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Abstract The article proposes a solution to map-
based self-localization for an autonomous ro-
bot operating in cluttered and crowded environ-
ments. To detect features for localization, 2D laser
range-finders traditionally scan a plane parallel
to the floor. This work hypothesizes the exis-
tence of a “low frequency cross-section” of the
3D Workspace where cluttered and dynamic en-
vironments become “more regular” and “less dy-
namic”. The contribution of the article is twofold.
First, an “unevenness index” U is introduced to
quantitatively measure the complexity of the en-
vironment as it would be perceived if the laser
range-finder were located at different heights
from the floor. The article shows that, by choosing
the laser scanning plane to statistically minimize
U (in most cases, above the heads of people),
it is possible to deal more efficiently with non-
linearities in the measurement model, moving ob-
jects and occluded features. Second, it is demon-
strated that, when adopting an extended Kalman
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filter for position tracking (a very common and
widely used technique in real-world scenarios),
the a posteriori covariance of the estimated ro-
bot pose converges faster, on average, when U is
lower, which leads to better localization perfor-
mance. Experimental results show hours of con-
tinuous robot operation in real-world, cluttered
and crowded environments.

Keywords Map-based localization · Extended
Kalman filter · Human environment

1 Introduction

When considering complex navigation tasks in
real-world applications (e.g., for object trans-
portation and delivery or automated surveillance),
self-localization is still a central issue. Since in-
cremental dead-reckoning methods suffer from
cumulative errors increasing over time [2, 9, 15, 33,
43, 51, 52, 60, 68], the usual approach is to periodi-
cally compare observations with an internal repre-
sentation of the environment, and to consequently
estimate the robot pose. This process is often
grounded in the Bayesian estimation framework.
Among the most common approaches, Kalman
filter-based localization assumes that a uni-modal
probability distribution is adequate to maintain
the pose estimate [15, 27, 34, 49, 62, 63], thereby
being a simple and effective solution to position
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tracking when an initial estimate of the robot pose
is available. Approaches based on Markov [22–
24, 53, 65] and particle filters [25, 32, 46, 50, 64, 66]
are able to represent multi-modal probability dis-
tributions over the robot poses, thereby allowing
for performing global localization. Finally, within
the same statistical framework, each new obser-
vation can be used to update the map itself, thus
simultaneously estimating the robot pose as well
as the configuration of surrounding features, a
process referred to as Simultaneous Localization
And Mapping (SLAM) [21, 26, 32, 46, 50, 67].

Whichever approach is adopted, the localiza-
tion system requires a model of the noise affecting
both sensors [1, 34, 54, 55] and the process to be
estimated. Furthermore, the problem of feature
association (a prerequisite for any configuration
update) dramatically arises when robots are em-
ployed in environments where people perform
their everyday activities. Offices, hospitals and
storage areas are messy and cluttered. Worse than
that, humans have the “bad habit” of moving
around, carrying objects—which were supposed
to be features up to a moment before—from one
place to another. In this situation, feature associ-
ation can be a hard task, either when the map is
perfectly known or when it must be learnt through
observations. In particular, the difficulty relies
in finding a subset of features that are “stable”
enough to be repeatedly detected and associated,
thereby allowing for a reliable correction of the
robot pose [36, 37, 62, 64].

Let us consider a very common localization
architecture, where a laser range-finder is used to
collect observations (e.g., line features), feature
association is performed with respect to a known
map of the environment and an extended Kalman
filter is employed to maintain an updated estimate
of the robot pose.1 Observations are collected (in
the form of extracted line features) by scanning a
2D plane parallel to the floor. When a sufficient
number of extracted features is associated with
corresponding features in the map, the Kalman

1Many considerations made throughout the article are still
valid for other architectural choices and for SLAM as well.

filter is used to correct the robot position and ori-
entation. According to this localization scheme, it
seems convenient to search for a 2D cross-section
of the robot Workspace (intuitively, above human
heads!) where feature association can be con-
sidered extremely reliable, even in environments
otherwise cluttered and dynamic, and therefore
localization performance is expected to improve.
Such a 2D cross-section is referred to as “Low Fre-
quency Cross-Section” (LFCS), where the “Low
Frequency” attribute refers both to the spatial and
to the temporal aspects. As a consequence, three
research hypotheses can be made.

Hypothesis 1 If a LFCS exists, moving objects
are expected to interfere as less as possible with
feature detection, therefore increasing the likeli-
hood of reliable feature association. Furthermore,
the resulting map should comprise a smaller num-
ber of features, thereby reducing both memory
requirements and the computational complexity
of localization algorithms. It could be argued that
a reduced number of features is a drawback, since
the presence of more features could help in dis-
ambiguating among different areas of the environ-
ment (i.e., for global and topological localization).
However, global localization is infeasible with ap-
proaches based on Kalman filtering, because the
latter assumes the pose error to be modelled as a
uni-modal Gaussian distribution.

Hypothesis 2 When range measurements con-
tribute to a smaller number of best fitting line
features, it is possible to consider straight infinite
lines as features to be extracted from range data
(instead of “corners”, “finite length segments”, or
“line intersections”). As a consequence, detected
features can be expressed as a linear function
of the robot state and the noise affecting obser-
vations can be reasonably modelled as Additive
White Gaussian (i.e., the system is very close to
meet the ideal requirements of the linear Kalman
filter).

Hypothesis 3 When range measurements con-
tribute to a smaller set of “longer” and “more
reliable” features, the a posteriori covariance is
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expected to converge faster (on average), there-
fore increasing localization accuracy.2

The article is organized as follows. Section 2
describes how approaches in the literature deal
with the problem of dynamic environments. Sec-
tion 3 validates our intuitions about the LFCS, and
introduces the “unevenness index” as a parameter
to quantitatively mark the world as perceived by
the laser range-finder. In Section 4 the system
architecture is described: in particular, the focus
is on the effects of the LFCS approach in terms of
robot design, linearity of the measurement model
and state observability. In Section 5, the effects on
the estimated a posteriori covariance are shown.
Section 6 discusses experimental results concern-
ing both unevenness measurements, with hun-
dreds of data sets collected in different human
populated areas, and the localization process, per-
formed both in simulation and with different ro-
bots (a TRC Labmate mobile platform, and our
self-designed robots Staffetta, ANSER and Merry
Porter). Conclusions follow.

2 Related Work

In localization approaches based on Kalman fil-
tering the robot state (i.e., the pose) is modelled as
a discrete-time process governed by the stochastic
difference equations:

χk = f (χk−1, uk, wk−1),

zk = h(χk, vk), (1)

where χ = (
x, y, θ)T is the robot state, u is the

driving function, w is the process noise, z is the
current observation, and v is the measurement
noise. Features extracted from sensory data (e.g.,
range measurements provided by a laser range-
finder) are compared with an a priori available

2Notice that, throughout the article, the term “longer”
(and its opposite “shorter”) is always hyphenated, when
referring to lines extracted by raw range data. Since lines
obviously have an infinite length, the term “longer” should
always be meant as “originated from a larger number of
collinear, consecutive range measurements”.

map of the environment to correct the prediction
of the robot pose at time step k.

Unfortunately, the ideal conditions for using
the Kalman filter are almost never met. It is
known that convergence and optimality character-
istics of Kalman filtering require the process f and
the measurement model h to be linear, and the
process and measurement noises w and v to be
zero-mean Additive White Gaussian (AWGN).
The following discussion focuses on the measure-
ment model and noise, since the process depends
on the electromechanical characteristics of the
mobile platform, thereby being independent on
the sensor and the approach adopted for self-
localization.

The observation vector z contains the parame-
ters characterizing each feature extracted from
raw range measurements. In the very common
case in which z describes the position—relative
to the robot reference frame—of features like
“corners”, “finite length segments”, or “line in-
tersections”, it is straightforward to verify that
the measurement model h involves trigonometric
functions and therefore it can not be expressed
as a linear function of the state. As a matter of
fact, even if it can be reasonably assumed that
the radial and angular noise on each range mea-
surement returned by the laser sensor are AWGN
[1, 34, 54, 55], the spectral shape of the noise
affecting z depends on how single range measure-
ments are combined together to extract features.
As a consequence, non-linearities can emerge.
The linearisation of the measurement model and
the presence of non-AWGN components in the
measurement noise are two factors deserving the
greatest attention for they are possible causes
of performance degradation. Their undesirable
effects on state estimation in general [44] and
map-based self-localization in particular [35], such
as the tendency of seriously underestimating the
a posteriori covariance, have been widely pointed
out. A method to avoid a non-linear measurement
model has been proposed in [35], where the map is
made up of features that are invariant with respect
to the robot pose.

Localization performance is also affected by
the presence in the map of dynamically chang-
ing and unmodelled features. Dynamically chang-
ing features are the obvious consequence of a
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crowded environment. They include people mov-
ing around the robot, objects moved from one
place to another or opened and closed doors.
Unmodelled features are the consequence of the
intrinsic difficulty of obtaining an accurate map,
which is related to the difficulty of selecting sta-
ble features: should chairs, tables, waste baskets
considered stable? What about computers and
displays? Both “noise sources” are particularly
critical since they are the major cause for unre-
liable feature association, a phase that logically
precedes pose estimation by providing the correct
association between each observed feature and
its correspondence in the map. When considering
real-world environments, it is then fundamental
to filter away the sensor readings that do not
have correspondences in the world model. It is
worth noting that filtering techniques play a pri-
mary role both for map-based localization and
SLAM: even if, in principle, SLAM deals with
dynamically changing and unmodelled features by
continuously updating the map, it still requires a
significant amount of features to be repeatedly
observed and correctly associated to preserve map
consistency [36, 37, 62, 64].

In [22–24] two different filtering techniques are
proposed. The former estimates the state entropy
value before and after updating the state itself
with a new observation. Only those observations
reducing this entropy indicator are used. The lat-
ter rejects observations mismatching a measure
related to the expected distance using a thresh-
old mechanism. In [13, 61] a sample-based joint
probabilistic data association approach (based on
Particle filters) is used to estimate the position of
people surrounding the robot and then to perform
map building. An algorithm capable of discrim-
inating between static and dynamic parts of the
environment is described in [70, 71]: two sepa-
rate maps are used and separately updated. In
[18] a framework is proposed based on the Rao-
Blackwellized genetic algorithmic filter, which
uses the negative readings returned by sensors
during the SLAM process to identify moving
objects in a static map. A similar approach is
also used in [39, 45] to address SLAM, which
is combined—respectively—with a Kalman filter
and a recursive conditional Particle filter to track

people close to the robot. In [17] a new SLAM
approach is proposed based on topological maps,
where the concept of variant and invariant nodes
is introduced to deal with a semi-permanent dy-
namics induced by door opening and closing. The
work discussed in [7] considers the specific prob-
lem of managing poor-reflecting surfaces iden-
tified by erroneous maximum-range readings. The
article presents a novel approach explicitly tak-
ing reflection properties of surfaces into account,
and considering the expectation of valid range
measurements to achieve significantly improved
localization results. A motion detector based on
statistical assumptions has been used in [72] to
manage the detection and representation of dy-
namic objects.

In a “smart environments” perspective, the
work discussed in [74] assumes that objects are
provided with RFID tags with unique ubiquitous
identification codes, which allows the system to
detect objects occasionally located in different
places, such as mobile file cabinets, chairs, and
doors. The work described in [28] proposes a
network of laser range-finders located in the en-
vironment to detect robots and dynamic objects
as well as to recognize people trajectories. A
slightly different approach is pursued by [12],
which adopts both on-board and distributed laser
range-finders. Similar problems have been con-
sidered in outdoor localization scenarios: a real-
time algorithm for SLAM is presented in [69],
which performs detection and tracking of moving
objects in dynamic outdoor environments from
a moving vehicle equipped with a laser scanner,
whereas the work in [57] focuses on data associ-
ation algorithms to perform outdoor loop closure
in presence of moving objects.

SLAM techniques need to deal with the addi-
tional problem of the huge amount of features typ-
ically present in real-world scenarios. As a matter
of fact, optimal solutions to the SLAM problem
usually exhibit a high computational complexity,
which is mostly due to the manipulation of ma-
trices quadratically scaling with the size of the
state vector and hence with the number of features
detected in the environment and stored into the
map. A lot of effort has been devoted to design
simplified, possibly sub-optimal algorithms able to
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cope with a wide, complex environment in real-
time [21, 32, 46, 50, 67].

In this perspective, Guivant and Nebot [29]
shows a real-time implementation of the SLAM
algorithm obtained using a modified version of the
extended Kalman filter. The key idea is to con-
sider mutually distant features as uncorrelated,
thereby updating only a subspace of the entire
state vector corresponding to a local map of the
environment. The work in [16] pushes this idea
further by providing a feature selection strategy
reducing the computational load of the full SLAM
update. To a similar aim, a 2-layer approach is
adopted in [30], where local maps are continu-
ously updated and the full SLAM update is per-
formed only in particular conditions. The resulting
algorithm is thus characterized by the computa-
tional complexity O(n × nl), where n is the total
number of landmarks and nl is the number of
landmarks locally perceived. The authors of [4]
present a set of robust and efficient algorithms
with O(n) cost for object detection with laser
ranger-finders, mobile robot pose estimation, and
SLAM improved implementation. Object detec-
tion is mainly based on a novel multiple line
fitting method, which relies on the evidence that
walls in structured environments usually consti-
tute regular constrained angles. To further im-
prove efficiency, the work in [10] presents an
algorithm for matching laser-built maps using his-
togram correlations, a representation summariz-
ing salient features in a map. Hierarchical ap-
proaches to SLAM have been proposed as well,
integrating topological and metric maps [3, 5,
8, 14, 20, 40, 42, 56], as well as improving the
efficiency in data association [47, 61, 67].

Currently, the literature contains many suc-
cessful examples of localization and SLAM tech-
niques used to maintain 2D and 3D models of
the Workspace in real-time: current state-of-the-
art algorithms allow for the consistent maintain-
ing of a high number of landmarks [31, 46, 67].
With the availability of efficient algorithms to
perform loop-closure in real-time [38], 2D laser-
based SLAM is considered a solved problem from
the theoretical standpoint. However, the compu-
tational efficiency of SLAM approaches is still an
important issue.

3 The Low Frequency Cross-section

The key insight related to the “Low Frequency
Cross-Section” is that the complex nature of struc-
tured human populated environments depends
on elevation from the floor: the environment is
more variable (both spatially and temporally) un-
der a given height (in easy reaching distance)
rather than above human heads. This is due to
the presence of people as well as of objects (i.e.,
computers books and chairs) and furniture that
are moved from one location to another, accord-
ing to contingent needs. This is not surprising:
since human beings tend to minimize physical
efforts when performing manual tasks, everyday
objects are usually at reaching distance, i.e., con-
veniently for arms and hands. In this perspec-
tive, it is easy to imagine that features for robot
localization are likely to be randomly occluded
depending on everyday human activity, with ob-
vious consequences for the “stability” of the map
representation over time, when the laser scan-
ning plane intersects the typical human personal
space. Furthermore, even if we assume no hu-
man activity (e.g., during night time operation),
experience suggests that the environment remains
“more regular” and “simpler” over a given height,
as the result of previous human activity. This fact
definitely impacts the feature extraction process,
for instance when computing the line segments
best fitting range data: if executed on range data
taken over a given height, feature extraction pro-
duces on average a smaller number of line seg-
ments, each one being—in a sense—“longer” and
more reliable (since it is originated from a larger
number of range points).

The term “Low Frequency Cross-Section” is
adopted to capture these concepts. Figure 1 shows
a lab environment with scan profiles taken at
different heights, namely bottom view (10 cm
from the floor), middle view (90 cm) and top
view (200 cm). Intuitively, by opportunely raising
the laser scanning plane up to the top view, the
effect of dynamically changing and not modelled
features is expected to become negligible, until
reaching the limit situation in which feature asso-
ciation is a trivial task even when the Workspace
is crowded with people. Furthermore, a reduced
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Fig. 1 Two examples of
low-frequency
cross-secton in a
office-like environment:
bottom, mid and top views

number of features is expected to substantially
reduce the complexity of maintaining a coherent
world model, which is especially significant when
performing SLAM-like tasks.

The idea of a “freely sensing area” is not new.
A well-known approach is described in [25, 65],
where the authors deal with the localization prob-
lem by pointing a TV camera upward, with the
purpose of observing ceiling lights. Another ap-
proach is presented in [73], where a 3D laser
range-finder is used to observe the ceiling, de-
tecting and matching such structures as beams,
columns, air conditioning and lightning installa-
tion against a world model containing line and
point features. The LFCS approach shares a num-
ber of similarities with these and other examples
of “opportunistic design” in the literature. How-
ever, its peculiarity is straightforward: LFCS is a
generic method for laser-based feature extraction,
which introduces a technique to select the most
promising scanning plane (i.e., the top view) in
virtually any indoor environment.

In order to provide a quantitative evidence of
these intuitive concepts, an indicator is introduced
to compare different range-finder poses and to
quantify the tendency of range data to be collinear
(i.e., their spatial frequency) and to be stationary
when the robot is not moving (i.e., their tempo-
ral frequency). In principle, different indicators
borrowed from the field of material roughness
and cartography, such as Average Roughness Ra,
Root-Mean-Square (RMS) Roughness Rq, Aver-
age Absolute Slope �a, or RMS Average Slope
�q, could be used. Experimental results show that
all the indicators, when used to determine the
“roughness” of a set of range data, provide similar

results in most cases. Among them, we select the
“unevenness index”: unevenness measures and
the fractal degree are commonly used to measure
the length and complexity of shore profiles, and
can be reasonably applied to quantify the regular-
ity of a given laser scan. The unevenness index U
is computed as:

U = P
C

. (2)

In Eq. 2, P is the length of the polyline connecting
all the raw scan points, whereas C—commonly
referred to as the “chord” of the polyline—is the
length of the segment located between the first
and the last considered scan points. Apparently,
the behaviour of U is adequate to capture the
concepts expressed so far.

U is lower bounded This comes from the fact
that the link between the start and the final points
of a polyline is always shorter than the polyline
itself, therefore U is always greater than 1.

U is a measure of the discontinuity between con-
tiguous scan points High U values correspond to
a high disparity between contiguous range mea-
surements, whereas low U values are detected if
scan points are almost collinear.

Unfortunately, the unevenness index U (as well
as all the other possible indicators) exhibits unde-
sired behaviours.

U increases with the depth of the environment
That is, long corridors are mainly characterized by
high values of U , while rooms yield lower values.
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U is not upper bounded When the length of the
chord tends to 0, then U tends to reach inf inite.
This case is realistic when full 360 deg scans are
considered, e.g., with two different range-finders
pointing in opposite directions.

These drawbacks can be mitigated by dividing
a full scan into disjoint subsets of range measure-
ments, and considering each polyline separately.
As a matter of fact, a similar approach is adopted
in cartography, where coastal profiles are divided
into “mostly convex” and “mostly concave” seg-
ments, which allows to compute the fractal de-
gree for each segment. Unfortunately—and in
contrast with the assumptions made for a “good”
indicator—the cartographic approach seems to ul-
timately depend on the algorithm adopted for ob-
taining disjoint subsets (i.e., scan segmentation),
thereby lacking generality.

The problem can be overcome by considering
the ratio between Us taken at different heights
from the floor, instead of absolute measurements.
Let us consider Fig. 2 on the left hand side,
which shows simulated range measurements taken
at different heights. The “shape” of the room
is roughly the same when considering different
scans, since it mainly depends on wall profiles.
However, local differences are present, due to the
presence of occluding objects. In particular, when
walls are occluded, the resulting polyline P2 is
usually longer than P1 (for elementary geometric

considerations), and U2 is consequently greater
than U1 if C1 � C2. This condition holds in most
cases, since the two chords C1 and C2 are expected
to depend on the “shape” of the whole environ-
ment, rather than on local differences. To stress
this property, it is arbitrarily assumed that C1 =
C2 even when they are different, which allows for
defining the “unevenness ratio” ϒi, j between Ui

and U j as:

ϒi, j = Ui

U j
= Pi/Ci

P j/C j
≈ Pi

P j
. (3)

The ratio ϒi, j in Eq. 3 depends only on local
differences between the two polylines Pi and P j,
and it is therefore independent from the “shape”
of the environment. ϒi, j can be efficiently used to
compare different laser scanning planes, thereby
allowing for confirming the intuitions related to
the LFCS. All the collected data (see Section 6.1)
confirm that, when scanning a plane close to the
floor level (e.g., for U = Ubottom), U is bigger,
whereas it significantly decreases as we move the
laser to a higher elevation (e.g., U = Umid or
U = Utop), where transitions between neighbour-
ing scan points are generally smoother (e.g., in
most environments ϒtop,bottom � 1 and ϒtop,mid �
1). Moreover, in a dynamic environment, exper-
iments validate the idea that the time variance
associated with U is higher when scans are taken
at a lower height.

Fig. 2 (a)
Superimposition of two
different polylines taken
at different heights from
the floor; (b) The Merry
Porter robot is provided
with two different
range-finders for
localization and obstacle
avoidance

(a) (b)
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4 System Architecture

The adoption of the LFCS approach can have sig-
nificant consequences on different robot HW/SW
architectural choices. This Section shows first how
both HW design and the robot SW architecture
are affected by the existence of a LFCS. After-
wards, the resulting map-based localization sub-
system is discussed in detail, with a specific em-
phasis on: (1) feature extraction and matching and
(2) state estimation through Kalman filtering.

4.1 Hardware Design and Software Architecture

When it is argued that the LFCS approach sug-
gests to mount the laser range-finder at a certain
height from the floor, both robot HW and SW
aspects are involved. Obviously enough, a laser
range-finder located “above the heads of people”
can not detect obstacles and people in the nearby.
However, best design practices suggest to decou-
ple localization from the obstacle detection and
avoidance, in order to minimize the chances of
wrong data association (see [11] and the refer-
ences therein).

With respect to HW issues, decoupling means
using two distinct range sensors, the first (for lo-
calization) in the LFCS, the second (for obstacle
avoidance) outside it. Figure 2 on the right hand
side shows the overall design of Merry Porter,
a robot used for waste transportation and drugs
delivery in hospitals. The laser range-finder used
for localization is located at the top of the front
pole, whereas a system made up of a security laser
scanner and a sonar ring is placed at the base level
to detect people and (moving) objects outside the
LFCS. It is worth noting that this decoupling is
enforced by regulations and security standards
for deployment of automated moving machines in
human populated environments. It can be argued
that the LFCS approach forces robots to be char-
acterized by a mechanical structure able to host a
sensor for localization “above human heads”. This
can not be guaranteed for any robot. However, a
number of already available design choices seem
to go towards this direction: as a matter of fact,
robots used in industrial settings (such as Auto-

mated Guided Vehicles and similar machines3)
or in hospital scenarios4 are often characterized
by analogous mechanical designs to exploit this
“freely sensing perspective”.

With respect to SW issues, the presence of
two different sensors implies the existence of two
distinct data sources: the former is used solely by
the localization subsystem, whereas the second is
exploited by the obstacle avoidance subsystem.
As a consequence, this has significant benefits
on the robot SW architecture. On the one hand,
laser data do not have to be considered a shared
resource any more. On the other hand, the men-
tioned decoupling has the effect of enforcing re-
dundancy as well as fault-tolerance.

4.2 Feature Extraction and Matching in the LFCS

Several steps are sequentially executed, imple-
menting a typical Split & Merge algorithm [58].
This family of line extraction methods exhibits a
number of advantages if compared with other ex-
isting techniques [6, 19, 34, 41, 48, 66]: by exploit-
ing local scan templates and acting upon smaller
chunks of data, they are computationally faster
and produce very accurate (although often sub-
optimal) results.5

The steps are: Preprocessing, Scan Segmenta-
tion, Line Extraction and Line Matching. Pre-
processing and Scan Segmentation do not deserve
further discussion. These steps include standard
techniques to filter out outliers and to segment
range data into “almost continuous”, non over-
lapping, sets of points to be fed to the next com-
putational steps. It is just worth pointing out that

3For instance, please check commercial solutions for the
delivery of supplies by JBT Corporation at www.jbtc-agv.
com.
4Although the robots commercialized by InTouch Health
and Swisslog do not exploit the LFCS for localization,
their mechanical structure appears compatible with such a
solution: see RP-7i at www.intouchhealth.com, and Robot-
Courier™ at www.swisslog.com). As a counter example,
consider the Swisslog’s TransCar and Aethon’s TUG® at
www.aethon.com.
5Please note that the LFCS approach does not necessarily
require a Split & Merge algorithm. Other choices are
equally legitimate and there are no evident reasons to think
that they would invalidate the following considerations.

file:www.jbtc-agv.com
file:www.jbtc-agv.com
file:www.intouchhealth.com
file:www.swisslog.com
file:www.aethon.com
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special care is devoted to reduce a distortion effect
on the raw range measurements originated by the
high robot speed. Since a complete laser scan
requires a non negligible time, when all range
data are finally available they do not coherently
represent the geometry of the environment. As a
consequence, a sort of “ego motion” compensa-
tion filter is used in the Preprocessing step.

Line Extraction produces a set λ of L line seg-
ments, where:

λ = {
l j
}
, j = 1, . . . , L. (4)

Each segment line l j ∈ λ is characterized by a 2-
element vector (ρ j, α j)

T . In particular, by defining
L j the (infinite) straight line on which l j lies, ρ j

is the distance between L j and the robot-centered
reference frame, whereas α j is the angle between
ρ j and the robot heading. By relying on geo-
metrical considerations, each line segment l j is
next interpreted as an oriented line segment. This
allows for the distinction between the opposite
external wall and object surfaces during the Fea-
ture Matching phase and the reduction of possible
wrong associations.

For each l j, an observation zk = l j = (
ρ j, α j

)T

is available in principle to correct the robot pose.
For this purpose, according to the EKF equations,
we need to compute the expected measurement
h(χ̂−) = mi = (

ρi, αi
)T given the current a priori

estimate χ̂− and the known map: the complete
expression is given in Eq. 7. Since the map μ is
a set of M oriented line segments

μ = {
mi

}
, i = 1, . . . , M, (5)

computing h(χ̂−) requires to find the line segment
mi ∈ μ best matching l j. Since both each l j ∈ λ and
each mi ∈ μ are characterized by an associated
covariance matrix (see Section 5), it is possible
to compute the Mahalanobis distance associated
with each couple (l j, mi): for each l j, the line
segment mi at minimum Mahalanobis distance is
selected and the resulting couple is then used by
the Kalman filter for the Measurement Update
step.

4.3 State Estimation in the LFCS

In the original formulation of the Kalman filter
the process f and the measurement model h are
required to be linear. If this is the case, Eq. 1 can
be rewritten as follows:

χk = Aχk−1 + Buk + wk−1,

zk = Hχk + vk. (6)

Since the process model reflects the robot kine-
matics, in most cases it can not be modelled as
linear. Furthermore, it often happens that the
measurement model itself does not meet the lin-
earity requirement. As a matter of fact, in map-
based localization non-linearity shows up when-
ever “corners” or “line intersections” are used as
features to correct the pose estimate. If either f or
h (or both) are not linear, it is necessary to derive
A, W, H and V, i.e., the Jacobian matrices of f
and h with respect to the state χ , the process noise
w and the measurement noise v. Unfortunately,
the resulting extended Kalman filter (EKF) is no
more optimal, and—in general—it suffers from
other well known problems as a consequence of
linearisation.

The EKF iterates between the Time Update
step, where the estimated state χ̂k−1 and state
covariance Pk−1 are projected to the next step
through the process model (thereby producing the
a priori estimates χ̂−

k and P−
k ), and the Measure-

ment Update step, where χ̂−
k and P−

k are updated
through the available observations zk (thereby
producing the a posteriori estimates χ̂k and Pk). In
the following discussion, the focus is mostly on the
second step, since the first one does not depend on
the adopted robot sensory system.

In order to obtain χ̂k, the expected measure-
ment h(χ̂−

k ) must be compared with the actual

measurement zk. If χ̂−
k = (

x̂−
k , ŷ−

k , θ̂−
k

)T is the a
priori state estimate and mi has been selected
as the line segment in the map corresponding to
the detected line segment l j, the expected mea-
surement h(χ̂−

k ) is given by the following linear
equation:

h(χ̂−
k ) =

(
ρi

αi

)
=

⎛

⎜
⎝

aix̂−
k + bi ŷ−

k + ci√
a2

i + b 2
i

arg (b − ia) − θ̂−
k

⎞

⎟
⎠ . (7)
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In Eq. 7, ρi represents the signed distance between
the robot position and the infinite straight line
Mi on which mi lies, whereas αi (expressed in
complex notation) represents the difference be-
tween the robot heading and the orientation of the
signed distance ρi. Coefficients ai, bi and ci char-
acterize the implicit equation6 of Mi expressed
as aix + bi y + ci = 0, and can be computed using
simple geometrical considerations. By subtracting
the constant term—which is independent from
the current estimate χ̂−

k —both from the actual
zk = (ρ j, α j)

T and the expected measure (ρi, αi)
T ,

the measurement model can be written as Hχ̂−
k ,

where:

H =
⎛

⎜
⎝

ai√
a2

i + b 2
i

b i√
a2

i + b 2
i

0

0 0 −1

⎞

⎟
⎠ . (8)

At this point, the EKF Measurement Update
step can be performed. A number of considera-
tions can be done.

First, the measurement model Hχ̂−
k is linear.

This is a consequence of the choice to characterize
each observation through the vector z = (

ρ, α
)T ,

which—in most cases—can be reasonably mod-
elled as corrupted by Additive White Gaussian
Noise v = N(0, R) [6, 34, 41, 54, 55, 58, 66]. If a
different characterization of z were chosen, this
could not be guaranteed. However, this choice
for z is effective because, in the LFCS, the num-
ber of detectable line segments is smaller than
elsewhere, each segment being “longer” and less
frequently occluded by moving objects. In other
words, line segments can be easily distinguished
from each other.

Second, an observability analysis must be car-
ried out. To this aim, it is required to make few
assumptions on the process, which—in general—is
not linear. However, it is straightforward to show
that, for every possible linearisation A of f , the
rank of the observability matrix

O = [
HT AT HT (AT)2 HT

]
(9)

6The use of the implicit line equation allows for neglecting
particular and degenerate cases, such as vertical infinite
straight lines x = k, with k an arbitrary constant, which
characterize other possible formulations.

is always guaranteed to be ≥ 2, since the observ-
ability space (which is a subset of R

3) always
includes the subspace defined by H rows. The
rank is minimum, for example, when A results
from the linearisation of a differentially driven
system (a very common solution in indoor mobile
robotics). When this happens, the system must
rely on subsequent observations to correct all
the three components of the robot state. Note in
fact that, for every observed line l j, a different
measurement model Hi is considered, whose first
row corresponds to the implicit equation of the
infinite straight line on which mi (at minimum
Mahalanobis distance with respect to l j) lies. If
two successive observations l j and lm correspond
to non parallel lines mi and mn, the first rows
of Hi and Hn are linearly independent: together
with the second row of either matrices they form
a basis for R

3, thus guaranteeing that all the state
components can be observed.

5 Effects on the a Posteriori Covariance

Since the benefits of the LFCS approach have
been discussed, possible concerns about its draw-
backs could be raised.

Question 1 In the LFCS, a smaller number of
features is available. Does the decreased number
of observations negatively affect the localization
process?

When features are extracted through an ap-
proach maximizing the a posteriori likelihood of ρ

and α (such as in [55]), line segments in the LFCS
are expected to be less in number but more reli-
able. As a matter of fact, a bigger number of range
measurements contributes to each line segment.
Since there is a trade off between the number of
available features and the likelihood of each fea-
ture, the question is whether it is better to have a
smaller set of “longer”, more reliable observations
(i.e., line segments detected in the LFCS), or a
bigger set of “shorter” ones (i.e., by taking range
measurements at a lower height). Notice that—up
to now—it has been assumed that a set λ of best
fitting lines is extracted from the available range
data. In principle, raw range data could be directly
used to optimally estimate χ̂ through an EKF or
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another optimal estimator: as a matter of fact,
adding intermediate filters for Feature Extraction
and Matching can not bring any improvement in
terms of accuracy. In practice, feature based meth-
ods are often preferred for different reasons, i.e.,
synthesis in the representation and computational
efficiency.

Question 1 must be more precisely defined. If
the number of features extracted from raw data is
bigger (i.e., scans taken outside the LFCS), each
laser scan is likely to contain more information to
disambiguate between possible robot poses. This
property is fundamental when performing global
localization. However, global localization can not
be solved through Kalman filtering, since a uni-
modal estimate of the robot pose is available and
updated each time step.7 Therefore, the claim
that a bigger number of features helps the robot
to disambiguate between different areas of the
environment just makes no sense, when using an
EKF. On the contrary, when dealing with position
tracking, Question 1 can be rigorously answered
only in terms of state observability and accuracy of
the state estimate.

The observability analysis shows that two non
parallel detected lines l j and lm are necessary and
sufficient to correct all the components of the
robot state χ = (x, y, θ)T . One could argue that
outside the LFCS a larger number of features is
available, thus statistically increasing the likeli-
hood of finding at least two non parallel (hope-
fully perpendicular) lines. However, this probabil-
ity can hardly be quantified. Furthermore, when
relying on features that are not permanent, it is
very difficult to predict whether a given area could
meet the observability requirements or not. On
the contrary, features in the LFCS mostly corre-
spond to walls and furniture that are depicted on
the interior plants of buildings, thereby allowing
an a priori analysis of the system behaviour on the
basis of pure geometric considerations.

The accuracy of the estimate is measured by
the covariance of the position error. Therefore,
when focusing on accuracy, Question 1 must be
re-stated as follows.

7EKF owes its success to the fact that self-localization and
SLAM can be often treated as position tracking problems.

Fig. 3 A typical situation: given a scanning interval
(φ1, . . . , φn), outside the LFCS range data contribute to
two line segments l j1 and l j2, whereas in the LFCS only one
line segment l j is obtained

Question 2 A full scan is composed of a given
number of range points. Let us assume that n
range points contribute to a single line segment
l j. Would the a posteriori error covariance (com-
puted using the EKF) be lower, if the n range
measurements produced two line segments l j1, l j2

parallel to l j, instead of one single line segment?
When considering localization accuracy, prob-

lems related to observability can be ignored by
comparing parallel line features (Fig. 3). In this
situation, line segments can be “scored” on the
basis of their “correcting power”. Since, according
to the EKF equations, the Kalman gain K in the
Measurement Update step inversely depends on
the covariance R of the updating observation z =
(ρ, α)T , the effect of one single observation with
smaller covariance R j (corresponding to l j) can
be compared with the joint effect of a couple of
observations with higher covariances R j1 and R j2

(corresponding, respectively, to l j1 and l j2).8 The
procedure can be iterated to consider an arbitrary
number of observations.

In principle, when using two observations in
cascade to update the filter (l j1 and l j2 extracted
from the same scan), one should consider the
evolution of the state during the acquisition, ex-
traction and matching phase for each feature. As
a matter of fact, this is not negligible especially
when the robot moves at high speed. In prac-
tice, after opportunely processing range measure-

8When R is smaller, then K is bigger and the decrement of
the a posteriori covariance P of x̂ is higher.
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ments, it is common to consider the robot as if it
were still while line segments extracted from the
same scan are fed to the filter:

1. Between subsequent scans, the estimated
state χ̂ and the covariance P are updated in
just one step through the process model A
that reflects the (possibly linearised) robot
kinematics;

2. When a new scan is available, χ̂ and P are
updated by considering all the available ob-
servations and assuming no robot motion (i.e.,
χ̂−

k = χ̂k−1 and P−
k = Pk−1).

To allow for a comparison between the “cor-
recting power” of l j and the couple of observations
l j1 and l j2, the following Theorem is introduced.

Theorem 1 Given that P−
k is the estimated state

covariance immediately after the Time Update step
of the EKF at the kth iteration. Given that P−

k+1 =
Pk, i.e., the estimated covariance does not change
during the Time Update step at the k + 1th iter-
ation. Given two subsequent observations zk and
zk+1 with covariances R and Q, used to update
the estimate at the kth and k + 1th iterations. Then
the two observations produce the same a posteriori
estimated state covariance Pk+1 than a single obser-
vation with covariance Z such that

Z = R
(
R + Q

)−1
Q. (10)

Proof See Appendix. ��

When covariances R j, R j1, and R j2 are known
(e.g., we are dealing with three specific features
l j, l j1 and l j2), Theorem 1 can be used to com-
pare their effect on the state covariance P, e.g.,
by computing the eigenvalues of R j and R j1, j2 =
R j1

(
R j1 + R j2

)−1
R j2, and by comparing the corre-

sponding ellipsoids. However, if one wants a gen-
eral rule to decide whether it is better to aggregate
range points into “longer” or “shorter” features,
this is not sufficient. To this aim, it is necessary to
investigate in depth how the covariance of each
feature depends on the covariances of the con-
tributing range measurements. Therefore, Ques-
tion 2 requires to answer the following question.

Question 3 Given a set of n range measurements
expressed in polar coordinates (d, φ)T , where d
and φ are the current range and scan angle, and σd

and σφ are the corresponding variances, would the
“correcting power” be higher if the set of range
measurements were split into two subsets con-
tributing respectively to two parallel line segments
l j1 and l j2 subtending the same scanning interval
(φ1, . . . , φn) as l j?

In order to answer Question 3, it is necessary to
accurately model the observation covariance R j

as a function of the covariances of all the range
points contributing to l j. To this aim, we refer to
[55], where a maximum likelihood approach that
provides formulas for computing the line segment
covariance starting from individual weightings of
range points is introduced. Each scan point ql is
first defined with respect to the robot-centered
reference frame, thereby taking the form:

ql = dl

(
cos φl

sin φl

)
, (11)

whereas the corresponding covariance Ql is ap-
proximated as follows:

Ql = d2
l σ

2
φ

2

(
2 sin2 φl − sin 2φl

− sin 2φl 2 cos2 φl

)

+ σ 2
d

2

(
2 cos2 φl sin 2φl

sin 2φl 2 sin2 φl

)
. (12)

Afterwards, a coordinate frame RS j (Fig. 4) as-
sociated with each observation z j = (

ρ j, α j
)T is in-

troduced. RS j corresponds to the robot-centered
reference frame rotated by α j (i.e., with R per-
pendicular and S parallel to l j). The covariance

Fig. 4 The covariance R j of a line feature l j depends on
the covariances Ql of all contributing scan points ql
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Q
RS j

l associated with the lth range point in the new
frame RS j is defined as:

Q
RS j

l =
(

QR
l 0

0 QS
l

)
, (13)

where Q
RS j

l can be expressed as a function of Ql

as follows:

QR
l = Ql,11 cos2 α j + 2Ql,12 sin α j cos α j

+ Ql,22 sin2 α j,

QS
l = Ql,11 sin2 α j − 2Ql,12 sin α j cos α j

+ Ql,22 cos2 α j. (14)

When computing ρ j and α j, the observation
covariance R j finally results as follows:

R j =
(

Rρρ Rρα

Rαρ Rαα

)
, (15)

where:

Rρρ =
(

n∑

l=1

1
QR

l

)−1

,

Rαα =
(

n∑

l=1

δS
l

2

QR
l

)−1

,

Rρα, Rαρ = −Rρρ Rαα

n∑

l=1

δS
l

QR
l

, (16)

and

δS
l = qS

l − σ. (17)

In Eq. 17, δS
l measures the distance (computed

along S) of the lth range point from the weighted
mean σ of all the points contributing to l j:

σ =
(

n∑

l=1

1
QS

l

)−1 n∑

l=1

qS
l

QS
l

. (18)

Let us temporarily assume that the observation
vector z contains only the observed distance ρ of
each line segment, and consequently let us ignore
the line segment orientation α. In this case, the
covariance matrix R j in Eq. 15 coincides with
element Rρρ . As discussed, R j comes from n con-
tributing range points ql, each one with covariance
Q

RS j

l : if the set of n range points is split into
two subsets, containing respectively n1 and n − n1

range points,9 the two subsets can be used to
extract two lines segments l j1 and l j2 with covari-
ances R j1 and R j2, respectively. From Eq. 16:

Rρρ1 =
(

n1∑

l=1

1
QR

l

)−1

,

Rρρ2 =
⎛

⎝
n∑

l=n1+1

1
QR

l

⎞

⎠

−1

, (19)

and from Eq. 10:

Rρρ1,2 = 1
n1∑

l=1

1
QR

l

n1∑

l=1

1
QR

l

n∑

l=n1+1

1
QR

l

n∑

l=n1+1

1
QR

l
+

n1∑

l=1

1
QR

l

1
n∑

l=n1+1

1
QR

l

=
⎛

⎝
n1∑

l=1

1
QR

l

+
n∑

l=n1+1

1
QR

l

⎞

⎠

−1

= Rρρ. (20)

As expected, if each range point contributing to
l j had the same covariance Ql of a corresponding
point in l j1 or l j2, the a posteriori estimated state
covariance would result identical after observing
l j or the couple l j1 and l j2 (remember that QR

l in
Eq. 20 is a function of solely Ql and α j). Accord-
ing to Eq. 12, the covariance Ql varies with the
range dl associated with each scan angle φl. As
a consequence, Eq. 20 does not help to compare
situations like Fig. 3. This problem will be soon
considered. For the moment, note that the result
is applicable to situations like in Fig. 5: the co-
variance of the x− and y− components of χ̂ (the
ones observed through ρ) does not increase or de-
crease when an occluding object (i.e., outside the
LFCS) interrupts the sequence of collinear range
points (by ignoring the contribution of the range
measurements that return the distance to the oc-
cluding object itself). By reconsidering the more
general case of Fig. 3, it is possible to note that,
if the angular error σφ on range measurements
is small enough to be ignored, the covariance Ql

does not depend on dl for Eq. 12 and Q′
l ≈ Ql

holds. Under these conditions, which are often

9n1 is a generic number between 1 and n. The proper-
ties discussed in the following paragraphs are independent
from the actual value of n1.
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Fig. 5 Another typical situation: a small occluding object
causes two line segments l j1 and l j2 to be observed outside
the LFCS, whereas only one line segment l j is detected in
the LFCS

verified, Eq. 20 holds for any triplet of parallel
line segments l j, l j1, l j2 which subtend the same
scanning interval

(
φ1, . . . , φn

)
.

If the observation vector z contains also the line
orientation α, but errors on ρ and α are assumed
to be uncorrelated (which, in general, is not true),
then Rρα = Rρα1 = Rρα2 = Rρα1,2 = 0 and Eq. 10
can be applied to Rρρ and Rαα independently. For
Rαα1,2 a result similar to Eq. 20 is obtained:

Rαα1,2 =
⎛

⎝
n1∑

l=1

δS
l

2

QR
l

+
n∑

l=n1+1

δS
l

2

QR
l

⎞

⎠

−1

. (21)

In general, Rαα 
= Rαα1,2, since the values of δS
l

in Eq. 21 are different from the corresponding
values in Eq. 16. This is a direct consequence
of Eq. 17: the weighted mean σ must now be
computed separately for scan points in l j1 and l j2,
thus yielding σ j1 
= σ j2. If, once again, one con-
siders parallel line segments subtending the same
scanning interval

(
φ1, . . . , φn

)
, Rαα1,2 is necessar-

ily bigger than Rαα (and hence the “correcting
power” is lower), since the distance δS

l of each
range point in l j1 and l j2 from the corresponding
σ is smaller. This is true both for the situation in
Fig. 3 and, if the angular error σφ on each range
measurement can be ignored, for the situation in
Fig. 5.

From these considerations, one could be
tempted to conclude that the a posteriori state
covariance of the θ component of χ̂ is expected to
be lower, when range measurements are such that
longer and farther line segments can be extracted.

Unfortunately, these conclusions are not valid
whenever ρ and α are correlated. In order to pro-
vide a more general answer taking the effects of
correlation into account, a statistical analysis has
been performed in simulation, which is presented
in Section 6.2. However, it is possible already to
provide an answer to Question 3, and to back-
propagate such answer to Questions 2 and 1.

Answer to Question 3 In general, a single line
segment in the LFCS has a “correcting power”
that is not lower than two lines outside the LFCS
(actually, when ρ and α are “almost uncorre-
lated”, its “correcting power” is higher).

Answer to Question 2 In general, a single obser-
vation in the LFCS does not produce an error
covariance that is higher than two observations
outside the LFCS.

Answer to Question 1 In general, considering
also the observability analysis, the reduced num-
ber of localization features in the LFCS do not
affect negatively the localization process.

Finally note that, since all the involved quan-
tities are computed according to the maximum
likelihood approach described in [55], these con-
clusions are obviously valid for every line fitting
algorithm estimating z = (

ρ, α
)T optimally.

6 Experimental Results

6.1 Minimization of the Unevenness Index

Experiments have been performed to search for a
Low Frequency Cross-Section of the environment
where laser scans are more “regular” and “static”.
In particular, even though minimization of U has
been performed by considering all the possible
configurations in the height range 0 ÷ 220 cm with
a 10 cm resolution, pictures show results only for
three different representative height values (see
Fig. 1): 10 cm, 90 cm, and roughly 2 m. We decided
to synthesize—for ease of representation—the
whole range of possible heights into three classes
or views: bottom view, mid view, and top view.
About one thousand scans have been collected
in different places of a typical office-like envi-
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ronment (our department), a house and a garage.
Each scan lasts about five minutes, thereby requir-
ing to average results over time. Results do not
significantly vary when the laser sensor is moved
up or down 20 or 30 cm, thereby allowing us to
consider only three views.

In all the room-like environments (Fig. 6 on the
top), the unevenness index U , averaged over five
minutes, exhibits a similar behaviour in bottom
and mid views (first and second column), whereas
in the top view (third column) it is significantly
smaller. Moreover, the variance over time is sig-
nificant in the bottom and mid views (fourth and
fifth columns), whereas it is almost zero in the
top view (sixth column; variance is not null be-

cause of sensor noise). The pictures on the right
column of the Figure depict the profile of U over
time. In corridor-like environments (Fig. 6 in the
middle), experiments show that the three views
are comparable, due to the fact that corridors are
transition places where objects do not “tend to
accumulate”. Nonetheless, the variance over time
of U is significant only in the bottom and mid
views, since scans are affected by the presence
of people. Another class of experiments with a
longer duration (about three hours, see Fig. 6 in
the bottom) has been performed. However, even
when U is higher when computed in the top view,
it is nevertheless more robust with respect to en-
vironmental changes.

Fig. 6 Left column: three
examples of U values
(both mean values and
variances of top, mid and
bottom views are
reported). Right column:
the corresponding
temporal evolutions of U
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Table 1 Mean values and standard deviations computed
for ϒ

Rooms Corridors

Mean Std Mean Std

ϒtop,bottom 0.31 0.17 1.03 0.3
ϒtop,mid 0.65 0.2 1.05 0.24
ϒmid,bottom 0.50 0.22 0.99 0.22

Table 1 shows the mean value and the stan-
dard deviation of the unevenness ratio ϒ intro-
duced in Eq. 3, averaged over about one thou-
sand laser scans in different environments. The
results confirm what was already evident in Fig. 6:
in rooms always happens that ϒtop,bottom < 1 and
ϒtop,mid < 1, whereas in corridors ϒtop,bottom �
ϒtop,mid � 1. It is worth noting that even if in
corridor-like environments the position of the
laser range-finder is almost indifferent, in most sit-
uations it is not: the existence of a Low Frequency
Cross-Section is evident, thus validating the whole
approach.

The unevenness index U is compared with
other indicators: Average Roughness Ra, Root-
Mean-Square Roughness Rq, Total Roughness Rt,
Maximum Roughness Height Ry and High Spot
Count HSC. Tests performed show that all indica-
tors are very often in agreement, i.e., they capture
the same qualitative idea of “regularity of a scan
profile”.

6.2 Correcting Power of Line Features

Experiments in simulation using MATLAB have
been performed: in each experiment, a line l j

taken in the LFCS is compared with a couple of
lines l j1, l j2 parallel to l j subtending the same scan-
ning interval

(
φ1, . . . , φn

)
. Specifically, given the

covariance matrices R j1 and R j2, the covariance
R j1, j2 corresponding to applying two corrections
in cascade is computed according to Eq. 10. Next,

the eigenvalues of R j and R j1, j2 are considered,
and used to compute the ratio R j/j1, j2 between
the areas of the two corresponding ellipsoids. The
results are interpreted as follows: when R j/j1, j2 <

1, the “correcting power” of l j is higher, otherwise
it would have been better to observe l j1 and l j2 in
cascade.

In these simulations, a laser range finder scan-
ing 180 deg with a resolution of 0.5 deg is con-
sidered. According to [34], errors in each sim-
ulated range-finder measurement are modelled
with standard deviations σd = 26 mm and σφ =
0.125 deg. Moreover, R j/j1, j2 is computed for many
different triplets l j, l j1, l j2, by varying most para-
meters involved: (1) the distance ρ j between l j

and the robot; (2) the lateral displacement σ j of
l j according to Eq. 18; (3) the length ε j of l j; (4)
the distance ρ j1 between l j1 and the robot, with the
constraint ρ j1 < ρ j; (5) the ratios n1/n and n2/n,
i.e., the subset of measurements contributing—
respectively—to l j1 and l j2. In all the experiments,
ρ j2 = ρ j: that is, it is assumed that l j1 corresponds
to an occluding object (thus being closer to the
robot, as in Fig. 3), whereas l j2 corresponds to
a portion of wall or furniture that is visible at
whatsoever height from the floor. Finally, all sim-
ulations assume α j = 0, since the covariance of ob-
served features is invariant with respect to robot
rotations, and therefore the robot orientation can
be ignored.

The analysis in simulation confirms theoretic
results. Whether it is preferable a smaller set of
“longer” line segments or a bigger set of “shorter”
ones, depends on different factors, involving both
the geometric characteristics of the environment
and the robot pose. However, summarized results
for R j/j1, j2 shown in Tables 2 and 3 allow to
claim that, on average, the LFCS is expected to
improve localization accuracy in a standard indoor
environment with 1 m < ρ j, ρ j1, ρ j2 < 10 m and 2
m < ε j < 10 m. Tables 2 and 3 must be read as

Table 2 Summarized
results for R j/j1, j2 (I)

2–1 4–1 6–1 8–1 10–1 12–1 4–2 6–2 8–2 10–2 12–2

2 m 0.31 0.24 0.24 0.25 0.25 0.25 0.26 0.25 0.25 0.25 0.25
4 m 0.43 0.26 0.23 0.24 0.25 0.25 0.28 0.24 0.25 0.25 0.25
6 m 0.64 0.33 0.25 0.24 0.25 0.25 0.35 0.26 0.25 0.25 0.26
8 m 0.91 0.44 0.30 0.26 0.25 0.25 0.48 0.32 0.27 0.26 0.26
10 m 1.25 0.60 0.38 0.3 0.27 0.26 0.65 0.40 0.31 0.28 0.27
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Table 3 Summarized
results for R j/j1, j2 (II)

6–4 8–4 10–4 12–4 8–6 10–6 12–6 10–8 12–8 12–10

2 m 0.29 0.28 0.27 0.26 0.31 0.29 0.28 0.32 0.30 0.32
4 m 0.27 0.27 0.27 0.27 0.29 0.29 0.28 0.31 0.30 0.33
6 m 0.29 0.27 0.27 0.27 0.29 0.29 0.28 0.31 0.30 0.32
8 m 0.35 0.29 0.27 0.27 0.31 0.29 0.29 0.31 0.30 0.32
10 m 0.44 0.33 0.29 0.28 0.35 0.31 0.29 0.33 0.31 0.33

follows: each row corresponds to a different value
for ε j ranging from 2 m to 10 m; each column
corresponds to a different distance range ρmax −
ρmin, with ρ j1 ≤ ρ j2 = ρ j = ρmax; cells contain the
mean value of R j/j1, j2 mediated over ρ j1 varying
between ρmin and ρmax, σ j varying between −5 and
5 m, n1/n varying between 0.2 and 0.8.

6.3 Experiments with Simulated and Real Robots

To validate the LFCS approach, experiments have
been performed both in simulation and with real
robots. In particular, each experiment is repeated
twice, by providing the robot with two different
maps, one representing the world as seen in the
LFCS, and the other corresponding to a lower
height (“not LFCS” in the following paragraphs).

Experiments in simulation are performed in a
room such as the one in Fig. 7. Different sizes
are considered, ranging from 10 × 10 m2 to 80 ×
80 m2. The external, light-gray perimeter of the

Fig. 7 A 40 × 40 m room used in experiments in simula-
tion: the LFCS map corresponds to the external perimeter,
whereas the map outside the LFCS comprises also small
objects close to the walls

room corresponds to walls detected in the LFCS,
whereas the inner contour corresponds to occlud-
ing objects detected when the laser is set at a lower
height. Experiments in simulation are particularly
significant since the very same world model given
to the robot is used to simulate laser range mea-
surements (sensor noise is added). On the con-
trary, with real robots, the map is built by hand,
and therefore its accuracy depends also on one
ability to create a consistent map. In addition, in
a very messy and cluttered environment (such as
the lab environment in Fig. 1), it is very difficult to
find straight line segments at all, thereby making
localization even harder. Both in simulation ex-
periments and with real robots, the LFCS world
model is obviously simpler, with a smaller number
of “longer” features. In simulation, on average,
two or three features per scan are usually ex-
tracted and matched in the LFCS, whereas 18 or
19 features are observed outside the LFCS. With
real robots, 5 or 6 features per scan are observed
in the LFCS, 14 or 15 elsewhere.

Figure 8 shows the error convergence (x, y and
θ components) in simulation with a still robot
located in a 40 × 40 m2 room (scans are taken
and processed at a 4 Hz frequency). In all the
experiments with a still robot, convergence in the
LFCS is significantly faster. Moreover, the effects
of wrong feature association, i.e., an increment
in positioning errors, can be sometimes observed
in the “not LFCS” plots (e.g., θ component in
the second column). Incorrect matching, when
iterated, can lead to dramatic localization failures,
from which it is hard to recover. Within the LFCS,
wrong associations have not been reported, due
to the intrinsically simple structure of the environ-
ment.

Simulated experiments with a moving robot
have been performed as well, by purposely in-
troducing errors in the odometric reconstruction.
The simulated robot moves in the same set of
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Fig. 8 Examples of
positioning error in
meters (i.e., distance
between real and
estimated position) over
time with a still robot in
simulation: the error is
always lower when
localization is performed
in the LFCS

rooms already considered in the previous exper-
iments, and the positioning error during motion is
recorded and averaged for the two cases “LFCS”
and “not LFCS”. Table 4 summarizes results for x,

Table 4 Positioning error during motion [m]

10 × 10 20 × 20 40 × 40 80 × 80

x Not LFCS 0.070 0.115 0.164 0.094
LFCS 0.060 0.052 0.061 0.078

y Not LFCS 0.074 0.117 0.067 0.080
LFCS 0.062 0.058 0.080 0.056

θ Not LFCS 0.036 0.047 0.036 0.090
LFCS 0.015 0.012 0.009 0.080

y, and θ components of the error, showing that—
on average—a bigger accuracy is obtained in the
LFCS.

Experiments with real robots have been per-
formed as well. The experiment shown in Fig. 9
replicates the experiment in Fig. 8 by showing
the positioning error within an office-like envi-
ronment at our department. Note that, in this
case, convergence in the LFCS is extremely faster
also for the difficulty—at a lower height—to find
features stable enough and easily identifiable to
be mapped.

Other experiments have been performed to
validate the performance of the LFCS approach.
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Fig. 9 Examples of
positioning error in
meters (i.e., distance
between real and
estimated position) over
time with a real still
robot: the error is always
lower when localization is
performed in the LFCS

During the last years, LFCS localization has been
applied to four different real robots (Fig. 10): a
modified TRC Labmate platform and the three

robots Staffetta, ANSER and MerryPorter (de-
signed respectively for indoor service applications,
outdoor surveillance, and indoor/outdoor trans-

Fig. 10 Top: TRC
Labmate, Staffetta and
ANSER. Bottom: Merry
Porter
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portation) [59]. All the robots are equipped with
a SICK LMS200 placed on top of a pole about
2 m high and operate in two different areas: TRC
Labmate and Staffetta navigate within the ground
and second floor of our department, ANSER op-
erates at Villanova d’Albenga Airport, whereas
MerryPorter operates at the Hospital Policlinico
of Modena.

Results in indoor have been collected in tens of
experiments. The robots are requested to navigate
autonomously at a constant speed of 0.6 m/sec. In
all the experiments, robots are able to localize for
almost 2 h (currently, the maximum time allowed
by batteries), even if they are almost continuously
surrounded by students (the entrance hall of the
department building, Fig. 10 on the left) or if they
operate in an extremely messy area (such as the
Robotics Lab, Fig. 10 in the middle). Specifically,
during all the real world experiments, an average
positioning error of less than 2.5 cm is recorded.
Notice that, in this case, repeatability in reaching
targets is measured instead of the absolute po-
sitioning error, which explains the fact that the
mean value is lower than in simulation, where the
error is computed along the whole robot trajec-
tory. An indirect indicator of the maximum error
during navigation is provided also by the ability
to traverse narrow doorways even in absence of
obstacle avoidance algorithms: errors higher than
5 cm would cause robots to collide, which never
happens even when they are moving at 0.6 m/sec.
To compare performance, experiments with the
laser at a lower height have been performed as
well. In this case, when the environment sig-
nificantly changes during motion, the localization
system—as expected—is no more reliable, and
it soon leads the vehicle to a dangerous, often
unrecoverable configuration.

7 Conclusions

The article shows that map-based localization
through a laser range-finder in cluttered and
crowded environments can be improved by ex-

ploiting the existence of a Low Frequency Cross-
Section, i.e., a 2D plane parallel to the f loor where
the environment slowly changes, both temporally
and spatially. To quantify these concepts, an un-
evenness index U is introduced, which is able
to attribute a score to the “roughness” and the
“variability” of laser scans: low U values indicate
regular and static scan profiles, which is a very
desirable property for Feature Extraction and
Matching (either if the map is given a priori or
continuously updated through observations as in
SLAM).

Specifically, it has been shown that interesting
properties hold when correcting the robot pose
with observations made in the LFCS. Moving ob-
jects do not to interfere with sensor data acquisi-
tion, therefore limiting occlusions and increasing
the probability of reliable Feature Association in
the localization process. Furthermore, the result-
ing map comprises a smaller number of features,
therefore reducing both memory requirements
and the computational complexity of localization
algorithms. One is encouraged to choose straight
infinite lines as features to be extracted from raw
data, thereby allowing to model observations as a
linear function of the state affected by Additive
White Gaussian Noise (i.e., the system is very
close to meeting the ideal requirements of the
linear KF). The a posteriori covariance of the
estimate converges faster (on average), as a con-
sequence of the fact that range measurements can
be aggregated to produce a small number of very
reliable features.

Long duration localization experiments, per-
formed both in simulation and with robots in
different areas, demonstrate that the approach is
very robust and precise, even when moving at
high speed (0.6 m/sec) in highly crowded environ-
ments.

Appendix

In the following paragraphs Eq. 10 is formally
derived. It is shown that, with respect to an EKF
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based localization framework, when P−
k+1 = Pk

(referred to as Pk+1 and Pk afterwards), two ob-
servations with covariances R and Q produce the
same a posteriori state covariance than a single
observation with covariance R

(
R + Q

)−1
Q.

If H is the linearised measurement model (the
dependency upon the discrete time instant k is
omitted), we can introduce M for ease of repre-
sentation as follows:

M = (
H Pk HT + R

)
. (22)

Therefore, the expression of the Kalman gain
Kk+1 can be written as:

Kk+1 = Pk HT (
H Pk HT + R

)−1 = Pk HT M−1.

(23)

The a posteriori state covariance Pk+1 can be
written as:

Pk+1 = (I − Kk+1 H) Pk

=
(

I − Pk HT (
H Pk HT + R

)−1
H

)
Pk

= (
I − Pk HT M−1 H

)
Pk. (24)

The Kalman gain Kk+2 at the second step is:

Kk+2 = Pk+1 HT

︸ ︷︷ ︸
Kk+2,1

(
H Pk+1 HT + Q

)−1

︸ ︷︷ ︸
Kk+2,2

, (25)

where

Kk+2,1 = (
I − Pk HT M−1 H

)
Pk HT

= Pk HT − Pk HT M−1 H Pk HT

= Pk HT (
I − M−1 H Pk HT)

= Pk HT (
I − M−1 H Pk HT

−M−1 R + M−1 R
)

= Pk HT (
I − M−1 M + M−1 R

)

= Pk HT M−1 R, (26)

and

Kk+2,2 = (
H(I − Pk HT M−1 H)Pk HT + Q

)−1

= (H Pk HT −H Pk HT M−1 H Pk HT +Q)−1

= (
H Pk HT − H Pk HT M−1 H Pk HT

+ H Pk HT M−1 R

+ H Pk HT M−1 R + Q
)−1

. (27)

By collecting H Pk HT M−1 we obtain from
Eq. 27:

Kk+2,2 = (
H Pk HT − H Pk HT M−1 M

+H Pk HT M−1 R + Q
)−1

= (
H Pk HT M−1 R + Q

)−1

= ((
H Pk HT M−1 + QR−1) R

)−1

= R−1 (
H Pk HT M−1 + QR−1)−1

= R−1 (
H Pk HT M−1 + QR−1 MM−1)−1

= R−1 ((
H Pk HT + QR−1 H Pk HT

+ QR−1 R
)

M−1)−1

= R−1 M
((

I + QR−1) H Pk HT + Q
)−1

.

(28)

If we apply Eqs. 26 and 27 to Eq. 25 we obtain:

Kk+2 = Pk HT M−1 RR−1 M

× (
(I+QR−1)H Pk HT + Q

)−1

= Pk HT (
(I + QR−1)H Pk HT + Q

)−1
.

(29)

For ease of representation, N is introduced as
follows:

N = (I + QR−1). (30)
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Then, the a posteriori state covariance Pk+2 can
be computed from Eqs. 24 and 29 as:

Pk+2 = (I − Kk+2 H)Pk+1

= (
I − Pk HT(NH Pk HT + Q)−1 H

)

×(I − Pk HT M−1 H)Pk

= (
I − Pk HT(NH Pk HT + Q)−1 H

−Pk HT M−1 H + Pk HT

× (
NH Pk HT + Q

)−1
H Pk HT M−1 H

)
Pk

= (
I − Pk HT(NH Pk HT + Q)−1

× (
I + (NH Pk HT + Q)M−1

−H Pk HT M−1) H
)

Pk

= (
I − Pk HT(NH Pk HT + Q)−1

× (
I + NH Pk HT M−1

+QM−1 − H Pk HT M−1) H
)

Pk

= (
I − Pk HT(NH Pk HT + Q)−1

× (
I + QR−1 H Pk HT M−1

+QR−1 RM−1) H
)

Pk

= (
I − Pk HT(NH Pk HT + Q)−1×

×(I + QR−1 MM−1)H
)
Pk

= (
I − Pk HT(NH Pk HT + Q)−1

︸ ︷︷ ︸
Pk+2,1

NH
)
Pk,

(31)

where

Pk+2,1 = Pk HT (
NN−1 NH Pk HT + NN−1 Q

)−1

= Pk HT (
N

(
H Pk HT + N−1 Q

))−1

= Pk HT (
H Pk HT + N−1 Q

)−1
N−1. (32)

Since, from Eq. 30:

N−1 = (RR−1 + QR−1)−1 = R(R + Q)−1, (33)

we obtain:

Pk+2 = (
I − Pk HT(H Pk HT + N−1 Q)−1 H

)
Pk

= (I − Pk HT(
H Pk HT+R(R+ Q)−1Q

)−1
H)

×Pk. (34)

Notice that the expression of Pk+2 in Eq. 34 cor-
responds to the state covariance computed after
one single step in Eq. 24, by opportunely substi-
tuting the covariance R with R(R + Q)−1 Q.
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