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Abstract The horizon appearance is a strong vi-
sual indication of the attitude of an aircraft, so
a vision based system should be able to detect
the horizon and use its appearance to extract
attitude measurements. Past methods have made
the assumption that the horizon is straight, this
neglects possible navigational and attitude infor-
mation. This paper outlines a horizon detection
method which allows for the actual horizon profile
shape to be extracted. This horizon profile is then
used for visual attitude determination. Test re-
sults for a captured flight video are presented and
the proposed method is compared and evaluated
against other methods.
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1 Introduction

Horizon detection in vision systems is not a
new concept; there has been a large amount of
past research into image processing techniques to
perform horizon detection and various methods
for fitting a horizon to the image. The major-
ity of the past work on horizon detection has
assumed that the horizon will be a straight line
but there will be cases when this will not hold
true. When a straight line is fitted to a detected
horizon, non-uniformities in the horizon (such as
mountains and other terrain features) can man-
ifest themselves as biases in the fitted horizon
line’s slope and offset. This allows for an atti-
tude measurement to be made, but it can be very
susceptible to error when the actual horizon is
not straight. Usually horizon detection will only
give a bank and pitch attitude estimate [2–4, 6–
10, 13, 25] due to the horizon fit being reduced
to a straight line; however detecting the horizon
profile allows for full attitude estimation (bank,
pitch and yaw) [14] as well as estimation of nav-
igational information [23, 24] using terrain-aided
methods. A large amount of the past work has
been focused on MAV (Micro Air Vehicle) or
UAV (Unmanned Aerial Vehicle) attitude sta-
bilization [2–4, 8–10, 13, 25], and only a limited
number have focused on recovering the explicit
attitude from the estimated horizon line [6, 7,
18]. The explicit attitude information however
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is of great importance in control, guidance and
navigation.

The problem of horizon detection has been
approached many different ways in the past. The
past literature has focused on three main meth-
ods for horizon detection which are; edge based
[6, 7] (horizon edge points are found then a line
is fitted to them), pixel segmentation based [2,
4, 20, 25] (sky and ground are segmented first,
then a horizon line is fitted) and statistical seg-
mentation based [3, 8–10, 13] (sky and ground
segmentation and horizon fitting processes occur
simultaneously).

Edge based horizon detection finds points in
the image with a strong image intensity gradient.
It is assumed that these detected edge points in
the image belong to the horizon, so a straight line
is fitted to them, usually using the Hough trans-
form [6, 7]. This method relies on the assump-
tions that there is a distinct straight edge between
the sky and the ground and that this line is the
strongest one returned by the Hough transform.
When these assumptions are violated, the Hough
transform can return erroneous measurements.
One of the advantages of the Hough transform
is its noise rejection ability when globally fitting
a straight line. However this advantage quickly
breaks down when the detected edge points do not
lie on a straight line. A disadvantage of the Hough
transform is that it can be computationally expen-
sive. The edge detection and line fitting stages in
the horizon detection process have different pa-
rameters and thresholds which need to be tuned.
The tuning of these parameters affects the overall
accuracy and robustness of the horizon detection
process.

Segmentation based approaches first segment
the image into sky and ground, then a horizon line
is fitted to separate the segmented regions. The
segmentation process can be based on a number
of different approaches such as a color threshold
[2], texture threshold or machine learning clas-
sifiers [20, 21]. A major drawback to color based
sky detection methods are their inability to dis-
tinguish between sky and other sky colored and
textured objects such as a body of water or haze.
An advantage of the segmentation approach is
the individual pixel sky/ground classification, this

information allows the actual shape of the horizon
to be extracted.

Statistical segmentation approaches combine
the sky and ground pixel classification and hori-
zon fitting stages together in one step which is
usually accomplished by a maximization or min-
imization expectation search on some fit criteria.
An optimization algorithm was used in [8–10] to
minimize the RGB (red, green and blue) inter-
class variance of two segments of an image sep-
arated by a straight horizon line. Whereas [13]
used the Otsu threshold method to statistically
separate the background and foreground and [3]
used a k-means clustering approach to separate
the image into 2 regions. Statistical segmentation
approaches have the advantage of being an op-
timization procedure, so that there are no issues
with the tuning of detection parameters. However
its disadvantages are its computational expense,
the need for the sky and ground appearance to
be significantly different and lastly the fact that
the two separated regions are not guaranteed to
correspond to the sky and the ground.

This paper develops a horizon detection and
extraction method which differs from previous
approaches [2–4, 6–10, 13, 25] by allowing the
horizon to take a general shape, rather than con-
straining it to be a straight line. The proposed
method can handle some of the situations which
can cause difficulties for other methods, such as
a lack of a distinct horizon edge or a lack of a
significant appearance difference between the sky
and the ground. The proposed method also has a
higher processing rate and a higher attitude de-
termination accuracy when compared to the two
other methods investigated.

The layout of this paper is broken up into
a number of sections. Section 2 investigates the
physical appearance of the horizon and devel-
ops the proposed horizon detection method from
these observations. Section 3 outlines the attitude
determination process, which links the detected
horizon profile to the attitude of the aircraft.
Bank and pitch attitude equations are developed
which link the fitted horizon line parameters in
the image, directly to the attitude of the aircraft.
Implementation and flight test results for this pro-
posed horizon detection method and two other
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past approaches are presented in Section 4, while
their corresponding discussions are presented in
Section 5. Finally, an extension to the proposed
method which can compensate for some of the
issues identified in the discussion section is pre-
sented in Section 6.

2 Horizon Detection

2.1 Horizon Appearance

The physical manifestations of the appearance
of the sky (specifically color, texture and spatial
properties) were investigated for the purpose of
the development of a horizon detection algorithm.
The clear sky color is predominantly driven by the
scattering of the sun’s light through the earth’s
atmosphere. As the amount of scattering is re-
lated to its wavelength by Rayleigh’s law, the
blue wavelength is scattered the most, followed
by green and then the red wavelengths, giving
the sky an overall blue appearance [1, 17]. The
shade of the color of the sky is not uniform. The
atmosphere appears the thickest at the horizon
which causes the sky color to saturate towards

white, as the individual color component intensi-
ties increase [16]. These relationships are observ-
able in the two vertical color component traces,
shown in Figs. 1 and 2. The image traces also
contain other valuable information.

The trace shown in Fig. 1 has a clearly defined
horizon interface. The top of the mountain against
the sky defines a very identifiable horizon edge
(all three color channels have a very large gradi-
ent). This edge is easily picked in horizon edge
based methods, such as [6, 7]. The color distri-
bution in the ground region is also dramatically
different compared to the sky region. In the sky
region, the distribution follows Rayleigh’s law
whereas in the ground region, the blue component
is not always the most dominant color. This clear
color distribution difference allows segmentation
and statistical segmentation horizon detection ap-
proaches, such as [2–4, 8–10, 13, 20] to easily
identify the horizon.

There are noticeable situational differences in
Fig. 2. The horizon interface no longer has a
well defined edge; it only has a weak gradient or
transition response. Edge based methods would
be unable to detect a usable edge in these sit-
uations. The color distribution between the sky
and the ground is very similar. This is due to the

Fig. 1 Vertical color
image trace (Strong
Horizon)
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Fig. 2 Vertical color
image trace (Weak
Horizon)
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higher altitude of the camera, which increases the
distance through the atmosphere that the light has
to travel from the ground. This increased distance
causes the Rayleigh’s law to become noticeable
in ground regions, washing out the color distrib-
ution. This lack of difference between the sky and
ground regions will cause statistical segmentation
approaches to fail as well.

In all cases, the horizon interface is spatially
correlated across the image. It is not necessary
a straight line, but it should form a continuous
boundary across the image.

2.2 Proposed Horizon Detection Method

The observations in Section 2.1 are used to de-
velop the proposed horizon detection and profile
extraction method described in this section. This
allows the proposed method to handle some of
situations that can cause difficulties for other
methods, such as the lack of a distinct horizon
edge or a lack of a distinct colour distribution
difference between the sky and the ground. The
main image feature that the proposed method
uses for horizon interface detection is the image
gradient. Negative gradients (light to dark) are
used to define possible areas for the horizon in-
terface. The use of gradient information allows

for possible horizon detection in cases when the
horizon does not return a strong edge response.
The local color distribution is then used to remove
gradients which are unlikely to be caused by the
horizon. Spatial constraints are then used to select
a continuous horizon profile from the image.

A complete outline of the proposed horizon de-
tection method is shown in Fig. 3. The first step in
the process is to smooth the individual color chan-
nels of the image to remove very high frequency
content and noise. A smoothing window of size
n is used in a box averaging filter to smooth the
image. Let the original color image be I(u, v) =
[IR(u, v), IG(u, v), IB(u, v)] where (u, v) are the
image coordinates in pixels and IR, IG, IB are
the individual color channels corresponding to
red, green and blue respectively. The different
smoothed color channels are calculated using:

Īc(u, v) = 1
n2

n/2∑

i=− n
2

n/2∑

j=− n
2

Ic(u + i, v + j) (1)

where Īc is the smoothed image color channel
calculated for the different color channels c ∈
{R, G, B}.

The next step is the estimation of the vertical
gradient S(u, v) from the smoothed color channel
images. While the horizon interface is correlated
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Fig. 3 Proposed horizon
detection outline
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with all three color channels as seen in the color
traces in Figs. 1 and 2, only the red channel vertical
gradient is calculated. The red channel gradient is
used instead of the other channel gradients (or a
combination of them) as it appears to be the most

sensitive to the sky/ground transition while being
less sensitive to other objects (this was also noted
in [6]).

The vertical gradient S(u, v) can be calculated
from the convolution of the smoothed red channel
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ĪR with a 3 × 3 vertical1 Sobel mask H, such
that S(u, v) = H(u, v) ∗ ĪR(u, v) where the con-
volution operation is:

S(u, v) =
∑

i

∑

j

H(i, j ) ĪR(u − i, v − j ) (2)

with the vertical Sobel mask [5] defined as:

H =
⎡

⎣
−1 −2 −1
0 0 0
1 2 1

⎤

⎦ (3)

After the gradient calculation, possible horizon
transitions or gradients are identified by thresh-
olding the gradient image S(u, v) to form a binary
image Bgradient(u, v) with a threshold Ts using:

Bgradient(u, v) = S(u, v) > Ts (4)

Only negative gradient areas (light to dark, down
an image, i.e. sky to ground) are selected. This
helps to remove gradients which could not be
caused by a sky/ground transition in the binary im-
age. The color image traces shown in Figs. 1 and 2
show examples of a strong edge response horizon
and weak gradient response horizon. Applying
a threshold to the vertical gradient allows both
cases to be detected, compared to an edge based
detector would miss the horizon with a weak gra-
dient. The selection of the threshold value Ts is an
important part of the detection process and it is
discussed in Section 2.3.

The gradients selected in the binary image
Bgradient(u, v) could belong to any number of im-
age features. Additional information is used to
try to cull any gradients which are not caused
by a sky/ground transition. The color distribution
can provide strong information about whether a
pixel belongs to the sky or the ground. Before the
ground region appears washed out due to altitude

1Only the vertical mask is used as it was assumed that it
should be roughly normal to the horizon. This assumption
is justified in most flight conditions for a civilian fixed-
wing aircraft. If extreme attitude ranges where expected,
then the Sobel mask direction could be updated in 45◦
increments based upon the current estimated attitude. This
was not necessary for any of the results presented in this
paper.

effects, it can be noted that the ground region
typically has a stronger green or red component
when compared to the blue component. This is
a strong condition that is normally only satisfied
in the ground regions of the image (or in the sky
due to clouds or glare, when the light intensity
is very bright and partially or fully saturates the
color channels). The inverse of this condition is
true, the blue component is usually the strongest
color in the sky due to Rayleigh’s law.

A binary image is formed where Bcolor(u, v)

represents whether or not that particular pixel
satisfies the binary condition of:

Bcolor(u, v) = (
ĪG(u, v) > ĪB(u, v)

)

∨ (
ĪR(u, v) > ĪB(u, v)

)
(5)

where ∨ is the logical disjunction (OR) operation.
Using the distribution rather than a threshold for
this condition, helps the condition to be invariant
to various lighting conditions.

This color condition is used to remove any of
the possible gradients identified by Bgradient(u, v)

which could not be caused by a sky/ground transi-
tion, such as ground/ground transitions (i.e. roads)
or sky/sky transitions (i.e. clouds). This forms the
binary image Bedges using the logical operation:

Bedges(u, v) = Bgradient(u, v) ∧ ¬Bcolor(u, v) (6)

where ∧ is the logical conjunction (AND) and ¬
is the negation (NOT) operation.

The detection steps so far have used color and
gradient information. The last step in the process
is to use spatial information to select the horizon.
This step is usually where other methods [2–4, 6–
10, 13, 25] make the assumption (in some form)
that the horizon is straight. Instead, the proposed
method assumes that the horizon should be spa-
tially correlated with each column of the image
by implying that it should be continuous from
one border of the image to another. In normal
attitude operating conditions, this means that the
horizon should pass through the left and right
borders of the image.2 This condition is used to

2The assumption that the horizon passes through the left
and right borders of the image is modified in Section 6
for improved detection at non-nominal attitudes when this
condition would not be true.



J Intell Robot Syst (2012) 68:339–357 345

filter the possible gradients to select one that
fulfills this criterion. The binary image Bedges is
morphologically reconstructed with dilation [22]
to filter out any gradients which do not span the
image. This forms the horizon binary edge image
Bhorizon(u, v). The horizon profile is then extracted
from this remaining horizon edge.

To preform the morphological reconstruction,
two binary images, a left binary image Bleft and
right binary image Bright are required. The goal of
the process is to select the gradient which connects
both binary images together. The left and right
binary images are simply generated with:

Bleft(u, v) =
{

true if u = 0
false otherwise

(7)

Bright(u, v) =
{

true if u = width

false otherwise
(8)

The left binary image Bleft is morphologically
reconstructed with the edge binary image Bedges

to select all gradients which are connected to the
left binary image. This forms the left connected
horizon edge Bleft,horizon binary image. The left
morphological process iteratively dilates the left
connected horizon edge Bleft,horizon binary image
until Bk-1,left,horizon = Bk,left,horizon using:

B1,left,horizon = Bleft (9)

Bk+1,left,horizon = (Bk,left,horizon ⊕ 13×3)

∩ Bedges (10)

where ⊕ is the morphological dilation operation
and ∩ is the intersection. The same process is done
with the right side to form the right connected
horizon edge binary image Bright,horizon. The right
connected horizon edge binary image is iteratively
dilated until Bk-1,right,horizon = Bk,right,horizon using:

B1,right,horizon = Bright (11)

Bk+1,right,horizon = (Bk,right,horizon ⊕ 13×3)

∩ Bedges (12)

The left and right reconstructed images are com-
bined to only select the edge which is connected

to both borders to form the horizon edge binary
image Bhorizon(u, v) by the operation:

Bhorizon(u, v) = Bleft,horizon ∧ Bright,horizon (13)

If there is no gradient which fulfills this condition
(i.e. the threshold is too strong) then the horizon
edge binary image Bhorizon would be empty (all
pixels are false). However, if any gradients are
returned, then it is probable that it belongs to the
horizon.

The horizon profile is extracted from the binary
horizon image Bhorizon(u, v), by tracing along the
image left to right u = (0 → width), extracting
the top most edge i for each column, such that
(Bhorizon(u, i) 
= Bhorizon(u, i + 1)). This forms the
one dimensional horizon profile3 v = Hp(u).

2.3 Threshold Selection

The threshold value Ts plays a large part in the
detection process. Correct selection of Ts is an
important process which affects the accuracy and
robustness of the extracted horizon profile.

There are two methods for the selection of the
threshold Ts value. The first method is to set Ts

to a fixed value, one which is low (or sensitive)
enough to ensure horizon detection. An advan-
tage of this fixed threshold method is its ability to
select a horizon with a weak response over a false
horizon with a stronger response. This situation
might occur when there is a strong edge on the
ground which spans the image. A fixed threshold
however has a large disadvantage, the low value
required can make the whole detection process
very sensitive to noise (a noisy profile can still be
used for attitude determination when the horizon
profile is approximated by a straight line, however
it makes robust profile extraction difficult).

The second method for the selection of Ts is to
use an adaptive threshold. The proposed method
has a clear indication of whether a threshold
value is too high (no horizon is found after the

3Again this assumes that the horizon profile is normally
horizontal across the image otherwise shape information
is lost.
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morphological reconstruction stage). This can be
used as an adaptive criterion; the adaptive thresh-
old should select the largest threshold value in
which a horizon is detected. The assumption here
is that a more sensitive threshold (lower) will only
allow a greater sensitivity to noise. If no prior in-
formation is known, then the threshold value can
be set high and iteratively reduced until a horizon
is detected. If a previous threshold value is known,
then this value can become the starting point for
the iterative search. If the previous value is sensi-
tive enough to detect a horizon in the first iter-
ation, then the threshold is iteratively increased
until the largest threshold value that results in a
detected horizon is found. Otherwise the thresh-
old is iteratively reduced until a horizon is found.
Due to computational performance constraints, a
limit N on the maximum number of threshold iter-
ations performed each frame can be put in place.
An outline of the adaptive algorithm is shown in
Algorithm 1.

Algorithm 1 Adaptive threshold procedure
Data: Previous Adaptive Threshold Value and Iteration Limit
Result: Current Adaptive Threshold Value
begin

for i = 1 N do
Horizon Detection Using Current Threshold
if Horizon Found then

if Threshold Increased from Last Iteration then
return Threshold From Current Iteration

else
Decrease Threshold

end
else

if Threshold Decreased from Last Iteration then
return Threshold From Last Iteration

else
Increase Threshold

end
end

end
return No Threshold Found

end

2.4 Examples

Two examples of the horizon detection process
are shown in Figs. 4 and 5. Each example shows

Adaptive Threshold (Ts = 18)
Low Threshold (Ts = 2)

(a) Detected Horizon

(b) Ts = 40 Threshold Image (c) Ts = 30 Threshold Image

(d) Ts = 10 Threshold Image (e) Color Condition Image

Fig. 4 Example image 1

the detected horizon using an adaptive threshold
and a fixed threshold as explained in Section 2.3.
The adaptive threshold produces the best ex-
tracted horizon profile, while the fixed low thresh-
old is very sensitive to noise and obstructions.

A number of different Bgradient binary images
with a reducing threshold are shown in Figs. 4b–
d and 5b–d. As the threshold lowers, the amount
of noise in the binary image increases. The adap-
tive threshold process tries to find the largest
threshold value which causes a detected gradient
to span the image. In the first example, Fig. 4e
shows the Bcolor binary image, which is used to
remove unwanted gradients from Bgradient. It can
be seen in this example that the color condition
would remove a lot of the unwanted gradients
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Adaptive Threshold (Ts = 5)
Low Threshold (Ts = 2)

(a) Detected Horizon

(b) Ts = 15 Threshold Image (c) Ts =10 Threshold Image

(d) Ts = 5 Threshold Image (e) Color Condition Image

Fig. 5 Example image 2

and noise associated with the ground. However,
the Bcolor binary image for the second example
shown in Fig. 5e would provide little help. The
second example image in Fig. 5 has been taken at
a higher altitude (>1000 ft) and the ground color
distribution has become washed out due to the
atmosphere. The washed out color distribution
and lack of distinct horizon edge makes this exam-
ple difficult for other horizon detection methods,
however the proposed method is able to find a
good representation of the true horizon in this
situation. Two other horizon detection examples
are shown in Fig. 6a and b which can provide
difficulties for other methods. The example shown
in Fig. 6b can be particularly difficult for statistical
segmentation based approaches, as the sky and

Adaptive Threshold (Ts = 22)
Low Threshold (Ts = 2)

Adaptive Threshold (Ts = 19)
Low Threshold (Ts = 2)

(a) Example Image 3

(b) Example Image 4

Fig. 6 Horizon detection examples

the ocean have very similar color and texture
distributions.

There are situations when the proposed
method can return erroneous results. Two exam-
ples of such situations are shown in Fig. 7a and
b. The adaptive threshold process finds a gradient
spanning the image at a higher threshold value
than the value required for correct horizon de-
tection. This can happen in cases when the hori-
zon only has a weak gradient response and there
exists a stronger edge feature spanning the im-
age. Another difficult situation for the proposed
algorithm is when part of the horizon is discon-
tinuous. The discontinuity can cause the adaptive
algorithm to saturate towards the lower thresh-
old limit; searching for any continuous gradient
spanning the image. Figure 8a shows the situation
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Adaptive Threshold (Ts = 10)
Low Threshold (Ts = 2)
Correct Threshold (Ts = 5)

Adaptive Threshold (Ts = 11)
Low Threshold (Ts = 2)

(a) Incorrect Horizon Detection 1

(b) Incorrect Horizon Detection 2

Fig. 7 Incorrect horizon detection examples

when part of a strong horizon is obstructed with
white buildings. Due to the color and shape of
the buildings, they have no vertical gradient re-
sponse. Once the buildings leave the image frame,
as shown in Fig. 8b, then the adaptive algorithm
can correctly find the strong horizon.

3 Attitude Determination

The appearance of the detected horizon needs to
be linked to the attitude of the aircraft so that
attitude determination can be carried out. For
the purpose of this paper, a straight horizon line
is fitted to the detected horizon profile, so that
the proposed method can be compared to other

Adaptive Threshold (Ts = 1)
Low Threshold (Ts = 2)

Adaptive Threshold (Ts = 29)
Low Threshold (Ts = 2)

(a) Incorrect Horizon Detection Due to Obstruction

(b) Correct Horizon Detection Without Obstruction

Fig. 8 Incorrect horizon detection due to obstruction

horizon detection methods which use a straight
horizon line approximation [2–4, 6–10, 13, 25].
The detection of the horizon profile would also
allow the additional shape information (which
should ideally be the local terrain) to be used
in different methods. These methods could be a
terrain-aided horizon method for attitude deter-
mination [14] (which would be more accurate than
the horizon line approximation) or a terrain-aided
horizon method for position estimation [23, 24].
Section 3.1 explains the line fitting method used in
the proposed method to approximate the horizon
profile as a straight line. A mathematical model
which links the detected line parameters to the
infinite horizon line for attitude determination is
presented in Section 3.2. The attitude measure-
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ment equations in Section 3.2 assume a forward
facing camera, so Section 3.3 explains a trans-
formation process which can correct for camera
mounting rotational offsets.

3.1 Horizon Line Fitting

For attitude determination using an infinite hori-
zon line model, a line needs to be fitted to the de-
tected horizon profile. The line fitting is done after
the horizon extraction stage (rather than during).
The line fitting is done using an m-estimator to
help reduce the impact of the terrain profile and
noise in the extracted profile on the horizon line
estimate. Ordinary least squares could have be
used, however since the horizon profile has the
freedom to take on a general shape, a robust
estimation method is used to minimize the biases
that the general shape could have on the overall
line fit. An m-estimator [15] is used to fit a line of
the form v = au + b to the extracted profile v =
Hp(u) by using iterated reweighed least squares
to minimize:

min
∑

i

w
(

rk−1
i

)
r2

i (14)

where ri is the fit residual calculated by ri =
(vi − aui − b) and the influence function used is
the “fair” function4 [19], which has the weighting
function w(x) of:

w(x) = 1
1 + |x|/1.3998

(15)

3.2 Infinite Horizon Line Model

The papers [2–4, 8–10, 13, 25] which investigate
horizon detection for MAV or UAV stabiliza-
tion did not explicitly link the appearance of the
horizon to the attitude of the platform. General
measures, such as a pitch percentage (ratio of the
sky to ground area in the image) were used to
regulate the attitude. In [6] a mathematical model

4The selection of the influence function was not investi-
gated. Conceivably other influence functions could pro-
duce similar or better fitting results.

was presented which linked the infinite horizon
line (vanishing line of the ground plane) to the
attitude of the aircraft based upon a normalized
focal length of the camera. The model assumed a
forward facing camera. The equations presented
in [6] are:

φ = arctan
(−my

mx

)
(16)

θ = arctan
(

±u sin(φ) + v cos(φ)

f

)
(17)

where mx and my are the gradient components of
the infinite horizon line, (u, v) are a point along
the horizon line, (φ, θ) are the bank and pitch of
the aircraft and f is the camera’s focal length.

The mathematical model in [6] can be extended
for a pin-hole camera model [11], with (α, β) being
the scaled focal lengths in the (u, v) directions
and (u0, v0) being the coordinates of the principal
point. The focal parameters α and β are a scaled
version of the camera’s focal length expressed in
pixels rather than as a distance. The scale focal
lengths can be different which allows for non-
square pixels, which is typical for low cost CCD
cameras. The horizon line can also be expressed in
the line slope intercept form of v = au + b which
results in the following horizon line equations:

a = −β

α
tan(φ) (18)

b = v0 + β

α
u0 tan(φ) + β tan(θ) sec(φ) (19)

The horizon line parameter equations (18) and
(19) can be inverted to find the attitude of the
aircraft as a function of the infinite horizon line
parameters:

φ = − arctan
(

a
α

β

)
(20)

θ = arctan
(

(b − v0)

β
cos(φ) − u0

α
sin(φ)

)
(21)

Equations 20 and 21 are used during the results
to calculate the measured attitude of the aircraft
from the fitted horizon line parameters. The at-
titude equations in this form allow for a direct
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calculation of the attitude from the fitted line
parameters in the image.

3.3 Camera Rotation Offset Correction

The attitude measurements calculated from the
infinite horizon line model described in Section
3.2 assumed a forward facing camera. Any ro-
tation offsets in the camera mounting alignment
can bias the attitude measurements. These cam-
era rotation offsets can be accounted for by us-
ing DCM (direction cosine matrix) transformation
equations. The world to camera frame rotation
matrix Rcw can be evaluated using the attitude
measurements:

Rcw = Rx(φ)Ry(θ) (22)

where φ and θ are the uncorrected attitude mea-
surements from the infinite horizon line model
and the rotation matrix Rx,y,z(·) represents the
standard orthogonal rotation about a single axis.
The body to camera frame rotation matrix Rcb is
calculated using:

Rcb = Rx(φc)Ry(θc)Rz(ψc) (23)

where the body to camera frame rotation offset
Euler angles are φc, θc, ψc. The true world to body
frame rotation matrix Rbw can be recovered from:

Rbw = R−1
cb Rcw (24)

where the corrected φ̂ and θ̂ measurement angles
are extracted using:

φ̂ = arctan
(

Rbw(1,3)

Rbw(3,3)

)
(25)

θ̂ = arcsin
(−Rbw(1,3)

)
(26)

4 Results

For comparison with the proposed method, two
other horizon detection methods were also imple-
mented. The first method for comparison is devel-
oped in [8–10] by Ettinger et al. and is hereafter
referred to as the Ettinger method. The second

method for comparison is developed in [6, 7]
by Dusha et al. and is hereafter referred to as
the Dusha method. The computational time for
each method is compared in Section 4.1 and the
attitude determination accuracy of each method
is evaluated for a test flight video data set in
Section 4.2.

4.1 Implementation Results

The three methods (Dusha, Ettinger and the pro-
posed) were implemented in C++ using OpenCV
(Open Source Computer Vision processing li-
braries) with IPP (Intel Performance Primitives)
optimizations. The methods were tested on an
Intel i5 3.30 Ghz Processor and the frame rates
shown in Table 1 were achieved.5 The parameters
shown in Table 2 for the Dusha method, Table 3
for the Ettinger method and in Table 4 for the
proposed method were used during the timing
and horizon detection tests. Refer to [6–10] for
the method details and parameter descriptions.
The values of these parameters can greatly affect
the computational efficiency and accuracy of the
horizon detection methods.

At a resolution of 1024 × 768, the Dusha
method performed at 9 Hz while the proposed
method was able to run at 42 Hz (using a single
iteration or fixed threshold value). The Ettinger
method was able to run at 20 Hz however it was
on a significantly down-sampled image of size
245 × 192. The other methods can also achieve
faster speeds if their images are down-sampled as
well. A maximum rate of 48 Hz for the Dusha
method and 100 Hz for the proposed method were
achieved when down-sampled to a resolution of
640 × 480.

5The Dusha method was stated in [6] to be able to run
at 15 Hz at a resolution of 352 × 288 on a Pentium 4
3 Ghz processor with the method implemented in C using
the OpenCV libraries and IPP optimizations. While the
Ettinger method was stated in [10] to be able to run at
30 Hz at a resolution of 320 × 240 (down-sampled to 80 ×
60) on a 900 Mhz ×86 processor with high and low level
optimizations as outlined in [8].
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Table 1 Horizon detection method timings

Method Resolution Timing Frame
(ms) rate (Hz)

Ettinger 245 × 192 50 20
Dusha 1024 × 768 112 9
Dusha 800 × 600 78 13
Dusha 640 × 480 48 21
Proposeda 1024 × 768 24 42
Proposeda 800 × 600 17 59
Proposeda 640 × 480 10 100
Proposed (N = 2) 1024 × 768 31 32
Proposed (N = 5) 1024 × 768 61 16
Proposed (N = 10) 1024 × 768 90 11
aA fixed threshold was used

Table 2 Dusha method parameters

Parameter Value

Smoothing window size 15 × 15 pixels
Edge threshold

√
4mean

Hough transform θ bin size 1◦
Hough transform ρ bin size 1 pixel

Table 3 Ettinger method parameters

Parameter Value

Coarse resolution 64 × 48 pixels
Coarse search size 36 × 36 (θ, σ ) parameter space
Fine resolution 245 × 192 pixels
Fine refinement limit 10 iterations

Table 4 Proposed method parameters

Parameter Value

Smoothing window size 6 × 6 pixels
Fixed threshold Ts = 4
Adaptive threshold range Ts ∈ {40, 35, . . . , 10, 7.5, 5, 2.5}
Adaptive iteration limit N = 10

Table 5 Proposed method (1024 × 768) timing breakdown

Stage Timing (ms)

Smoothing stage 9.88
Color binary calculation 2.05
Gradient calculation 1.45
Gradient culling 0.37
Spatial filtering stage (per iteration) 7.26
Horizon extraction stage 3.51

The timings for the proposed method are bro-
ken down into the different stages and are shown
in Table 5 for a image resolution of 1024 × 768.
The majority of the calculation time is spent in
the smoothing stage and spatial filtering stage. If
an adaptive threshold method is used, then the
spatial filtering stage can be repeated a number of
times. A frame iteration limit N can be set to keep
the algorithm running at an acceptable frame rate
for a real-time system as described in Section 2.3.

4.2 Attitude Determination Results

The data set used for comparison was an on-line
available subset of the ASL (Airborne Systems
Laboratory) data set presented in [7]. The data set
is of a test flight video of the Australian Centre for
Aerospace Automation (ARCAA) Cessna 172.
The details of the system can be found in [12].
The test data contains position and attitude truth
information given by a highly accurate NovAtel
SPAN system running at 50 Hz. Video footage for
a forward facing camera is acquired. The camera
is a Point Grey Flea IIDC camera with a reso-
lution of 1024 × 768 with a 60◦ FOV (Field of
View) running at 20 Hz. The test flight was con-
duced around southeast Queensland, Australia.
The available data set contains 38 min of flight
data from flight time 1769 s to 4049 s. The test
flight attitude sequence is shown in Fig. 9 while
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the altitude sequence is shown in Fig. 10. The
flight sequence contains significant variations in
the bank and pitch of the aircraft, while reaching
a maximum altitude of approximately 4000ft.

The camera calibration properties for the data
set were not given in [7], however they were
estimated to be the values shown in Table 6,
with (φc, θc, ψc) being the rotation offset mount-
ing Euler angles between the aircraft body and
camera frame. Unfortunately, theses offset angles
have a noticeable shift when the aircraft is taxiing
along the ground which introduces slight biases in
the attitude error results during this time period.

Results for the proposed method are presented
for the two different threshold selection tech-
niques. The adaptive threshold technique is la-
beled as (AT) and the fixed threshold is labeled as
(FT). For real-time purposes, the adaptive method
described in Section 2.3 would limit the itera-
tions per frame. However, since all the processing

Table 6 Camera calibration properties

Parameter Value

Focal length α 788.41 pixels
Focal length β 832.96 pixels
Principal point u0 512 pixels
Principal point v0 384 pixels
Camera offset φc −4.0 deg
Camera offset θc 4.5 deg
Camera offset ψc 1.0 deg
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was done off-line for comparison purposes, the
maximum frame iteration limit was removed. The
processing rate for the proposed method would
then vary between 42 Hz (1 iteration) and 11 Hz
(10 iterations) depending upon the image content.

The tuning of the detection parameters for the
proposed method shown in Table 4 were done by
hand. The video was of reasonable quality, so a
small smoothing window size could be used. The
fixed threshold value was selected in conjunction
with the smoothing window size, so that a very
weak horizon could be detected. The adaptive
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threshold range was selected based on the typi-
cal horizon strength for a strong edge smoothed
by a filter using the selected window size. The
adaptive threshold step size was decreased with
the decreasing threshold to minimise the excess
noise content in the sensitive threshold range.
Thresholds below zero are not considered as the
gradient direction sensitivity would be reversed.

The attitude determination error results for the
different methods are shown in Figs. 11, 12, 13
and 14. Each figure plots the attitude error for
each frame between the NovAtel SPAN system
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Table 7 Attitude error comparisons

Parameter Ettinger Dusha Proposed Proposed
(AT) (FT)

Max φ error 43.56◦ 20.74◦ 8.34◦ 6.68◦
Max θ error 41.51◦ 29.36◦ 4.84◦ 5.00◦
Min φ error −80.34◦ −42.36◦ −7.45◦ −6.91◦
Min θ error −26.15◦ −24.02◦ −20.72◦ −11.79◦
Mean φ error 2.08◦ 0.38◦ 0.48◦ 0.28◦
Mean θ error −5.12◦ −2.07◦ −0.68◦ −0.0078◦
STD φ error 6.68◦ 2.20◦ 1.39◦ 1.00◦
STD θ error 5.16◦ 3.00◦ 1.40◦ 0.87◦

and the attitude measurement from the horizon
detection method. These results are for the raw
measurements returned by the different methods
without any fault detection or filtering methods
applied. Fault detection or filtering methods could
be applied to all of the methods, improving the re-
sults, however a baseline method comparison was
sought. The Ettinger and Dusha method results
are shown in Figs. 11 and 12 respectively. The
proposed method attitude error results for the
different threshold selection techniques are shown
in Figs. 13 and 14. A summary of all the results
from the different methods is shown in Table 7,
which contains the maximum and minimum error,
mean error and error standard deviation for both
bank and pitch.

The proposed method performed the best for
the test sequence. It returned the smallest error
range, mean and standard deviation. The Dusha
method also returned small error results for the
mean and standard deviation, however they were
slightly larger than the proposed method. The
maximum and minimum error for the Dusha
method were not as well contained. The Ettinger
method performed the worst with a large error
mean and standard deviation, which was multiple
times larger than the other methods.

5 Discussion

During the beginning of the test sequence
(< 500sec), all the methods produced similar re-
sults. During this time, the altitude of the aircraft
was low enough, that the appearances of the sky
and ground were dissimilar and the regions were
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separated by a strong horizon edge. These fea-
tures allowed all the algorithms to perform fairly
well. At these low altitudes, the main source of
attitude error was due to the terrain introducing
biases in measurements, since a straight horizon
was assumed. During the middle and end of the
test sequence, the altitude was higher. The higher
altitude effected the accuracy of the different
methods in different ways. The individual method
results are discussed separately in Sections 5.1–5.4
below.

5.1 Ettinger Method

At higher altitudes, the Ettinger method had trou-
ble identifying the difference between the sky
and the ground. The primary cause of this, is the
fact that the sky and ground regions have similar
color distributions at high altitudes due to the ter-
rain color becoming washed out with atmospheric
effects. This region similarity makes the algorithm
very sensitive to the image content. This is the
main source of large attitude errors returned by
the method. A number of attitude error features
can be seen in Fig. 11. The situation and causes
of the significant errors are described below with
reference to the numbered features in Fig. 11:

1. The method sensitivity has caused the algo-
rithm to separate the image into a dark sky
region and a light sky combined with ground
region.

2. The algorithm has locked onto a region of
the ground close to the aircraft which is not
washed out due to the altitude.

6. The algorithm has locked onto the bottom
edge of a region of smoke on the ground.
As the aircraft flies towards the region, the
translation of the aircraft quickly causes the
attitude error to diverge.

The Ettinger method performed well when there
was a significant difference between the sky and
the ground. However when this difference dimin-
ishes, the algorithm becomes very sensitive to
disturbances (such as clouds, rivers and smoke)
and the accuracy of the algorithm reduces to an
unacceptable level for control and navigational
purposes. The Ettinger method was designed for

stabilization of MAVs [8–10] and as such it was
only designed and tested at low altitudes due to
the limited performance envelope of MAVs.

5.2 Dusha Method

The primary source of error in the Dusha method,
was the need for a distinct straight edge in the
image for the algorithm to detect. At high alti-
tudes, the horizon does not produce a strong edge
response. The identification and selection of other
strong straight edges in the image becomes the
main source of erroneous measurements. A num-
ber of labeled attitude error features can be seen
in Fig. 12, the situation and causes are described
below:

1. The algorithm has selected a strong edge of a
body of water.

2. The algorithm has locked onto and tracked a
strong edge in the image caused by a straight
mountain ridge.

3. The algorithm selected the top edge of a series
of clouds in the sky.

4. The algorithm has locked onto a bottom edge
of haze covering the ground.

5. The bottom edge of a cloud of smoke from a
bushfire has been selected.

6. The strong edge of the coast line has been
selected.

The Dusha method performed significantly better
than the Ettinger method on the data set. The
main problem with the algorithm was its inability
to detect the horizon when the horizon has a
gradual transition between sky and ground. Other
strong edges in the image are also easily returned.
The paper which developed the Dusha method
[6] used a Kalman filter and optical flow to track
candidate horizon lines over time and cull any
lines which had an optical flow component caused
by the translation of the aircraft. This filtering
method could not be applied in real time (<2 Hz).
Paper [7] reported an attitude determination error
standard deviation of 1.79◦ for bank and 1.75◦ for
pitch, for the complete data set with the optical
flow candidate horizon line filtering method im-
plemented. The proposed method worked in real-
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time, resulting in smaller errors even without any
fault detection or filtering methods applied.

5.3 Proposed Method (AT)

As with the other methods, the terrain introduced
biases into the attitude measurements during the
beginning of the test sequence. However at higher
altitudes, the proposed method was able to select
the gradient transition caused by the horizon. This
transition region is a very strong and stable indi-
cation of the attitude of the aircraft. The transi-
tion region is usually the most distant part of the
image, so the infinite horizon line approximation
for the attitude determination performs extremely
well. When this transition region is correctly iden-
tified, it can produce an unbiased attitude mea-
surement with a small variance. Attitude error
features in Fig. 13 are described below:

1. Attitude errors are introduced by the terrain
profile when the aircraft is close to the ground.
Change in camera mounting angles (due to
the aircraft being on the ground) introduced
a noticeable step bias.

2. A stronger continuous edge of a mountain
ridge which spans the image was selected
over the weaker horizon due to the adaptive
threshold.

3. A very low threshold was needed. This caused
the detection noise in the image to increase. It
selected a weak group of noisy edges caused
by mountains, rather than the slightly weaker
horizon.

4. Fog and haze obscured a large part of the hori-
zon, such that there was no gradient response
across it (even with the lowest threshold). At
this point the algorithm is very sensitive, so
it selected the bottom of the haze where it
transitions to the clear ground.

5. This segment highlights one of the stronger
advantages of this method. It cleanly identifies
the horizon transition region producing excel-
lent attitude information. This is a situation
when the other methods have trouble due to
lack of distinguishing features.

6. A strong coastline edge across the image is
picked up before the threshold can be adapted
to the weak horizon.

5.4 Proposed Method (FT)

The fixed threshold allows the horizon gradient
transition region to be consistently identified. This
resulted in fairly stable and unbiased attitude
measurements during the high altitude phases. In
these phases, the measurements were not biased
due to the terrain or the view distance. Since the
threshold was fixed at a low value, it did not select
stronger edges on the ground (ie. the coastline)
over a weak horizon. This was the main reason the
fixed threshold produced better attitude results
compared to the adaptive threshold. However the
low threshold value makes the extracted horizon
profile very sensitive to noise and disturbances
such as clouds or other weak edges; this can clearly
be seen in the example Fig. 4. At low altitudes,
the returned profile was very noisy and not as
precise due to the sensitive threshold value. At
high altitudes however this was less of a problem
as accurate profile extraction is less relevant. For
accurate horizon profile extraction (such as at low
altitude, when there is a terrain profile to detect),
the fixed threshold is inappropriate as the profile
is too sensitive to noise. An extension to the
adaptive method is developed in Section 6, which
allows the proposed method with an adaptive
threshold to perform as well as the fixed threshold
for attitude determination while maintaining its
horizon profile extraction performance.

6 Attitude-Aided Detection Extension

The two incorrect horizon detection examples
shown in Fig. 7 and most of the erroneous de-
tections from the test sequence (using an adap-
tive threshold) are caused by a stronger gradi-
ent spanning the image which is detected before
the weaker horizon. These situations can be cor-
rected by using extra information in the detection
process.

If an estimate of the current attitude is known,
then this information can be used to improve
the detection process. Attitude information allows
the estimation of two sets of image border pixels
which must be connected together by the horizon
profile. This decreases the set size used in the hori-
zon spatial filtering stage. Stronger continuous
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gradients which are not the horizon are removed
by this process, as they would not fall within the
revised attitude-aided spatial constraints. The dia-
gram shown in Fig. 15 explains how the estimated
attitude can be linked to the horizon line in the
image; this can be used to generate attitude-aided
border sets for constraints. Gradients which do
not continuously span these two border sets are
filtered out.

Using the horizon line equations (18) and (19)
which express the horizon line in the form of v =
au + b with (a, b) = f (φ, θ), it is possible to relate
the current estimated attitude to the image border
pixel sets. Chi-Squared tests then can be applied
to the image border coordinates to extract two
sets of border pixels which must be connected by
the horizon. These two pixel border sets are used
in the left and right morphological reconstruction
process (Bleft, Bright) for the spatial filtering stage
of the proposed algorithm.

Taking partial derivatives of Eqs. 18 and 19
with respect to the estimated attitude gives:

∂a
∂φ

= −β

α
(1 + tan2 φ) (27)

∂a
∂θ

= 0 (28)

∂b
∂φ

= β

α

(u0 + α sin φ tan θ)

cos2 φ
(29)

∂b
∂θ

= β

cos φ cos2 θ
(30)

These partial derivatives allow the estimated at-
titude variances to be transformed to the horizon
line parameter variances using:

σ 2
a =

(
∂a
∂φ

)2

σ 2
φ (31)

σ 2
b =

(
∂b
∂φ

)2

σ 2
φ +

(
∂b
∂θ

)2

σ 2
θ + 2

∂b
∂φ

∂b
∂θ

σφθ (32)

σab = ∂a
∂φ

∂b
∂φ

σ 2
φ + ∂a

∂φ

∂b
∂θ

σφθ (33)

where σ 2
a , σ 2

b , σab are the horizon line variances
and σ 2

φ , σ 2
θ , σφθ are the attitude variances associ-

ated with the current estimated attitude. Image
border pixels can be tested to see if they should
be contained in one of the connection border sets
using a Chi-Squared test with a single degree of
freedom and a probability threshold of P:

(aui + b − vi)
2

u2
i σ

2
a + σ 2

b + 2uiσab
< χ2(P, 1) (34)

with the test being performed on all the im-
age border pixels belonging to (u, v)i ∈ {(u,

v)u={0,width},(u, v)v={0,height}}.
This method can only be used when the test

identifies two unconnected border pixel sets. If
the sets are connected, then a horizon cannot be
found which joins them. Since the sets need to
be unconnected, this method cannot be applied at
extreme attitudes when the horizon does not span
two distinct border regions.

7 Conclusion

The development of robust horizon detection
methods for attitude determination is a key step
towards the development of a passive attitude
sensor scheme for navigation and control of small
aeronautical platforms. The proposed horizon de-
tection method removes the need for the straight
horizon line assumption in the detection process
and is able to extract the horizon profile shape
from the image. It is able to perform more ac-
curately than past approaches (when using an
horizon line assumption), returning a mean error
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of 0.28◦ and −0.0078◦ for bank and pitch with
a standard deviation of 1.00◦ and 0.87◦ for the
test sequence. The ability to extract the horizon
profile also means that the shape information
could be used in additional attitude and navi-
gational processes which would result in greater
accuracy. The proposed method is able to run with
a higher processing rate compared to other past
methods, making the proposed method suitable
for real-time implementation.
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