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Abstract This paper focuses on the topic of
smooth gait transition of a hexapod robot by a
proposed central pattern generator (CPG) algo-
rithm. Through analyzing the movement charac-
teristics of the real insects, it is easy to generate
kinds of gait patterns and achieve their smooth
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transition if we employ a series of oscillations
with adjustable phase lag. Based on this con-
cept, a CPG model is proposed, which is con-
structed by an isochronous oscillators and several
first-order low-pass filters. As an application, a
hexapod robot and its locomotion control are in-
troduced by converting the CPG signal to robot’s
joint space. Simulation and real world experiment
are completed to demonstrate the validity of the
proposed CPG model. Through measuring the po-
sition of the body center and the distance between
footpoints and ground, the smooth gait transition
can be achieved so that the effectiveness of the
proposed method is verified.

Keywords CPG · Multi-legged robot ·
Gait · Smooth transition · Phase lag

1 Introduction

Legged locomotion is very common in nature
world. For instance, human beings have two legs,
mammals walk with four legs, and insects per-
form their locomotion by employing six legs. The
most important advantage of legged movement,
compared with wheeled or tracked movement,
is the adaptability to various kinds of terrains.
However, the coordination and control of the legs
are difficult issues to solve. Due to this reason,
much eyes of the scholars are attracted to find a
better solution of this problem, see [1–3].

http://dx.doi.org/10.1007/s10846-012-9661-1
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The traditional method is to scheme out the
trajectory of the footpoint and calculate the in-
verse kinematics of the leg mechanism [4–6]. But
this algorithm has some disadvantages such as
large computational complexity and demanding of
precise mechanical model. When a leg gets stuck
by an obstacle, the robot has to stop the leg, detect
the current position and orientation, and recalcu-
late the trajectory. It wastes a lot computational
resource.

Animals will not do this. In recent years, ap-
plying the mechanism in animal’s central neural
system to control robot’s locomotion is becoming
more and more popular. It is found that, animal’s
locomotion is controlled by a series of central
oscillation generated by the spinal cord for the
vertebrate, or by the ganglion for the invertebrate,
which is called central pattern generator (CPG)
[7–9]. The CPG model is at the earliest proposed
by Cohen [10] in 1980s through the research on
the dissection of a lamprey spinal cord. There is
now very clear evidence that rhythms are gener-
ated centrally without requiring sensory informa-
tion. This is how the word “central” comes from.

After that, many researchers apply this algo-
rithm into the bio-inspired robot control. For ex-
ample, Kimura uses the Matsuoka neuron models
[11], with two neurons mutually inhibiting, to gen-
erate the oscillation and to control the walking of
a quadruped robot [12–14]. The CPG is applied to
the musculo-skeletal system by Taga to perform a
bipedal locomotion [15]. Arena provides a multi-
templates approach of cellular nonlinear networks
(MTA-CNN) for the implementation of CPG
to the hexapod movement [16–18]. Inagaki con-
structs a wave CPG model to control his hexapod
robot [19, 20]. Manoonpong [21] achieves some
high level behaviors in his robot such as reflex and
escape through the sensor-driven neural control.
What has to be mentioned is the impressive work
accomplished by Ijspeert [22]. Nonlinear oscillator
is used for the neural circuit and several oscillators
are coupled together to construct the CPG model.
His salamander robot can walk like a quadruped
animal on the land and swim like a snake in the
water.

However, as to this research area, most of the
previous works doesn’t take gait transition into
account, or they only consider the gait patterns

separately, that is, to consider different gaits as
different patterns. For instance, Arena uses tem-
plate to define gait. Every gait pattern is related
to a pre-defined template, so his hexapod robot
can only perform some pre-defined gait pattern.
The quadruped robot designed by Kimura can
move in walk, trot, pace and gallop gait, but
the implementation of each gait need adjusting
the oscillator’s parameters, which are nonlinear
and irregular to follow. Manoonpong’s hexapod
robot [21] can walk omnidirectionally but with
only tripod gait. The latest work done by him can
perform different kinds of gaits by chaos control
[23], but the model is complicated. The author
gets inspired from Ijspeert’s salamander robot.
It can switch from walking to swimming when
entering the water by just progressively increasing
one drive signal. The limb oscillators saturate and
stop swinging so that the body is propelled by the
twist of trunk. As Ijspeert mentioned in the review
paper [24], CPG-based gaits transition remains an
open topic. Often simple electrical stimulation of
a particular region of the brain stem in animals
can induce dramatic gait changes, so, smooth gait
transition of the robot via regulating very few
parameters should be paid more attention, which
merits our study in this paper.

Insects are selected as the imitating model to
control the robot’s locomotion. The reason we
choose insects is because they are so primitive
that the neural system seems relative simple and
the stability of the six-legged locomotion is better
than four-legged. We hold that the description
of different gaits should be formally uniform in
essence and shouldn’t be considered separately.
The common point of the previous CPG models
is that, they are all actually kinds of nonlinear
dynamical system. Our model is also constructed
by a dynamical system with limit cycle attractor.
Different from others’ previous works, it is rel-
ative simple to understand, which is constructed
by an isochronous oscillators and several first-
order low-pass filters. The filters are actually an
extension of the central oscillation, just like the
wave spreading. Different gaits generation are
controlled only by one parameter – phase lag –
which resembles the electrical stimulation at the
brain stem. In addition, some seemingly complex
gaits, of which the phase lags are actually not the
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typical angle, are easily generated. This algorithm
can simply achieve smooth transition between
different gaits, compared with the previous works.

The article is organized as follows. Firstly we
analyze the gaits of the real insects and find the
relationship between gait and CPG. Secondly, the
specification of our CPG model is described in
detail. After that, the mechanism of the walking
machine is stated and the definitions of the links
and joints are given; meanwhile, how to convert
the CPG signal to the angle value used to con-
trol the joints is addressed. Then, simulation and
experiment are accomplished where three gaits
and the smooth transition between them are illus-
trated, followed by the conclusions.

2 Gait analysis for insects

Animals are capable of using kinds of gaits. For
instance, cat can easily vary its gait from walk
to trot to gallop. Insects can perform wave gait,
tetrapod gait, transition gait, tripod gait and so
on. Moreover, when the insects move not so fast
and not so slowly, it can show some gaits between
the typical patterns: sometimes one leg transfers
while sometimes two, and these statuses always
mix together. It is difficult to define and describe
all the gaits that insects always use.

The apparent complexity of insect walking be-
havior has stimulated considerable researches.
Scholars have established sophisticated models to
describe it, in which the most famous two are
proposed by Hughs [25] and Wilson [26]. The
two models are the same in essence, while the
Wilson’s model is more concise [27]. It satisfies the
following five rules:

1. A wave of recoveries runs from rear to front
(and no leg recovers until the one behind is
place under a supporting position).

2. Contralateral legs of the same segment alter-
nate in phase.

3. Recovery time is constant.
4. Frequency varies (drive time decreased as fre-

quency increases).
5. The intervals between steps of the hind leg

and the middle leg and between the middle

leg and foreleg are constant, while the interval
between the foreleg and hind leg steps varies
inversely with frequency.

The first rule means the rear leg, rather than
the front leg, recovers first. It is decided by the
stability and more details can be found in [27].
Rule 2 means, for instance, the right front (RF)
leg has a 180◦ delay from the left front (LF) leg
and vice versa. This rule is crucial for the CPG
method in robot locomotion control, which will be
discussed later. Rule 4 means the moving velocity
can be changed from regulating frequency. Even
though rule 3 and rule 5 are truth for real insects,
the recovery time and the interval between steps
could be changed in robotic control to achieve
speed regulating.

Through the five rules, the various kinds of
insect gaits can be described by the gait timing
diagrams, as shown in Fig. 1. We can define duty
factor β as the fraction of the cycle time that
each foot is on the ground. In the figure, black
areas indicate transfer (recover) phase and white
areas indicate drive (support) phase. The wave
recovers from rear to front; therefore, we can con-
sider the wave spreads from right hind (RH) leg
to right middle (RM) leg, then right front (RF),
left hind (LH), left middle (LM) and left front
(LF). Figure 1 shows the four typical gaits with
the increasing of walking speed, in which the duty
factors satisfy β = 5

6 , β = 3
4 , β = 2

3 and β = 1
2 . We

name them as wave gait, tetrapod gait, transition
gait and tripod gait, respectively.

If we use the traditional method to control
the hexapod robot’s locomotion, we have to plan
out the footpoint trajectory and the velocity for
transfer phase and support phase, respectively
[28]. Inverse kinematics has to be calculated after
that. If the gait is changed, all the data have to
be recalculated again. Moreover, there are many
other not so regular gait patterns, which could not
be planned out.

When we resort to the CPG method, the loco-
motion control problem and gait transition can be
simplified. For the insects, the ganglia can gener-
ate a series of oscillations spontaneously. For the
robot, the neural oscillations, which inhibit mutu-
ally, can control the motors directly without com-
puting the kinematics. Take β = 5

6 for example, if
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Fig. 1 Four typical gait diagrams arranged by the walking
speed, from slow to fast

three sine-like waves with 60◦ phase lag between
each of them are obtained, the typical wave gait
can be shown. As shown in Fig. 2, suppose the
wave exceeds a threshold, this leg enters a transfer
phase. When the wave value falls down the thresh-
old, the leg begins its support phase again. The
three waves are applied to control the three legs at
the same side, from rear to front. According to the
rule 2 of the Wilson’s model discussed above, the
other three legs, which are at the other side, are
antiphase to the corresponding right legs or have
a 180◦ lag, respectively.

As illustrated in Fig. 3, a tetrapod gait pattern
like Fig. 1b can be obtained using the same ap-
proach. So are the other two gait patterns.

That is to say, different gaits are decided just
by the phase lag between the three oscillation
and the corresponding thresholds. The relation-
ship between the phase lag, duty factor and the
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Fig. 2 The wave gait implementation, β = 5
6 . The top

figure indicates the CPG signals, which can be used to
control the three right legs. The signals of bottom f igure is
antiphase to the top figure’s, which can be used to control
the corresponding left legs. The middle f igure is the timing
diagrams of wave gait

threshold forms Table 1. If the phase lag is less
than 60◦, there is at most one leg transferring
at any time. When the phase leg is between 60◦
and 120◦, the transfer leg number is one or two.
The situation that three legs swing simultaneously
emerges if the phase leg is greater than 120◦. The
180◦ indicates the tripod gait. There are some
reasons to believe that tripod gait is the fastest
gait for insects, because the insects are too prim-
itive to maintain their body in dynamic balance.
Therefore, we don’t need to discuss the dynamic
balance gait, i.e., the phase lag is greater than 180◦.
If we want to generate a kind of gait not in the
above four, we just need to choose a appropriate
phase lag.
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Fig. 3 This figure shows how the tetrapod gait (β = 3
4 )

is generated from the series of waves which have a 90◦
phase lag

Through the above analysis, we can draw the
following conclusions:

1. Three waves are enough to generate different
gait patterns. The control signal of the other
three legs can be achieved via reversing the
waves of the contralateral legs.

2. The phase lag between the three waves de-
termines the different gait patterns. With the
increasing of the phase lag from 0 to 180,
number of the transfer legs increases.

Table 1 The volume of fast workspace

Gait Phase lag (deg) Duty factor Threshold

Wave 60 5/6 0.8660
Tetrapod 90 3/4 0.7071
Transition 120 2/3 0.5000
Tripod 180 1/2 0.0000

3. The threshold corresponds to the phase lag.
4. There are two approaches to accelerate the

robot. One is increasing the frequency of os-
cillation. The other approach is enlarging the
amplitude in order to generate a larger stride
for the robot.

5. We need to establish a CPG model, which
contains the following features: It oscillates
spontaneously; it contains three series of
wave; the phase lag, frequency and amplitude
can be adjusted independently.

3 The central pattern generator model

3.1 The central oscillation

There are a lot of models to generate the central
oscillation as Section 1 introduced. The common
point of the different models is that they all have
a limit cycle shown in phase portrait, which is
asymptotically stable. Wherever the initial value
of the ODE (Ordinary Differential Equations)
is, the solution would converge to the limit cycle
eventually. The integral curves of the system ap-
pear to oscillate. Here we choose a simple one,
isochronous oscillator [29], as CPG. It is expressed
in Eq. 1

{
ϕ̇ = ω mod 2π

ṙ = r
(
μ − r2

) (1)

where ϕ indicates the phase and r indicates the
amplitude. ω represents the frequency of the oscil-
lation. ϕ̇ equals to ω means the phase will change
at the rate of ω. When r2 > μ, ṙ < 0, so r de-
creases. On the contrary, when r2 < μ, ṙ > 0, so
r increases. Therefore, r = √

μ is a fixed point.
It is obviously that the above two equations

are decoupled, so that the phase and amplitude
can be controlled independently, which satisfies
our requirement discussed in the last section. Ac-
tually, Eq. 1 is defined not on the Euclidean R

2

space but on S
1 × R

1. It is a description of polar
coordinate. The description of the oscillator in
Cartesian coordinate is expressed in Eq. 2.

{
ẋ = (

μ − x2 − y2
)

x + ωy
ẏ = (

μ − x2 − y2
)

y − ωx
(2)
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It is a typical Hopf oscillator. The phase portrait
and integral curve are shown in Fig. 4.

3.2 The controllable phase lag

Through the above analysis, the amplitude and
frequency can be controlled independently by the
isochronous oscillator. In this subsection, we in-
troduce the approach to control the phase lag.
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Fig. 4 The property of isochronous oscillator. (a) The red
star means the initial value. It is obvious that no matter
what initial value it is, it will converge to the limit cycle.
(b) It shows the system can oscillate stably. At this figure,
μ is 1 and ω = − π

10

First-order low-pass filters are employed to ac-
complish this requirement. The transfer function
of first-order low-pass filter is presented in Eq. 3

U(s) = 1
τ s + 1

(3)

where, τ is a time constant. The frequency domain
expression is presented in Eq. 4.

U( jω) = 1
jτω + 1

= 1√
τ 2ω2 + 1

∠ − arctan(τω)

(4)

There is a reduction of the gain. We have to
compensate it. The low-pass filter with gain can
be written as Eq. 5

U(s) = k
τ s + 1

(5)

where k equals
√

τ 2ω2 + 1. In this way, the ampli-
tude of the input can hold, while the time delay
of the component can be controlled by adjusting
the time constant τ . Furthermore, the frequency
ω need to be negative in order to make the phase
following the input, rather than going ahead of it.

One first-order low-pass filter can perform
(−90◦, 90◦) phase lag but exact 90◦ cannot be
reached; hence, three filters are employed to
achieve [0◦, 180◦] phase lag. In order to make the
format uniform, we rewrite the three first-order
low-pass filter to ODE style, which is expressed
in Eq. 6.⎧⎨
⎩

ẋ1 = (−x1 + kuin) /τ

ẋ2 = (−x2 + kx1) /τ

ẋ3 = (−x3 + kx2) /τ

(6)

Therefore, the controllable phase lag can be
obtained. For example, when ω = − π

10 , the robot
need a 180◦ phase lag to perform tripod gait, i.e.,
each filter has to generate a 60◦ delay. Suppose we
set τ to (tan (−π

3 )/ω), which is about 5.513, tripod
gait can be generated.

3.3 Model discussion

Our CPG model is simple compared with other
researchers’ models, such as in [16] and [30], which
are neural oscillators or each parameter has phys-
ical meaning, e.g. membrane potential or synaptic
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weight. The reason we do not select a model
founded from real insects’ neuron as the CPG
unit is, the robot would not be totally the same as
real insects, especially in the actuators. The robot
is always driven by motors or hydraulic devices
or pneumatic artificial muscles, while insects are
driven by real muscles, which have higher energy
efficiency. Moreover, the robot always employs
six identical legs, but each leg of insect is different.
Our model extracts the essential characteristics
of the neurons, such as spontaneous oscillating,
disturbance avoiding, etc., which is more suitable
for the robot control. The authors’ viewpoint is
similar to the one in [31]: a strict bio-mimicry
strategy is still not appropriate to the application
to robot.

4 Conversion of CPG signal to angular position

From the above analysis, we can obtain the central
oscillations of different gait patterns. So far, the
signal still cannot be applied to control the robot
or motors directly. They have to be converted to
joint space.

4.1 Mechanism design of the robot

In order to explore the performance of CPG
control in physical systems, a walking machine is
designed out to accomplish simulation and experi-
ment. The leg of real insect [7] contains the follow-
ing segments: Coxa, Trochanter, Femur, Tibia and
Tarsus (see Fig. 5). To imitate the leg structure of
the real insect and satisfy the engineering require-
ment, our hexapod walking machine consists of
six identical legs. Each leg has three joints (three
DOFs), as shown in Fig. 6. We define them in step
with Manoonpong [32]: the thoraco-coxal (TC-)
joint enables forward and backward movements,
the coxa-trochateral (CTr-) joint enables eleva-
tion and depression of the leg, and the femur-
tibia (FTi-) joint enables extension and flexion of
the tibia. It can be seen that the morphology of
this multi-jointed leg is modeled on the basis of a
stick insect or cockroach leg but tarsus segments
are ignored. Every joint is a rotary DOF, and the
footpoint can be regarded as a 3-DOF spherical

Fig. 5 Structure of the rear leg of a cockroach [7]

joint. The mechanical structure of the robot is
shown in Fig. 7, and the details of the leg are
shown in Fig. 8.

4.2 Angle value of TC- joint

The leg movement in one cycle can be divided into
four processes, as shown in Fig. 9. Process 1, 2 in-
dicate the transfer phase and Process 3, 4 indicate
the support phase. When this leg is at its transfer
phase, it swings to the anterior extreme position
(AEP) then it begins its support phase and moves
backward. Because of the counter force (frictional
force), the body is propelled to move forward until
the leg reaching its posterior extreme position
(PEP).

Footpoint

(Thoraco)
CTr-TC-

FTi-

Body
Femur

Tibia

Height

Coxa

Fig. 6 The model of leg mechanism
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Fig. 7 The prototype of our hexapod robot

For the TC- joint, it is at positive max value
when the footpoint of the leg is at AEP and
at negative max value when leg is at PEP. The
periods or frequencies for transfer phase and for
support phase are not always the same in different
gait pattern, although they together are related
to the global frequency ω. The TC- joint angles
must satisfy Fig. 10. When the leg is in Process
1, the joint angle recovers from the negative max
value to zero. Then, it increases to the positive

TC-

CTr-FTi-

Coxa

Femur

Tibia

Fig. 8 The leg mechanism and the corresponding joints
and links

Robot body

Moving direction

34

21
leg

support

swing

Fig. 9 The illustration of one leg movement cycle

max value at Process 2. The joint angle decreased
at Process 3 and 4 so as to perform the support
phase.

Now, we come to the question that, how to
convert the CPG signal to the angle value of TC-
joint?

Firstly, let us focus on the transfer phase. It can
only spend (1 − β) of one CPG cycle for the leg to
finish its transfer phase. Therefore, the period of
the transfer phase satisfies Eq. 7

1
2

Tt = (1 − β)T (7)

gait pattern diagram

The angle value of TC-joint

The CPG signal

Time(steps)

1.0

0.5

0.0
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-1.0

15
10

5

-5

-10
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0

1

2
3

4

Fig. 10 The top red wave indicates the CPG signal gen-
erated by the central oscillation. The middle orange wave
indicates the joint angle the TC- joint can reach. In one
period, 1,2 is the transfer phase and 3,4 is the support
phase, as shown in gait pattern diagram. In this figure,
β = 3

4 , i.e. 90◦ phase delay
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where Tt is the new period of the transfer phase
(actually the transfer phase only occupies half of
the period), and T is the original period of the
CPG signal. The frequency of the transfer phase
ωt can be expressed in Eq. 8.

ωt = 2π

Tt
= 2π

2(1 − β)T
= ω

2(1 − β)
(8)

The value of TC- joint should be at the negative
max value when the leg enters the transfer phase.
However, it equals the threshold value in original
CPG. So the phase angle of joint value ϕt should
be pulled ahead for some time, which is expressed
in Eq. 9.

ϕt =
(

1
2

− 1 − β

2

)
T = β

2
T (9)

The amplitude should be adjusted correspond-
ing to the mechanical property in case of interfer-
ence. Take β = 3

4 for example, ωt is 2ω and ϕt is
3
8 T. The oscillation is actually a series of discrete
points; therefore, the new series of points, which
are used to control the TC- joint angle, can be
obtained by: (a) choosing a point 3

8 T before the
current point, (b) skipping one point and choosing
another. The process is shown in Fig. 11.

Then, let us cope with the support phase. The
analysis method is the same as the transfer phase.
The frequency of the support phase ωs is pre-
sented in Eq. 10.

ωs = ω

2β
(10)

Compared with the original point series, the
phase angle should be pulled ahead for ϕs, which
is expressed in Eq. 11.

ϕs = 1 − β

2
T (11)

original point series

new point series

0 1 2 3 4 5

0 1 2 3

6
...

...

Fig. 11 This figure shows how to generate the new point
series in transfer phase. The frequency of new point series
is twice the original series. What need to be point out is, the
new point series have been pulled ahead for 3

8 T

original point series

new point series

0 1 2 3 4

0 1 2 3

...

...
4 5 6

Fig. 12 This figure shows how to generate the new series of
points in support phase. The frequency of new point series
is 2

3 the original series. The new series have been pulled
ahead for 1

8 T

Assuming β = 3
4 , ωs = 2

3ω and ϕs = 1
8 T. The

start point of the new point series should be 1
8 T

before the original series. Because the new fre-
quency is less than the original frequency, several
new points share one original point in some sit-
uations, see Fig. 12. Then a series of wave like
Fig. 10 shown is formulated, which can be applied
to control the TC- joint.

The CPG signal

The angle value of CTr-joint

The angle value of FTi-joint

Time(steps)
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transfer phase
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Fig. 13 The angle value of the CTr- joint and FTi- joint,
which represent the real angle of the two joints. It is
obviously the movement in transfer phase is intense than
the support phase for this two joints
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Fig. 14 The control
system structure of the
co-simulation shown in
Simulinks. The orange
module indicates the
model in ADAMS. The
MATLAB Fcn is used to
generate the angle values
of 18 motions. Two
scopes are used to watch
the joint angles and the
body center distance
respectively

4.3 Angle value of CTr- and FTi- joint

The approach to obtain the joint angles of CTr-
and FTi- is the same as the approach of TC- joint.
It can be divided into the steps below:

1. Consider the transfer phase and support phase
separately;

2. Calculate the period or frequency for transfer
phase and support phase;

3. Calculate the phase angle of the new series of
points;

4. Adjust the amplitude due to the mechanical
property, i.e., the length of the links. Exam-
ples of the actual value of the two joints are
shown in Fig. 13.

5 Simulation and experiment results

5.1 Simulations

In order to verify the validity of our CPG model,
the application of the algorithm described in the
previous sections is firstly illustrated with the help
of a simulation. The mechanical model, a hexapod
robot, has been introduced in the previous section,
where the lengths of the three links, coxa, femur
and tibia, are 26 mm, 85 mm, and 134 mm, re-
spectively. The narrowest part of the body is 106
mm, while the widest part, which is between the
two middle legs, is 136 mm. The body length is
170 mm. The prototype is built in the CAD soft-

ware — Solidworks, and then it is imported and
assembled in the simulation software — ADAMS.
All of the parts are designed by aluminum and
the actuators are modeled by a standard servo-
motor module. All of the 18 joints are revolute
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H
R

M
R

F
L

H
L

M
L

F

Time (steps)

wave gait tetrapod gait transition gait

Fig. 15 The current angles values used to control the robot
joint positions in the simulation and experiment. The first
row of wave is the original CPG signal. From top to bottom,
the waves stand for the different legs ordered by RH, RM,
RF, LH, LM and LF. The solid waves indicate the angle
value of TC- joints; the dot lines stand for the CTr- joints;
the dash lines correspond to the FTi- joints
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(a) The right three legs

(b) The left three legs

Fig. 16 The distance of the footpoints to the ground

pair. Every leg is set up a contact to the ground
so that the friction can drive the body forward.
The servo-motor is easy to accomplish position
control. Thus, it can be easily transplanted to the
physical prototype if the simulation passes.

The Matlab-ADAMS co-simulation is em-
ployed to demonstrate the correctness of the pro-
posed algorithm. The control system structure is
shown in Fig. 14. The positions, i.e. the joint an-
gles, are calculated in Matlab and are founded as
a m-function in Simulink. Motions which depend

on the revolution joints are created on all of the
joints. The motions use state variable values as
the position control signal. 18 plant inputs are
created and connected to the corresponding state
variable to obtain values from Matlab. Moreover,
we measure the distance of the body center in the
ground coordinate as a plant output (although we
don’t use it as feedback in the control system).
ADAMS/Control module is employed to export
the mechanical model in ADAMS as a component
in Simulink. Thus, the Matlab function calculated
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step=281 step=606 step=707

 step=895 step=1063 step=1302

Fig. 17 The screenshot of the ADAMS dynamic simulation

the joint angles in real time and ADAMS displays
the movement. We can also import the result files
from Matlab to ADAMS to reproduce the simula-
tion and watch the postprocessing results. In this
way, the robot can perform the joint movement
calculated in Matlab.

The three joint angles of the six legs are shown
in Fig. 15, which are calculated by the algorithm
stated previously. At first, the phase lag is set to
60◦, and the wave gait emerges. Then, the phase
lag is set to 90◦ at the time t = 47. The LF leg and

RH leg are move simultaneously at this time, so
are the LH and RF legs. At t = 118, the phase lag
is set to 120◦ so as to generate the gait whose duty
factor is β = 2

3 . With the increase of the phase
lag, the fraction of the transfer phase to the whole
walking cycle is enlarged.

In order to inspect the gait pattern satisfying
our demand or not, we create some markers to
measure the distance between the footpoint of
each leg and ground. Figure 16 illustrates the
simulation result. The legs are lifted up 30 mm to

1 2 3

4 5 6

Fig. 18 The screenshot of the real prototype experiment
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50 mm. At the first two walking cycles, the leg
swings sequently and each leg’s transfer time oc-
cupies one-sixth of the whole period. Each of the
middle three walking cycles is divided into four
steps. The legs swing for one step and recover for
three steps. The LF and RH legs are in one group,
and the RF and LH legs are in one group. The last
three cycles stand for the gait that the swing phase
occupied one-third of the walking period. At this
gait pattern, the RH leg moves immediately after
the RF leg touchdown, so are the left legs.

Figure 17 shows us the screenshots of the
ADAMS dynamic simulation. The black line
stands for the trajectory of the body center. It is
almost a straight line with only a little undulation
in the lateral direction and vertical direction. The
robot moves almost at a constant velocity, since
the frequency is maintained at a constant value,
ω = π

10 . There are no great changes of the foot-
points’ distance to ground. The gait pattern varies
fluently. The supplementary video I shows the gait
transition clearly. If we adjust the phase lag slowly
and don’t set it to the typical value, such as 60, 90,
etc., the gait transition would be smoother.

5.2 Physical prototype experiment

A physical prototype is built up to make the re-
sult more convincible. The actuators we used are
standard analog servo-motor. A controlling board
is equipped on the robot to convert the joint angle
values from serial port to Pulse-Width Modulation
(PWM) waves. The baudrate of the serial port is
115.2 kbit/s. The 18 joint angles are calculated at
an upper PC (Now we use Matlab to send the
instruction. Some embedded processor would be
equipped to the robot in future to make it totally
autonomous.) and sent to the controlling board
in real time. Figure 18 shows the experimental
screenshots. The supplementary video II shows
the experiment record.

The result is nearly the same as the simulation
except that the robot cannot walk so straight as in
simulation. We deduce that it is because different
legs have different friction from the ground, and
then some legs will slip. Therefore, foot contact
sensors are important to make the each leg’s pres-
sure equivalent in future works.

So we can draw a conclusion that our CPG
algorithm can perform the smooth gait transi-
tion via adjusting only one control parameter:
phase lag.

6 Discussion and comparison with other walking
control technologies

This paper addressed a locomotion control algo-
rithm for a hexapod robot inspired by the central
pattern generator in the insect’s neural system.
Several successful walking machines, which have
been introduced in Section 1 [12, 16, 19, 21–
23], have proved the effectiveness of this kind of
methodology via central oscillators. The common
points (also advantages) of these works and our
proposed algorithm include: the nonlinear oscilla-
tors show limit cycle behavior (i.e. stability), which
can be used to resist perturbations; inverse kine-
matics do not need to be calculated therefore we
don’t need to take the complicated geometric pa-
rameters of legs into consideration; period orbits
are produced by the ODE (Ordinary Differential
Equations) to generate oscillations and so on.
Buchli et al. [29] have discussed different oscilla-
tors and analyzed the similarities and differences
between them in detail.

Nevertheless, our algorithm is not only a new
model compared with others’ work, but also more
suitable for the hexapod robot’s locomotion con-
trol, especially when we concern the instant of the
gait varying.

As we all know, the more legs the robot owns,
the more gait patterns it shows. At the same time,
the more easily it becomes stable. For example,
the two legs are in swing and support phase alter-
nately in the bipedal locomotion in most cases. So,
more attentions are paid on the balance maintain-
ing when designing the humanoid robot. Although
nonlinear oscillators are also applied, Uchitane
et al. [33] employ some evolution strategies af-
terward to tune the parameters of CPG to avoid
mutation. Righetti et al. [34] raise some strategies
to shape the signal from the oscillator so that the
infant robot performs a stable trot-like gait. They
are all impressive works but the key point is not
the gait transition.
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For quadruped robot, gait modes can be at-
tributed to the following five types: walk, trot,
pace, gallop and bound, which are not so many
as the hexapod’s locomotion. Similar to biped
motion, dynamic balance issues should be taken
into account. Just because of this, models are
always complex enough to handle with some
disturbances caused by the leg contacts to obsta-
cles and body inclination while gait transition is-
sue is always not so important. Fukuoka et al. [12]
show a very impressive work that their quadruped
robot “Tekken” can walking on irregular terrains
adaptively. However, to change their gait modes,
three coupled parameters (θstance, τ and ω21) have
to be changed interdependently and it will affect
the stride and cyclic period (section 4.1 in litera-
ture [12]). Besides, the three parameters are ad-
justed manually, i.e., in an experimental attempt
method.

For hexapod robot, we nearly don’t need to
consider the dynamic balance problem because
the projected point of body center is always in
the polygon formed by the support legs. However,
the gait patterns become complex due to the in-
creasing of legs. In the previous works, gaits are
regarded as several different patterns discretely.
For example, Manoonpong [23] uses several P
(periods) to indicate gait patterns. Thus, the gait
transition could not be smooth (see Fig. 19a. It
spends more than 100 steps to vary the gait from
tetrapod gait to wave gait.) While, in our algo-
rithm, we nearly do not need time to stabilize
the oscillation when changing gait (see Fig. 19b).
Arena’s hexapod robot [16] does not refer to the
gait transition problems, either. They use tem-
plates to define gait patterns, which means the
design ideas is from the already known gait to
generate corresponding oscillator, rather than use
a universal oscillating model to perform gaits. In
general, our proposed model is better at coping
with the gait smooth transition issue, compared
with the previous works.

What’s more, the stride, oscillating frequency
and gait can be adjusted independently according
to the three parameters, r, ω and phase lag τ ,
respectively, because the model is at first defined
in polar coordinate. These kind of parameters
are always coupled together in previous works.

(a) Manoonpong’s work. The light yellow area indicates the
tetrapod gait. The light blue area indicates the wave gait.
The transient duration of the gait changing is shown in the
green area, which means the unstable time.

(b) The application of proposed algorithm in this paper. The
light yellow area indicates the wave gait while the light blue
area indicates the tetrapod gait.

Fig. 19 The comparison of the gait transition instant of
Manoonpong’s method [23] and ours. The result indicates
that there exists no transient process when gait changing of
our method, only a little bit overstrike at about the 500 step
(the dot-dash signal)

Besides, our model can perform some transient
gait which is not so common seen but important
in robot walking, such as τ = 75.

7 Conclusion and future works

In this paper, a CPG model constructed by
isochronous oscillator and first-order low-pass
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filter is proposed, after analyzing the insects’ gaits.
The isochronous oscillator has a limit cycle prop-
erty and it’s easy to be analyzed in polar coordi-
nate. The other two oscillators are essentially the
delay of the rhythmic signals. Therefore the gaits
are easily controlled by one parameter — phase
lag. The frequency and amplitude of the oscilla-
tion can also be controlled independently. After
transforming the CPG signal to joint space, sim-
ulation and real world experiment are given with
the postprocessed angular values, in which three
gaits and their smooth transition are performed.
Although only three gaits are tested, the other
gaits which are hard to name can be produced by
simply extend the algorithm (changing τ value).
The experimental results demonstrate the validity
of our CPG model.

Our future work will be the omnidirectional
walking via this algorithm and walking on uneven
terrains. Suppose there are some bumps or traps,
the legs may be stuck, and lead to the instability
of the robot. Therefore, some sensory information
should be employed as feedback, and some signal
shaping methods, such as that addressed in [34],
may be useful for adjusting the control of the legs.
Another interesting topic is to analyze the gait
from the viewpoint of energy consumption. Which
gait is more efficient? Which gait is more suitable
for flat terrain and which gait is more suitable for
rough terrain? It needs further research.
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