1 Simulation Results

In order to evaluate performance of the con-
trollers, Qball-X4 simulation model has been
given a rectangular trajectory to follow. Figures 5
and 6 demonstrate performance of the quadro-
tor helicopter to this input trajectory under the
control of a standard MPC proposed in [14] and
the one developed in this paper, respectively. As
suggested by the figures, due to the simplifications
made on the MPC algorithm and the internal
decoupled model of the quadrotor helicopter
used, three-dimensional tracking performance of
the developed MPC algorithm is relatively slow
in response to the reference trajectory changes,
but accurate steady-state performance is still well
achieved.

Even though the time response of the standard
MPC algorithm is satisfactory in terms of per-
formance specifications such as rise time, settling
time, and overshoot, this controller is highly de-
manding in terms of the airborne computational
power. The execution time of the non-real-time
simulation running on a desktop computer fea-
turing an Intel Core(TM) 2Duo CPU, 2.20GHz
processor shows that it requires more than three
times as much time as that required by the pro-
posed MPC algorithm in this paper.
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Fig. 5 System performance: standard MPC

5.2 Experimental Testing Results

Next is implementation of the controllers on the
Qball-X4 to assess performance of each design ap-
proach. This is done by putting in parallel the de-
veloped controllers with the baseline controller of
the Qball-X4 which is a combination of PID and
LQR controllers. Having designed the controller
in the environment of QuaRC for a single degree
of freedom (height), each altitude-hold controller
is built and uploaded to the onboard flight com-
puter to take control of the vehicle. However,
due to the quadrotor’s limited airborne compu-
tational power, implementation of the standard
MPC is not successful and it brings the system to
a halt due to the limited computational power of
the on-board Gumstix single-chip micro-computer
embedded in the Qball-X4. In contrast, the pro-
posed efficient MPC in this paper successfully
controls the vehicle along a rectangular trajectory,
as shown in Fig. 7. In this flight test, controller’s
design parameters are as specified in Table 2.
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Table 2 Controller’s design parameters

Parameter Value

Tref 5
Ts 0.01Tref

Prediction horizon 80
Discretization rate 0.05

Comparing with the simulation result presented
in Fig. 6, there are some small discrepancies in tra-
jectory tracking due to the effects of measurement
noises and disturbances added on the Qball-X4
during flights in the experimental testing environ-
ment.

5.3 Analysis and Comparison

In this paper, effort has been made to lower the
burden of online calculations, in order to make
the MPC applicable to unmanned aerial systems
with limited airborne computational power. To
this end, a linear closed-loop prediction scheme is
offered for calculation of the future output yp of
the plant based on a linear internal model. This
scheme has essentially reduced the computational
load due to its linear structure.

To further reduce the real-time computational
requirement, as suggested in [9], a reduced num-
ber of prediction points that are not evenly distrib-
uted along the prediction horizon—as required by
the standard MPC variants—is adopted. Such a
strategy lowers the number of coincidence points
required to obtain an accurate predicted response;
this can indeed be reduced to a single point. As
can be seen from the simulation results, Figs. 5
and 6, conducted in the environment of MAT-
LAB/Simulink, the overall steady-state tracking
performance of the suggested MPC framework
is the same as the standard MPC, although the
time response associated with the linear internal
model is slightly slower compared with the stan-
dard MPC.

Due to the high computational requirement
needed for the standard MPC, experimental test
with the Qbal-X4 testbed cannot be carried out
successfully, while successful flight tests for a rec-
tangular trajectory with the proposed MPC con-
troller proves efficiency of the design. This is
shown in Fig. 7.
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6 Conclusions

In this paper an efficient Model Predictive Con-
trol (eMPC) strategy has been developed and
tested on an unmanned quadrotor helicopter test-
bed Qball-X4 to address the main drawback of
standard MPC with high computational require-
ment. The purpose was to make the MPC-type
advanced control algorithms applicable to fast
dynamics small/miniature Unmanned Aerial Ve-
hicles (UAVs) with limited airborne computa-
tional power. To this end, a closed-loop prediction
scheme is offered for calculation of the future
output of the vehicle based on a linear internal
model. This scheme has essentially reduced the
computational load due to its linear structure.
In addition, based on the assumption that dur-
ing most flight maneuvers translational motions
can be treated independently from each other,
model reduction has been practiced to minimize
calculations. Reduction of the on-board execution
time was also achieved by a reduced number of
prediction points that are not evenly distributed
but placed along the prediction horizon. Trajec-
tory tracking control capability has been validated
through both simulation and experimental test-
ing with the Qball-X4 UAV. Satisfactory tracking
performance has been achieved with the proposed
eMPC, whereas the standard MPC fails to work.

Future work will be focused on expansion of
the controller so that not only altitude but also
other elements of translational motion, i.e. along
the longitudinal as well as the lateral axis are all
collectively controlled by either a single or multi-
ple MPC controllers.
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