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Abstract A comprehensive design of a Gun
Launched Micro Air Vehicle (GLMAV) is pre-
sented. The GLMAV rotorcraft is a new Micro
Air Vehicle (MAV) concept using two-bladed
coaxial contra-rotating rotors and a cyclic swash-
plate. The MAV packaged in a projectile is
launched using the energy delivered by a portable
weapon. When it reaches the apogee, the pro-
jectile is transformed in such a way that the
MAV becomes operational over the zone to be
observed. A detailed GLMAV nonlinear mathe-
matical model is presented for hover and near-
hover flight conditions and identified from exper-
imental load data using a strain-gage aerodynamic
balance. Simplifications brought to the aerody-
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namic submodel have permitted its linearization
in the parameter space. The parameter estima-
tion was based on the Kalman filter estimation
method applied to the simplified aerodynamic
model and using the input-output data from the
experiment. The persistently exciting condition
is given in terms of physical variables of the
GLMAV through two simple expressions. The
identification results are presented and validated
through comparisons between the model output
and real load data.

Keywords Unmanned aerial vehicles · System
identification · Aerospace engineering ·
Nonlinear dynamical systems · Aerospace
simulation · Process design

1 Introduction

Research and developments related to Unmanned
Micro Air Vehicles (UMAVs) have been the sub-
ject of growing interest over the last few years,
motivated by the recent technological advances in
the fields of actuator miniaturization and embed-
ded electronics. Thus the design of efficient and
low-cost UMAV systems with autonomous nav-
igation capacity has become possible, providing
new tools for both civilian and military applica-
tions over the next years. The UMAV main ob-
jective will be to extend the human vision beyond
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the natural horizon, in order to accomplish risky
missions in the place of humans and in confined
environments. Therefore, the new required capa-
bilities will be to combine the hover flight to inves-
tigate a specific item in cluttered spaces with the
agressive flight at high speeds and accelerations to
reach remote areas, for both indoor and outdoor
flights.

The rotary-wing UMAV is presently a fully
potential and promising solution to this dual
requirement among the vast existing mechan-
ical configurations described in the literature
[1, 3–5, 7, 25] amidst the families of single-
rotor, twin-rotor, quad-rotor or hybrid-rotorcraft
configurations. The coaxial contra-rotating rotor
architecture has been chosen here because it best
fulfils the needs of the Gun Launched Micro Air
Vehicle (GLMAV) project.

This project is a new UMAV concept initi-
ated in December 2006 at the French-German
Research Institute of Saint-Louis as part of an in-
novative research activity. The GLMAV concept
consists of bringing an MAV very quickly onto the
site where it begins to be operational by using the
energy delivered by an external device. Thereby,
the embedded energy is maintained for the au-
tonomous flight only. The principle illustrated in
Fig. 1 is divided into three phases of flight: in
the first one, the MAV packaged in the projectile
shell is launched by a portable weapon and follows
a ballistic trajectory to its apogee; in the second

Fig. 1 GLMAV concept

phase of flight, the projectile is transformed into
an MAV where the rotor is deployed; the MAV
can finally fulfill its mission in autonomous flight
mode and then return to its launching area. It
will be equipped with an autopilot ensuring the
autonomous flight mode by generating good input
signals to the various actuators and by using an
INS [26] including low-cost sensors. The MAV
will also be equipped with both daytime and night-
vision systems, in order to observe the area of
interest, which will also be useful in facilitating a
future decision-making capacity.

Previous studies [9, 10, 23, 28] have demon-
strated the GLMAV concept feasibility based on
theoretical and experimental investigations con-
cerning: the sizing of the device; its payload
and autonomy; the necessary energy to launch
the projectile containing the MAV; and the di-
mensioning of the portable weapon. These stud-
ies have also justified the choice of the two-
bladed coaxial contra-rotating rotor aeromechan-
ical configuration with a cyclic swashplate, which
offers both advantages and disadvantages. The
main criterion that favors this aeromechanical
configuration over another is the compactness of
folding which is critical to the conditioning of the
MAV in the projectile shell. Other advantages lie
in good maneuverability, good stability in hover
and good forward speed capabilities. The coaxial
contra-rotating rotors are also a compact anti-
torque solution which prevents the MAV from ro-
tating around its axis of rotation, and the payload
is increased as both rotors participate in the thrust,
compared to other conventional configurations
with a single rotor. The vibrations on the MAV
body and the aerodynamic interactions generated
by the rotating blades constitute the main weak-
ness of this coaxial rotor configuration which al-
ter cruise and hover efficiency. More information
about the coaxial rotor aeromechanical analysis
could be found in the literature [7, 11, 21] and in
other existing MAV projects [19, 20, 24, 27].

The flight dynamics of the UMAV with rotating
wings is nonlinear and therefore complex. Thus, it
is necessary to characterize the nonlinearities for
each flight configuration in order to provide these
devices with autonomous navigation capabilities.
But conversely, the great variability of the para-
meters makes it impossible to compile a complete
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GLMAV mathematical model which captures all
the aerodynamic effects.

The main contribution of this paper is the con-
struction and the experimental validation of the
aerodynamic model of an MAV with coaxial ro-
tors and a cyclic swashplate. The purpose is to
identify the GLMAV model in the hover-flight
case (i.e. with low body incidence angles and ve-
locities). The GLMAV modeling is limited to the
quasi-stationary flight mode. The body dynamics
(i.e. the shell dynamics) is modeled like a rigid
body with 6 Degrees of Freedom, supplemented
by aerodynamic forces due to the rotor rotation
and the swashplate incidence angles. The estima-
tion of the unknown GLMAV model parameters
is simplified by using the linearized aerodynamic
model and experimental data (i.e. without the
nonlinearity constraints from the six-DoF model).
The model validation task finally demonstrates
the good simulation capability of the constructed
aerodynamic model.

In the present paper, Section 2 presents the
nonlinear modeling of the new Gun Launched
MAV concept with two-bladed coaxial contra-
rotating rotors in the hover-flight case. Section 3
introduces an experimental method using a strain-
gage aerodynamic balance to measure and then
to collect the input-actuator data and the load
data. In Section 4, the aerodynamic model is first
simplified and linearized, then used with the data
collected in Section 3 to estimate the aerodynamic
parameters through the Kalman filter estimation
method. Section 5 gives the validation results by
comparing other sets of data than those used in
Section 4 to the model output reconstructions.

2 MAV Modeling

This Section presents the GLMAV mathematical
model built from the mechanical and aeromechan-
ical physical laws. Early studies [10, 15, 16, 18, 19]
show that miniature rotorcraft mathematical mod-
els can be divided into two sub-models (i.e. an
aerodynamic model coupled with the generic 6-
DoF model). Hence the main difficulty lies in the
aerodynamic modeling which must be complete
enough to accurately simulate the GLMAV dy-
namics block (see Fig. 2) and simple enough to

develop future control laws for the hover-flight
case and autonomous trajectory tracking.

2.1 6-DoF Model

The GLMAV is considered to be a rigid body
with a fixed mass m. The following generic 6-DoF
Equations refer to its motion in three-dimensional
space. It describes the rotational and translational
dynamics and kinematics using Newton’s second
law, the six aerodynamic loads X, Y, Z, L, M, N
and the motion-derived equations relative to the
body-fixed reference frame (see [19, 25] and refer-
ences therein for detailed explanations). Thus the
translational kinematic is written as:

⎛
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ẋ
ẏ
ż

⎞
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⎛
⎝
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where cα = cos α, sα = sin α, x, y, z are the three
gravity-center position variables expressed in the
body coordinate system {G, xb, yb, zb}, φ, θ, ψ are
the Euler angles expressed in the Earth’s coordi-
nate system {O, xe, ye, ze} and u, v, w are the three
gravity center translational velocity variables ex-
pressed in the body coordinate system.

The rotational kinematics depends on the Euler
angles and the three angular velocity variables
p, q, r such that:
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The translational dynamic equation is written as:

m
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Finally, the rotational dynamic equation is ex-
pressed as:
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ṙ

⎞
⎠ =

⎛
⎝

L
M
N

⎞
⎠ −

⎛
⎝

0 −r q
r 0 −p

−q p 0

⎞
⎠ I

⎛
⎝

p
q
r

⎞
⎠ , (4)



56 J Intell Robot Syst (2012) 68:53–68

Fig. 2 Closed-loop
GLMAV system block
diagram
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where the GLMAV inertial matrix I is approxi-
mated by:

I =
⎛
⎝

Ixx 0 0
0 Iyy 0
0 0 Izz

⎞
⎠ (5)

as the GLMAV is axisymmetric along zb, implying
that the non-diagonal elements of I can be approx-
imated by zero. Furthermore, for the same reason
as previously: Ixx

∼= Iyy.

2.2 Aerodynamic Model

The aerodynamic model presented in the follow-
ing is divided into the forces induced by the body
immersed in the airflow and the loads generated
by the coaxial rotors and the cyclic swashplate
incidence angles. We neglect the gyroscopic mo-
ments induced by the contra-rotating rotors, as
they offset one another, assuming that the speed
differential is virtually zero or is not large enough
to induce a significant gyroscopic moment, which
is realistic in the hover-flight case (Fig. 3).

2.2.1 Forces Generated by the Coaxial Rotor

The thrust is the main force generated by both
rotors allowing the GLMAV to control its rate
of climb. The upper rotor contributes only to the
vertical thrust T1 which is directly proportional to
the upper rotor aerodynamic coefficient α and to
the rotation speed �1:

T1 =
⎛
⎝

0
0

α�2
1

⎞
⎠ . (6)

The lower rotor generates both a vertical thrust
according to the zb base vector and two lateral
forces due to the swashplate incidence angles ac-
cording to the xb and yb base vectors. Thus for

a given rotor-rotation speed, the vertical thrust is
maximized if these angles are null; otherwise, the
vertical thrust decreases due to the lateral force
components being non-zero. The expression of
the lower rotor forces T2 depends on the swash-
plate incidence angles (δcx , δcy), such that:

T2 = R
(
δcx , δcy

)
⎛
⎝

0
0

β�2
2

⎞
⎠ , (7)

where

R
(
δcx, δcy

)=
⎛
⎝

cos δcy −sin δcy sin δcx − sin δcy cos δcx

0 cos δcx −sin δcx

sin δcy cos δcy sin δcx cos δcx cos δcy

⎞
⎠

(8)

is a transformation matrix between the body
and lower rotor coordinate systems {G, xb, yb, zb}
and {O2, xr, yr, zr}, β is the rotor aerodynamic

Fig. 3 GLMAV with a rotor articulated by cyclic a cyclic
swashplate
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coefficient and �2 is the lower rotor-rotation
speed. By computing Eqs. 7 and 8, the force T2

generated by the lower rotor is written as:

T2 = β�2
2

⎛
⎝

− sin δcy cos δcx

− sin δcx

cos δcx cos δcy

⎞
⎠ . (9)

In Eqs. 6 and 9, the developed expressions of
the thrust aerodynamic coefficients α and β are a
function of the original thrust coefficients CT1 and
CT2 , of the Reynolds number RE which charac-
terizes the airflow regimes such as the laminar or
turbulent flow, and of the air density ρ, such that:

α

= CT1π R4

Eρ, (10)

β

= CT2π R4

Eρ. (11)

Given that each rotor thrust is known from Eqs. 6
and 9, the total thrust T according to zb could
be computed using the sum of the two individual
rotor thrusts [T1]zb , [T2]zb . However, in practice,
this thrust is lower than this sum as there is a loss
of aerodynamic efficiency due to airflow interac-
tions. The expression of the total useful thrust is:

[T]zb = σ
(
α�2

1 + β cos δcx cos δcy�
2
2

)
, (12)

where σ is a loss coefficient with 0.8 � σ � 1.
Finally, the total force generated by the coaxial

rotor is calculated from Eqs. 9 and 12, such that:

T =
⎛
⎝

−β sin δcy cos δcx�
2
2

−β sin δcx�
2
2

σα�2
1 + σβ cos δcx cos δcy�

2
2

⎞
⎠ . (13)

2.2.2 Total Wind Velocity

In order to determine the aerodynamic forces act-
ing on the body, it is necessary to know both the
direction and velocity of the total airflow inside
which the GLMAV operates. In all, three main
wind sources composing the total wind vector
Vtot can be identified: the first component corre-
sponds to the airflow speed Vprop generated by
the coaxial rotors; the second component is Vbody

due to the airflow generated by the translational
and rotational body displacements and finally a
third component Vwind is due to the externally
induced wind, in general unpredictable. The total

Fig. 4 Airflow profile
generated by a single
rotor
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wind vector in the body coordinate system is then
written as:

Vtot = Vprop − Vbody + Vwind. (14)

By considering only one rotating rotor, the wind
velocity Vprop generated by the coaxial rotor
blades can be modeled using Bernoulli’s theorem.
The latter illustrates the conservation of mechan-
ical energy by considering a permanent airflow
between points with corresponding pressures P∞
and P3 and by using the intermediate pressures P1

and P2, the airflow speed Vrot close to the rotor,
the airflow speed to infinity V∞ and the air density
ρ according to Fig. 4:1

1
2
ρV2

rot + P2 = 1
2
ρV2

prop + P3, (15)

1
2
ρV2

∞ + P∞ = 1
2
ρV2

rot + P1. (16)

Equations 15 and 16 are valid if the fluid is
assumed to be incompressible and perfect, given
the low axial airflow velocities. Taking into ac-
count the fact that V∞ = 0 and P∞ = P3 = Patm

with Patm, representing the atmospheric pressure,
Eqs. 15 and 16 can be rewritten respectively as:

1
2
ρ

(
V2

rot − V2
prop

) = Patm − P2, (17)

Patm − P1 = 1
2
ρV2

rot. (18)

1In the following we assume that the airflow circumferen-
tial velocity component added by the first rotor is cancelled
out by the contra-rotating second one.
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The thrust of the rotor Tr, according to the z
base vector, is a function of the pressures P1 and
P3 and of the rotor-disc surface Sprop, such that:

Tr = Sprop
(
P2 − P1

)
. (19)

By manipulating Eqs. 17–19, the airflow speed
generated by the rotor is written as:

Vprop =
√

−2Tr

ρSprop
. (20)

By using Eqs. 12, 14 and 20 and assuming that
[T]zb = Tr, the expressions of the three compo-
nents of the total wind Vtot that are Vux, Vvy and
Vwz, are written as follows:

Vux = −u + [Vwind]xb, (21)

Vvy = −v + [Vwind]yb , (22)

Vwz =
√

−2σ
(
α�2

1 + β cos δcx cos δcy�
2
2

)

ρSprop

− w + [Vwind]zb , (23)

where α < 0 and β < 0; u, v and w are the three
translational body-velocity components of the
GLMAV and [Vwind]xb, [Vwind]yb , and [Vwind]zb are
the three components of the wind vector Vwind.

2.2.3 Forces Acting on the Body

Given that the expression of Vtot is known, the
forces acting on the GLMAV body could be
defined supposing that the body is composed of
two elementary volumes: a cylinder and a half-
sphere. The three force components of the body
force fbody depend on the air density ρ, the body
length l and radius D, the projectile cylinder sur-
face Sc according to the plane {xb, zb}, the section
of the projectile cylinder Ss in which the coaxial
rotor is conditioned, the body shape aerodynamic
coefficients Cx, Cy and Cz, and the total wind
velocity Vtot;

[fbody]xb = 1
2
ρScCxVux‖Vtot‖,

[fbody]yb = 1
2
ρScCyVvy‖Vtot‖,

[fbody]zb = 1
2
ρSsCzVwz‖Vtot‖,

(24)

where

‖Vtot‖ =
√

V2
ux + V2

vy + V2
wz (25)

and

Sc = 2Dl,
Ss = π D2.

(26)

The weight force component fp acting on the
GLMAV is written as:

fp = mg

⎛
⎝

− sin θ

cos θ sin φ

cos θ cos φ

⎞
⎠ . (27)

Finally, the three components X, Y and Z of the
total force vector ftot applied to the GLMAV
represent the sum of the coaxial rotor, body and
gravity force vectors:

ftot =
⎛
⎝

X
Y
Z

⎞
⎠ = T + fbody + fp. (28)

2.2.4 Moments Induced by Both Rotors

By knowing the total force vector, the resulting
total moment can be computed and thus the aero-
dynamic model can be completed. In order to
simplify and to reduce the model complexity, it
is assumed that the forces generated by the body
immersed in the airflow induce a negligible mo-
ment. This is due to the fact that the wind velocity
from the coaxial rotors is far greater than the one
produced by the body and the external wind, i.e.:

Vprop � Vbody and Vprop � Vwind. (29)

Consequently, the lateral force components
[fbody]xb and [fbody]yb are negligible compared to
[fbody]zb . In addition, a strong gust of wind would
only be regarded as a force acting on the whole
GLMAV body because of its small dimensions;
thus only the forces generated by the rotors could
lead to a non-zero resulting moment. The pitch
and roll moments M, L induced by the incidence
angles of the lower rotor are calculated using
the cross product of the distance vector from the
gravity center to the rotor-rotation center GO2

with the lower-rotor thrust vector:
(

L
M

)
= GO2 ∧ T2. (30)
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By calculating Eq. 30, both the lateral moment
components L and M are written as:

L = −dβ sin δcx�
2
2, (31)

M = dβ sin δcy cos δcx�
2
2, (32)

where d is the distance between the points G
and O2.

Finally, the yaw moment N generated by each
rotor is directly proportional to their respec-
tive aerodynamic coefficients γ1, γ2 and rotation
speeds �1, �2:

N = γ1�
2
1 + γ2�

2
2. (33)

2.3 Complete GLMAV Model

The complete nonlinear GLMAV model in the
hover-flight case (i.e. considering small transla-
tional displacements with small body incidence
angles and velocities) is described by computing
Eqs. 1–4, 13, 21–28 and 31–33:

The developed translational kinematic equa-
tions are written as:

ẋ = (cos θ cos ψ)u+(sin φ sin θ cos ψ−cos φ sin ψ)v

+ (cos φ sin θ cos ψ + sin φ sin ψ)w, (34)

ẏ = (cos θ sin ψ)u+(sin φ sin θ sin ψ+cos φ cos ψ)v

+ (cos φ sin θ sin ψ − sin φ cos ψ)w, (35)

ż = (− sin θ)u + (sin φ cos θ)v + (cos φ cos θ)w;
(36)

the developed rotational kinematic equations are
expressed as:

φ̇ = p + (tan θ sin φ)q + (tan θ cos φ)r, (37)

θ̇ = (cos φ)q − (sin φ)r, (38)

ψ̇ =
(

sin φ

cos θ

)
q +

(
cos φ

cos θ

)
r; (39)

the complete translational dynamic equations are
written as:

u̇ = rv − qw − β

m
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2
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√
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2
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√
V2

ux + V2
vy + V2
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+ g cos θ cos φ

)
, (42)

where

Vux = −u + [Vwind]xb, (43)

Vvy = −v + [Vwind]yb , (44)

Vwz = [Vprop]zb − w + [Vwind]zb , (45)

[Vprop]zb =
√

−2σ
(
α�2

1 + β cos δcx cos δcy�
2
2

)

ρSprop
.

(46)

Finally, the complete rotational dynamic equa-
tions are written as:

ṗ =
(

Iyy − Izz

Ixx

)
rq − 1

Ixx

(
dβ sin δcx�

2
2

)
, (47)

q̇ =
(

Izz − Ixx

Iyy

)
rp + 1

Iyy

(
dβ sin δcy cos δcx�

2
2

)
,

(48)

ṙ =
(

Ixx − Iyy

Izz

)
pq + 1

Izz

(
γ1�

2
1 + γ2�

2
2

)
. (49)

3 Experimental Design

The previous Section presented a GLMAV math-
ematical model for the hover and near-hover
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Fig. 5 Six-component strain-gage aerodynamic balance

flight cases. From this point onward, the ex-
perimental purpose is to measure the loads ac-
cording to the rotor-rotation speeds and to the
cyclic swashplate incidence angles defined as in-
put data. The complete nonlinear model structure
described by Eqs. 34–49 is complex and therefore
difficult to apply to the task of estimating the
aerodynamic parameter values. Furthermore, the
entire GLMAV model (i.e. aerodynamic and 6-
DoF models) requires the ability to measure the
6-DoF model output from an in-flight MAV with
its active embedded electronics.

However, we noticed that all the parameter
values required could be estimated by only con-
sidering the aerodynamic submodel. The main
advantage is that the aerodynamic model can be
quite easily linearized in the parameter space.
Therefore, well-known and simple linear estima-
tion techniques could be applied to our problem of
estimating aerodynamic parameters, which will be
addressed in the next Section. The 6 load compo-

nents X, Y, Z , L, M and N are also the required
output data which are easy to measure by means
of static experiments (i.e. without using a flying
MAV). The 6 load components were measured us-
ing a strain-gage aerodynamic balance illustrated
in Fig. 5. The MAV shown in Fig. 6a was rigidly
fixed to the aerodynamic balance which was also
fastened to a supporting base, as shown in Fig. 6b.
The Bell–Hiller stabilizer bar displayed in Fig. 6a
was not used as it was useless for static experi-
ments. Previous studies [2, 6] explained the useful
dynamic effects of the Bell–Hiller bar. The MAV
mechanical design was inspired by the ready-to-
fly model kit and was made from both purchased
and ISL-designed components. The total MAV
weight was of about 250 g, including the lithium-
polymer battery pack and the future active em-
bedded electronics, the MAV was 30 cm high and
the lower/upper rotor diameter was of 34 cm. As
determined by the experiments, the total thrust
of the coaxial rotor was of about 300 g, leaving a
payload of 50 g.

Figure 7 illustrates the complete and practi-
cal measurement process of collecting the output
data according to the generated input signals. At
each step in time, both motor and servomotor
numerical input values were generated through a
dedicated program, then numerical input signals
were converted into adapted PWM signals and
routed to the four actuators via a demultiplexer
and a transmitter interface. At the same time,

Fig. 6 a GLMAV
archetype—b
aerodynamic balance on
its supporting base

(a) (b)



J Intell Robot Syst (2012) 68:53–68 61

Fig. 7 Experimental
design diagram
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the output load data from the aerodynamic bal-
ance were measured and transformed into useful
numerical values by means of signal processing
electronics and then saved. Knowing that the
strain-gage sensor dynamics exceeded the actua-
tor dynamics (i.e. both motors and servomotors),
it was assumed that the aerodynamic strain-gage
balance response was instantaneous.

To conclude this Section, some remarks can be
made about the measurement process:

– The generated motor input signals were not
reliable as input data; therefore the motor
speeds considered were measured through op-
tical sensors;

– The MAV was fixed to the aerodynamic bal-
ance so that their coordinate systems were
oriented in the same directions;

– The whole MAV aerodynamic balance had to
be sufficiently distant from the floor and walls
to avoid disturbing the coaxial rotor aerody-
namic airflow, which would have resulted in
ground effects measurements;

– The measurements of the X and Y forces were
only used to validate the model in Section 5,
since all the aerodynamic parameters could be
estimated only by measuring the Z , L, M, and
N loads.

4 Parameter Estimation

Given that the aerodynamic model and input-
output data are known, the aerodynamic parame-

ters can be estimated. To simplify the estimation
problem, the aerodynamic model is linearized in
the parameter space. By computing Eqs. 13, 21–
28, and 31–33, the nonlinear aerodynamic model
is written as follows:

X = −β sin δcy cos δcx�
2
2

− 1
2
ρScCxVux

√
V2

ux + V2
vy + V2

wz

− mg sin θ, (50)

Y = −β sin δcx�
2
2

− 1
2
ρScCyVvy

√
V2

ux + V2
vy + V2

wz

+ mg cos θ sin φ, (51)

Z = σα�2
1 + σβ cos δcx cos δcy�

2
2

+ 1
2
ρSsCzVwz

√
V2

ux + V2
vy + V2

wz

+ mg cos θ cos φ, (52)

where

Vux = −u + [Vwind]xb, (53)

Vvy = −v + [Vwind]yb , (54)

Vwz = [Vprop]zb − w + [Vwind]zb , (55)

[Vprop]zb =
√

−2σ
(
α�2

1 + β cos δcx cos δcy�
2
2

)

ρSprop
,

(56)
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and

L = −dβ sin δcx�
2
2, (57)

M = dβ sin δcy cos δcx�
2
2, (58)

N = γ1�
2
1 + γ2�

2
2. (59)

The nonlinear model consisting of Eqs. 50–59
could be simplified. Indeed, in the first place it
is obvious that the gravity-center translational ve-
locities u, v, w are zero, since the MAV is rigidly
fixed to the strain-gage balance. Secondly, the
three components of Vwind are also zero, as the
MAV is not immersed in an external airflow
which could be produced by a wind tunnel. Fi-
nally, knowing that [fbody]zb > 0 as [Vprop]zb > 0
(see Eq. 42), [fbody]zb could be rewritten as:

[fbody]zb = 1
2
ρSsCzVwz

√
V2

ux + V2
vy + V2

wz

= 1
2
ρSsCz[Vprop]2

zb
.

(60)

Thus, Eqs. 50, 51 and 52 are rewritten as follows:

X = −β sin δcy cos δcx�
2
2, (61)

Y = −β sin δcx�
2
2, (62)

Z = σα�2
1 + σβ cos δcx cos δcy�

2
2 (63)

+1
2
ρSsCz

(−2σ
(
α�2

1 + β cos δcx cos δcy�
2
2

)

ρSprop

)
.

From Eqs. 57–59 and 61–63 which constitute the
simplified form of the aerodynamic model, only
Eq. 63 is nonlinear in the parameter space. To
linearize the latter, it is assumed that:

Czα = Czα, (64)

Czβ = Czβ. (65)

Thus the aerodynamic loss parameter σ can be
expressed as a function of �1 and �2. In order to
find it, the α and β thrust aerodynamic coefficients
must first be determined by: measuring the in-
dependent thrusts of each rotor with δcx = 0 and
δcy = 0; assuming that the Cz value is known and
approximated by a value found in the literature
[22]; knowing that σ = 1 when (�1 = 0, �2 �= 0)
or (�1 �= 0, �2 = 0). Thus α and β are the only

unknown parameters from Eq. 63 which could
be calculated separately. The values of α and β

calculated here are used for the zero tilt angles
of the cyclic swashplate. In the following, these
two parameters will be identified by considering
the whole range of variation of δcx , δcy , �1 and
�2. To calculate Z̄ = Z − σα�2

1, the α parameter
is supposed to be known from the coaxial rotot
thrust map previously determined, when δcx = 0
and δcy = 0. From experiment, the value of α when
δcx = 0 and δcy = 0 does not differ a lot when δcx �=
0 and δcy �= 0. This can be verified by calculating
α through Eq. 64 after identifying the parameter
vector �k.

Now that the α and β values are known from
the measured coaxial rotor thrust map, σ can be
calculated for a certain region {�1,�2} defined in
Fig. 8. The resulting approximation values of σ are
shown in Fig. 9. The aerodynamic loss efficiency
is greatest when �1 = �2 and is about 10% of
the theoretical maximum thrust. In the following,
the interpolation function between σ and �1, �2

will be used, and it will also be assumed that σ =
σ(�1, �2). Under the hypothesis that u, v, w and
[Vwind] are zero, [fbody]zb > 0, Czα = Czα, Czβ =
Czβ and the σ parameter is known, the simplified
and linearized aerodynamic model can be locally
written in the parameter space, where the index
k corresponds to the measured sample number,
�k is the aerodynamic parameter vector, wk is the
process noise vector which is assumed to be zero,
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zk the vector of input-output data, Xk the out-
put matrix, and vk the measurement noise vector,
such that:

�k+1 = �k + wk, (66)

and

zk = Xk�k + vk. (67)

By computing Eqs. 57–65, the developed expres-
sions of Eqs. 66 and 67 are written as:

(
β Czα Czβ γ1 γ2

)�
k+1

= (
β Czα Czβ γ1 γ2

)�
k

+ w�
k,

(68)

and

⎛
⎜⎜⎜⎜⎜⎜⎝

X
Y
Z̄
L
M
N

⎞
⎟⎟⎟⎟⎟⎟⎠

k

=

⎛
⎜⎜⎜⎜⎜⎜⎝

X11 0 0 0 0
X21 0 0 0 0
X31 X32 X33 0 0
X41 0 0 0 0
X51 0 0 0 0
0 0 0 X64 X65

⎞
⎟⎟⎟⎟⎟⎟⎠

k

⎛
⎜⎜⎜⎜⎝

β

Czα

Czβ

γ1

γ2

⎞
⎟⎟⎟⎟⎠

k

+ vk.

(69)

where

Z̄ = Z − σα�2
1,

X11 = − sin δcy cos δcx�
2
2,

X21 = − sin δcx�
2
2,

X31 = σ cos δcy cos δcx�
2
2,

X32 = −σ Ss

Sprop
�2

1,

X33 = −σ Ss

Sprop
cos δcy cos δcx�

2
2,

X41 = −d sin δcx�
2
2,

X51 = d sin δcy cos δcx�
2
2,

X64 = �2
1,

X65 = �2
2.

(70)

Lemma 1 Assume that there exist ξ �= ζ ≤ Ns and
λ �= ν ≤ Ns such that the following conditions are
verif ied:

�2
1(ξ)�2

2(ζ ) cos δcy(ζ ) cos δcx(ζ )

�= �2
1(ζ )�2

2(ξ) cos δcy(ξ) cos δcx(ξ)
(71)

and

�2
1(λ)�2

2(ν) �= �2
1(ν)�2

2(λ), (72)

where Ns is the total measured sample number and
�1(k), �2(k), δcx(k) and δcy(k) are the values of �1,
�2, δcx and δcy at the sample time k. Then the aero-
dynamic model composed by the Eqs. 66 and 67
is suf f iciently excited to identify the aerodynamic
parameters.

In order to ensure a sufficient number of mea-
surements in the identification process, the per-
sistently exciting condition must be previously
verified, that is:

εI ≤
Ns∑

k=1

Y�
kYk ≤ μI, (73)

where ε and μ are positive reals, and I is the iden-
tity matrix. The persistently exciting condition 73
can be rewritten as:

εI ≤
Ns∑

k=1

X�
kXk = Y�Y ≤ μI (74)

with Y� = [
X�

1 . . . X�
k X�

k+1 . . . X�
N

] ∈ R
5x6Ns .
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The condition 74 is fulfilled if and only if Y� is
full row rank. Let Li denotes the ith row of Y�.
The rows L1, and the grouped rows L2 − L3 and
L4 − L5 are linearly independent of each other.
The rows L2 and L3 are linearly indenpendent if
there exist two sampled times ξ ≤ Ns and ζ ≤ Ns

with ξ �= ζ such that:

det
[
ζ1 ξ1

ζ2 ξ2

]
�= 0, (75)

where

ζ1 = −σ Ss

Sprop
�2

1(ζ ),

ξ1 = −σ Ss

Sprop
�2

1(ξ),

ζ2 = −σ Ss

Sprop
cos δcy(ζ ) cos δcx(ζ )�2

2(ζ ),

ξ2 = −σ Ss

Sprop
cos δcy(ξ) cos δcx(ξ)�2

2(ξ),

(76)

which leads to

�2
1(ξ)�2

2(ζ ) cos δcy(ζ ) cos δcx(ζ )

�= �2
1(ζ )�2

2(ξ) cos δcy(ξ) cos δcx(ξ).
(77)

The rows L4 and L5 are linearly independent
if there exist λ ≤ Ns and ν ≤ Ns with λ �= ν

such that:

det
[
�2

1(ν) �2
1(λ)

�2
2(ν) �2

2(λ)

]
�= 0, (78)

which is equivalent to

�2
1(ν)�2

2(λ) �= �2
1(λ)�2

2(ν). (79)

Thus the system can be identified if the condi-
tions 77 and 79 are verified. This ends the proof
of Lemma 1. Notice that experimentally, these
conditions become true from a certain value of Ns.

The final purpose is to use the Kalman filter [12,
14, 17] method to obtain the parameter estimate
values from the aerodynamic model described by
the Eqs. 68–69 and the input-output measured
data. This filter requires the calculation, at each
step k, of the optimal Kalman gain Kk, of the
updated parameter estimate vector �̂k, and of the
updated estimate covariance matrix Pk, such that:

Kk = PkX�
k

[
XkPkX�

k + Rk
]−1

, (80)

�̂k = �̂k−1 + Kk

[
zk − Xk�̂k−1

]
, (81)

Pk = Pk−1 − KkXkPk−1 + Qk, (82)

Fig. 10 Estimation—the
dashed lines represent
model outputs—the solid
lines indicate the
measured loads
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where Qk and Rk are the process and mea-
surement noise covariance matrices, respectively
defined as:

Qk

= E

[
wkw�

k

]
and Rk


= E

[
vkv�

k

]
. (83)

The measurement noise vk should not be ne-
glected as it is generated by:

– The vibrations on the whole MAV aerody-
namic balance structure due to the rotating
rotors;

– The electronic acquisition chain;
– The strain-gage sensors.

Thus the diagonal elements of the measure-
ment error covariance matrix Rk which must have
a zero mean, be uncorrelated and have a constant

variance, are calculated from the measured data,
such that:

diag(Rk) = (
0.062 2.3e−5 0.98 0.88 2.3e−5

)
. (84)

The diagonal element values of Rk are calcu-
lated from the measured load signals, as the load
values must be constant for each given input. Then
the variance can be calculated by knowing the
average calculated value of the output load signal.
As shown by the estimation results in Fig. 10, the
optimal parameter estimates are found by using
the Kalman filter, which means that �̂ converges
to a fixed value. Those parameter estimate values
are then reintroduced in the aerodynamic model
to reconstruct the model outputs, in order to com-
pare this output with the measured data, given the
same input. The average error between the mea-
sured and model data corresponds to a relative
error of about 3% for the forces and 6% for the
moments, and the maximum relative error is of
about 10% for the forces and for the moments,
which is acceptable. For reasons of confidentiality,
the aerodynamic parameter values are not shown.
Nevertheless, the trace successive values of the Pk

matrix below show the rapid convergence of the
Kalman filter applied to our parameter estimation
problem, as the input signals are rich enough,
which implies that the condition from Eq. 73 has

Fig. 12 Validation—the
dashed lines represent the
model outputs—the solid
lines indicate the
measured loads
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Fig. 13 Reconstruction—
the dashed lines represent
the model outputs—the
solid lines stand for the
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been previously verified. Indeed, Fig. 11 clearly
shows that the gap between �̂k−1 and �̂k is re-
duced to almost nothing (i.e. the final value of the
trace(Pk) is amounts approximately to 1). Thus
the final value of �̂ is the optimal value.

5 Model Validation

Given that the aerodynamic parameters are
known for the hover-flight case, the purpose is
now to validate the model with its parameter val-
ues by comparing the model outputs with other
sets of input-output measured data such as those
used in the estimation step (in Section 4). Ac-
cording to Fig. 12, the aerodynamic system is well
validated in hover conditions without any wind
disturbances and only by using a linear estima-
tion method, as the measured data fit the model
outputs well. The main difficulty of the system
identification, from the modeling to the validation
step, is that the model must be rich enough to
capture the main aerodynamic effects and simple
enough for the future control law development
work. This work has succeeded in this for the
GLMAV identification in hover and near-hover
flight conditions. To close this Section, two re-
marks can be made:

– The measurements used for the validation
step were also used successfully for the esti-
mation step, and conversely for the measure-
ments presented in Section 4;

– According to Fig. 13, the forces X and Y
were also well validated, although their mea-
surements were not used in the estimation
step.

6 Conclusions

In this paper the nonlinear modeling of a new
Gun Launched MAV concept using two-bladed
coaxial contra-rotating rotors was detailed for the
hover-flight case. An experimental design using
a strain-gage aerodynamic balance was proposed
to collect measured input and output load data.
Some simplifications brought to the nonlinear
model led to a linearized aerodynamic submodel
used for parameter identification. The persistently
exciting condition was given in terms of physi-
cal variables of the GLMAV through two simple
expressions, which was verified before the iden-
tification process. The aerodynamic parameters
were also estimated using the Kalman filter linear
estimation technique, from the aerodynamic sub-
model and using input-output data sets. Finally,
the linear aerodynamic submodel was validated
by comparisons between the model output re-
constructions and other sets of data than those
used in the estimation step, given to the same
inputs.

Fig. 14 Embedded
electronics



J Intell Robot Syst (2012) 68:53–68 67

Fig. 15 Rotating coaxial rotor with lateral wind distur-
bances from the wind tunnel

In a future work, the purpose will be to de-
velop input control laws for the hover-flight [27]
case and autonomous trajectory tracking. In par-
allel to this work, we will use online or offline
system identification processes including the 6-
DoF model [8, 13] (i.e. with the active embed-
ded electronics [8] shown in Fig. 14). Thereby,
the system identification procedure will capture
the GLMAV dynamics and will be compared to
the identification method used in this paper. The
wind disturbances will be considered to be data
inputs in the parameter estimation task and will
be generated by a subsonic wind tunnel during
experiments, as shown in Fig. 15. Then a nonlin-
ear estimation method like the extended Kalman
filter will be used for the system identification.
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