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Abstract This paper focuses on the system iden-
tification of a small unmanned helicopter in hover
or low-speed flight conditions. A novel genetic
algorithm including chaotic optimization opera-
tion named chaos-genetic algorithm (CGA) is
proposed to identify the linear helicopter model.
Based on the input-output data collected from
real flight tests, the identification performance of
CGA is compared with those calculated by the
traditional genetic algorithm (TGA) and the pre-
diction error method (PEM). The accuracy of the
identified model is verified by simulation in time
domain. Additionally, the small unmanned heli-
copter is stabilized by a linear quadratic Gaussian
(LQG) regulator based on the proposed iden-
tified model. In the automatic flight experiments,
the achievement of automatic take-off and land-
ing, hovering performance within a 1.2 m diam-
eter circle and point-to-point horizontal polyline
flight also demonstrates the accuracy of the iden-
tified model and the effectiveness of the proposed
method.
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1 Introduction

With the advantages relative to fixed-wing aircraft
that the helicopter can fly vertically and maneuver
in tight spaces, especially its ability of hovering
over interesting areas, small unmanned helicopter
has been much attractive both in the military and
the civilian application domains recently [1].

In terms of academic study, the complex non-
linear system is still drawing many researchers
to take the challenge of realizing the automation
of a small unmanned helicopter, especially the
design strategies of motion controllers based on
modern control theory to achieve the required
specification. And an appropriate system model
capable of capturing the main characteristics of
the helicopter is the basis for the design of a satis-
factory controller.

During recent years, the approaches to sys-
tem identification of a small unmanned helicopter
appear on the frequency domain and the time
domain. A frequency domain method developed
by the US Army and NASA named CIFER is
the high-quality extraction of a complete multi-
input/multi-output (MIMO) set of non-parametric
input-to-output frequency responses. The iden-
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tification of the linear models for R50/RMAX
helicopter in hover and cruise flight conditions
using CIFER is discussed in [2, 5]. Adiprawita
et al. [6] identified a simple model for a heli-
copter in X-Plane simulation. The secant method
in the frequency domain [7] is used to obtain
three semi-decoupled MIMO models for a small-
size helicopter at hover. However, the data for
frequency domain identification need expert pi-
lots to do the frequency sweep inputs to obtain
the desired frequency spectrum, which is difficult
for a normal pilot to control the helicopter due
to its instability. Additionally, for MIMO state
space model identification, the conversion of time
domain measurement data to frequency domain
data requires a considerable amount of data used
for removing the contaminating effects of partially
correlated control inputs from the extracted fre-
quency responses [8].

In the time domain system identification, a
multivariable output-error state space subspace-
based system identification [8] was used to pro-
duce a model that described the input-output re-
lationship of the original system model, where the
identified model is a “black-box” structure with
a reliable order. Morris et al. [9] used PEM to
identify a small scale helicopter placed on a 3DOF
stand, and the deriving model is used for the LQG
controller design at hover. Cai et al. [10] applied
the method PEM to identify the model of the yaw
channel of a helicopter which was represented by
a black-box state space model. Schafroth et al.
[11] identified four decoupled linear subsystems
of the muFly micro helicopter with PEM. By ap-
plying the least squares method, six SISO models
were derived to identify the helicopter’s physical
parameters in [12]. Raptis et al. [13, 14] used
the recursive least squares algorithm to identify
the model of a small unmanned helicopter which
was described by a traditional 6DOF rigid body
nonlinear model. Chen et al. [15] identified a
model helicopter’s yaw dynamics by using the
least squares method with the weighted factor
allocated by a single neuron. Bottasso et al. [16]
presented recursive and batch procedures to es-
timate the nonlinear model of a rotorcraft which
would be used to formulate trajectory optimiza-
tion problems.

It can be found that the above related works
mostly use local optimization algorithms based on
gradient search methods to find a local minimum
of the cost function. Recently, the evolutionary
computations technique based global optimiza-
tion algorithms are taken into consideration. Es-
pecially, the genetic algorithm (GA) is used to
identify the helicopter model. The linear models
for the dynamics of a helicopter in level flight
with constant speed were identified with the com-
bination of GA and Levenberg–Marquardt opti-
mization algorithms [17]. By using GA method,
two decoupled linear helicopter models in hover
flight were identified in [18], and Del et al. [19]
identified the parameters of the hybrid analytic-
empiric model of a helicopter. However, while
applying GA to solve large-scale and complex
parameters identification problems, the flaw that
the premature convergence will make it stuck at a
local optimum.

For overcoming the premature convergence of
GA, Yan [21] combined the GA and chaotic
variable to search the optimization of the op-
erational conditions based on RBF-PLS model.
Although the method had taken the ergodicity
and irregularity of the chaotic variable [21, 22] to
make the individuals of sub-generations distrib-
uted ergodically in the defined space to avoid from
the premature phenomenon, it did not effectively
combine the spatial search advantage of GA and
chaotic variable. In this paper, in order to get the
global optimal solution of the state space heli-
copter dynamic model in hover or low-speed flight
conditions, a chaos-genetic algorithm which in-
tegrates GA with chaotic optimization operation
was applied. The novel CGA applied here adopts
both the chaotic mapping of each generation of
population and the chaotic optimization of each
generation of outstanding individuals so that
the population diversity will be improved to
avoid premature convergence. The mechanism
of the GA is still kept so that the conver-
gence characteristic of GA will overcome the
randomness of the chaotic process. Based on
the above properties, the novel CGA will find
the global optimal solution in great probability.
The identification was implemented on a Raptor-
90 RC model helicopter with a set of avionics
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system. Three different identification methods
CGA, TGA and PEM [20] were used to de-
rive the helicopter models, and the comparison
of their performance based on the verification
results illustrated the advantages of the method
CGA.

The remainder of the paper is organized as
follows. In Section 2, the nonlinear and linear
helicopter models including the rigid body dy-
namics, the rotor /stabilizer-bar dynamics and
the artificial yaw damping system are presented.
In Section 3, the chaos-genetic algorithm is
developed to estimate the parameters of the lin-
ear helicopter model. The flight platforms, ex-
periment setup, identified results and automatic
flight controlled by an LQG regulator based on
the identified model are presented in Section 4.
The concluding remarks are finally provided in
Section 5.

2 Dynamics of a Small Unmanned Helicopter

The dynamic behavior of a small helicopter is
very complex with strong inter-axis and fuselage-
rotor coupling as well as inherent nonlinear-
ities. Nonetheless, it is suitable to treat the
overall helicopter’s dynamics as a nonlinear
MIMO state space model, and the derivation of
the equation of motion by treating the helicopter
as a rigid body with 12 state space variables re-
quired can form the basic model [2]. In addition,
for the small model helicopter used in this pa-
per, there are two main characteristics need to
be considered comparing with the normal size
helicopter. Firstly, a stabilizer-bar mounted on
the main rotor is used to improve the stabil-
ity of the pitching and rolling movements. Sec-
ondly, the model helicopter stabilize the yaw
axes with another electronic gyro applied on the
tail rotor. In the following, the model consist-
ing of rigid body dynamics, the rotor/stabilizer-
bar dynamics and the artificial yaw damping
system will be used for the system identification
of the helicopter in hover or low-speed flight
conditions.

2.1 Rigid Body Dynamics

The standard rigid body dynamical equations de-
rived from the Newton’s second law are used to
model the motion of the helicopter as:
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Where F and M denote the external forces and
moments acting on the center of gravity of the
helicopter respectively, m is the mass, I is the
rotational inertial matrix of the helicopter with re-
spect to the body-fixed reference frame, [u, v, w]T

and [p, q, r]T are the translational and rotational
velocities in the body-fixed coordinate frame re-
spectively as shown in Fig. 1. In this study, the
external forces F and the moments M are the
sum of the forces and moments due to the main
rotor, tail rotor, gravity and the fuselage aerody-
namic forces. The details of them can be found
in [2, 13, 14]. While the small helicopter works
in hover or low-speed conditions, the force and
moment caused by the fuselage can be ignored
[2]. Considering the pilot’s inputs, there are four
actuators used to change the pitch angles of the
main and tail rotor blades to generate forces and
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Fig. 1 The states in the body-fixed coordinates of the
helicopter
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moments on the helicopter. So the changes of F
and M are mainly caused by the tuning of the
actuators. In this paper, the control input to the
four actuators is defined as u = [ulat, ulon, um, ut]T ,
where um and ut are collective controls of the
main and tail rotor respectively, ulat and ulon

are the cyclic controls for pitching and rolling
correspondingly.

The rotation matrix RI2B transforming the in-
ertial coordinates into the body-fixed coordinates
using yaw-pitch-roll Euler angles is given as:

RI2B =
⎡
⎢⎣

cψcθ sψcθ −sθ

cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ

cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ

⎤
⎥⎦

(3)

Here, cα and sα are used as the abbreviations for
cos(α) and sin(α). The variables φ, θ and ψ repre-
sent the roll, pitch and yaw angles of the helicopter
in the body-fixed coordinates. The differential
equation relating [p, q, r]T with the Euler angles
[φ, θ, ψ]T is:
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The derivative of position with respect to the
earth coordinates is:

ṗ = R−1
I2B
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Where p = [px, py, pz]T is the position vector of
the center of gravity of the helicopter in the
earth coordinates. The combination of Eqs. 1–5
shows the dynamical equations of the rigid
body.

2.2 Rotor/Stabilizer-Bar Dynamics

The main rotor is the principal source of con-
trol forces and moments along the pitching and
rolling axes. In real flight, since the small heli-
copters have faster dynamics compared to normal
scale ones, the stabilizer bar is used to act as a
lagged-rate feedback system to help them fly. As
a consequence, additional dynamics considering
the stabilizer bar effects need to be added to
the whole dynamics of the helicopter. According
to [4], the rotor/stabilizer-bar dynamics can be
accurately approximated by a first-order system.
In this paper, the additional dynamics reads as
follows:

[
ȧs

ḃ s

]
=

[
−as/τs + k1 p − q + Alatulat

−b s/τs − k1q − p + Blonulon

]
(6)

Where as and b s represent the dynamics of the
flapping angles that influence the pitching and
rolling motion respectively. τs is a time constant
considering the effects of the stabilizer bar. k1,
Alat, Blon are just gains.

2.3 Artificial Yaw Damping System

In the real control of a small helicopter, an ar-
tificial yaw damping system with a yaw-rate gyro
is used to attenuate the effect of the anti-torque
fluctuation on the yaw response, which makes the
pilot control the vehicle easily. The introduced
yaw rate feedback can be regarded as a simple first
order system [3]:

rr f b

r
= kr

s + kr f b
(7)

Here, rr f b is the feedback gyro system state. kr

and kr f b are parameters to be identified. s is the
Laplace operator in the frequency domain.



J Intell Robot Syst (2012) 67:323–338 327

2.4 Nonlinear and Linear State Space Model

With the combination of the rigid body mo-
tion shown as Eqs. 1–5, the dynamics of the ro-
tor/stabilizer bar shown as Eq. 6 and the artificial
yaw damping system shown as Eq. 7, a nonlinear
helicopter system is defined as:

ẋnon = f(xnon, u) (8)

with xnon =[px, py, pz, u, v, w, θ, φ, ψ, p, q, r, rr f b ,

as, b s]T , and u = [ulat, ulon, um, ut]T .
Due to the complexity of the external forces

and moments acting on the helicopter, especially
the situation that the relative aerodynamic forces
are hard to be described totally and explicitly, it is
difficult to model the nonlinear helicopter system
fully. Usually, a linear model derived from the
nonlinear model by using the small perturbation
theory is able to capture the main characteristics
of the helicopter dynamic behavior near the trim
condition, such as hover or low-speed flight. Fur-
thermore, a linear model is often used for the de-
sign of helicopter flight control system. For a small
helicopter working in hover or low-speed flight
regimes, it has the true that ψ̇ ≈ r and ψ has little
couple relationship with other states in the vector
xnon. Considering the Eq. 8, it gets that the states
px, py, pz and ψ do not influence the dynamics
of p, q and r. So while linearizing the nonlinear
Eq. 8, the number of state variables is reduced
to 11.

By applying the small perturbation theory,
the linear model of the helicopter can be de-
rived. In addition, there is little coupling be-
tween the horizontal and vertical dynamics while
helicopter works in hover or low-speed flight
conditions, the system can be splitted into two
subsystems for horizontal and vertical motions.
and they are derived as shown in Eqs. 9
and 10.

δẋhor = Ahorδxhor + Bhorδuhor (9)

δẋver = Averδxver + Bverδuver (10)

Where δ denotes the perturbation from the trim
condition, and

xhor =[u, v, θ, φ, q, p, as, b s]T , uhor =[ulat, ulon]T ,

xver = [w, r, rr f b ]T , uver = [um, ut]T ,
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As shown above, there are thirty-three un-
known parameters in the system matrixes and
control matrixes. Some parameters can not be
directly identified from the input-output dada.
The assumptions [4] that Nr f b = −Nt and kr f b =
−2Nr were adopted in this paper. Consequently,
there are 22 and 9 parameters to be identified in
the linear models for the horizontal and vertical
dynamics respectively.

3 Chaos-Genetic Algorithm for the Continuous
LTI Helicopter Model Identification

3.1 One-Dimensional Logistic Map

In this paper, a well-known one-dimensional
logistic map [21] was used to modify the tradi-
tional genetic algorithm which would be applied
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to the continuous LTI helicopter model iden-
tification. The one-dimensional logistic map equa-
tion is defined as:

xk+1 = μxk(1 − xk) (12)

Where μ is a control parameter, k = 1, 2 · · · , n,
xk is the value of variable x at the kth iteration,
0 ≤ x1 ≤ 1. Suppose that 0 < μ ≤ 4, it can derive
that the series {xk} is bounded with 0 ≤ xk ≤ 1.
The behavior of the system (Eq. 12) is greatly
changed with the variation of μ. When μ = 4
and x1 ∈ (0, 1) − {0.25, 0.5, 0.75}, the system ex-
hibits chaotic dynamics that very small change
in the initial value of x would cause very large
difference in its long-term behavior. In this case,
the variable x is called as chaotic variable. As n
increases, the track of chaotic variable can travel
ergodically over the whole search space, and it
will never repeat a value having appeared already.
Figure 2 shows the chaotic dynamics of the logistic
map, where n = 500, μ = 4, x1 = 0.2. It indicates
the three other main properties of the chaotic
variable, i.e., ergodicity, pseudo-randomness and
irregularity [22].

3.2 Chaotic Optimization Operation

Considering an optimization problem of searching
maximum described as:

max
xi∈(ai,bi)

f (x1, x2, · · · , xN), i = 1, · · · , N (13)

Let x = [x1, x2, · · · , xN]T be the vector consisting
of N parameters to be optimized, then f is an
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Fig. 2 The dynamics of the one-dimensional logistic map
with n = 500, μ = 4 and x1 = 0.2

objective function with respect to the parameter
vector x. Define the restricted space Sr and
the normalized chaotic space Sc as {(x1,

x2, · · · , xN)|ai < xi < bi, i = 1, 2, · · · , N} and
{(chx1, chx2, · · · , chxN)|0 < chxi < 1, i=1, 2, · · · ,

N} respectively. The evolution process of the
chaotic optimization operator is defined as
follows:

Step 1 Introduce the initial vector x0 for the
objective function f and add little ran-
dom perturbation to every parameter in
x0, and then a new vector x1 is derived
with x1

j = (1 + � × (0.5 − rand j))x0
j, j =

1, 2, · · · , N. Here, � is a given positive
constant, rand j is a random number in the
range (0, 1).

Step 2 Adopt the one-dimensional logistic map
with μ = 4:

chxk+1
i = 4chxk

i (1 − chxk
i ), i = 1, · · · , N

(14)

Where chxk
i denotes the ith chaotic vari-

able after kth iteration.
Step 3 Map the parameters x1

1, x1
2, · · · , x1

N from
the restricted space Sr to the normalized
chaotic space Sc:

chx1
i = x1

i − ai

b i − ai
, i = 1, · · · , N (15)

Step 4 Calculate the second iteration chaotic
variables chx2

i by applying Eq. 14.
Step 5 Calculate the parameters x2

i by back-
mapping chx2

i from Sc to Sr as:

x2
i = ai + chx2

i (bi − ai), i = 1, · · · , N

(16)

Therefore, all parameters of the kth iteration
xk will be chaotically mapped forward shown as
Eq. 15 and backward shown as Eq. 16 to produce
the (k + 1)th iteration xk+1.

In this paper, the maximum iterations kmax is
used to indicate the termination criterion for the
chaotic optimization operation. During the above
process including the initialization and every it-
eration, the objective function f with respect to
xk, k = 0, 1, · · · , kmax is calculated immediately.
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Finally, the solution to the problem Eq. 13 would
be selected from xk, k = 0, 1, · · · , kmax, and it is
denoted as xopt.

The above procedure as a whole is named as
chaotic optimization operator for maximum rep-
resented by choo as:

xopt = choo(x0, kmax), s.t.Sr (17)

3.3 Chaos-Genetic Algorithm

In this paper, the real-coded chaos-genetic algo-
rithm is used for the identification of the LTI heli-
copter model, and it combines the traditional GA
operators and the chaotic optimization operator.
As an important part of the genetic algorithm, the
fitness function should be defined firstly. Since the
LTI model of the small helicopter is divided into
two decoupled parts, i.e., the horizontal model
and the vertical model, the parameters in Eqs. 9
and 10 can be identified separately. The cost func-
tion related to the error between the in-flight
measured responses and the relative simulated

responses obtained from the identified model with
the same measured inputs has the following forms:

f (	)=
M∑

i=1

[yi−ysim(δui, 	)]TM−1
cov[yi−ysim(δui,	)]

(18)

Where 	 is the vector of parameters with N el-
ements to be identified, y is the vector of obser-
vations from the flight test, ysim is the simulated
outputs from the proposed model with the para-
meter vector 	. M is the simulation length. Mcov

is the covariance matrix given as:

Mcov = 1
M

M∑
i=1

[yi − ysim(δui, 	)][yi − ysim(δui, 	)]T

(19)

In order to simplify the calculation, a diagonal
matrix considering different weights to each state

Fig. 3 The flow chart of
the chaos-genetic
algorithm
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is applied to replace the matrix Mcov. And the
fitness function can be designed as:

F(	) = 1
f (	) + 10−5 (20)

It indicates that the larger value F(	) is, the
more possible the parameters will match the dy-
namic model of the helicopter. The detailed pro-
cedure of executing the chaos-genetic algorithm is
described as follows (Fig. 3).

Step 1 Initialization. The CGA optimization
process begins by determining the
crossover probability pc, the mutation
probability pm and the maximum
number of generation mt. The initial
population 
1 is created with np

individuals 	1,1, · · · , 	np,1 which are
randomly produced from the parameters
restricted space Sr.

Step 2 Calculate the fitness function. Assign
a fitness value to each individual in

the kth generation population 
k by using
Eq. 20. The kth generation population is
denoted as 
k = {	1,k, 	2,k, · · · , 	np,k},
where 	i,k =[ϑi,k,1, · · · , ϑi,k,N], i=1, · · · ,

np.
Step 3 Execute the chaotic optimization opera-

tor choo over the full population 
k with
kmax = 2, and it derived that

	fc
i,k = choo(	i,k, 2), s.t.Sr, i = 1, · · · , np

(21)

The resulting population is denoted as

fc

k = {	fc
1,k, 	

fc
2,k, · · · , 	fc

np,k
}.

Step 4 Rank the individuals of the population

k in descending order of fitness, and
then select the top two percent of the
sorted individuals. For every selected in-
dividual 	fc

selecti,k
(selecti indicates the ith

selected individual), the corresponding
sub-restricted space is defined as:

Sfc
r,selecti,k =

{
	selecti,k

∣∣∣∣∣
|ϑselecti,k, j − ϑ fc

selecti,k, j| < 0.2 × |ϑ fc
selecti,k, j|

and, a j < ϑselecti,k, j < b j, j = 1, · · · , N

}
(22)

And then evolve every selected individu-
als by executing the procedure choo with
kmax = 500 in the sub-restricted space
Sfc

r,selecti,k
, the optimal individual can be

obtained as:

	
fc,opt
selecti,k

= choo(	fc
selecti,k, 500),

s.t.Sfc
r,selecti,k, i = 1, · · · , 2np/100

(23)

At the end of this step, the resulting in-
dividuals 	

fc,opt
selecti,k

, i = 1, · · · , 2np/100 to-
gether with the remaining unselected
individuals in 
fc

k make up a new popu-
lation as 


pc
k = {	pc

1,k, 	
pc
2,k, · · · , 	

pc
np,k}.

The above two steps both increase the di-
versity of the population in the evolution
process. With the third step operated, the
population will have the possibility to in-

troduce new possible individuals from the
whole search space. And the executing
of the fourth step is based on the con-
sideration that there may be better indi-
viduals in the sub-restricted space which
consist of the individuals near the top
two percent of individuals. As the indi-
vidual number for the operation choo in
the third step is larger, while that for the
fourth step is smaller, the iterations kmax

is set as 2 and 500 for the third and fourth
step respectively.

Step 5 Reproduction. Select the individuals
from the population 


pc
k according to

their fitness. In this paper, the deter-
ministic sampling which can guarantee
that fit individuals will be copied into
the mating pool is used for reproduction,
and the resulting population in the
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mating pool is denoted as 
s
k =

{	s
1,k, 	

s
2,k, · · · , 	s

np,k
}.

Step 6 Crossover. This link imitates the process
of biological evolution that a new indi-
vidual produced by the recombination of
two parent chromosomes. For real-coded
CGA, the arithmetic crossover operation
is used to preserve the constraint as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

	̃i,k = αi, j,k	
s
i,k + (1 − αi, j,k)	

s
j,k

i, j = 1, 2, · · · , np

	̃ j,k = αi, j,k	
s
j,k + (1 − αi, j,k)	

s
i,k

k = 1, 2, · · · , Gt

(24)

where αi, j,k is a random number assigned
by a value in the range (0, 1). Before exe-
cuting the crossover, the individuals in 
s

k
are paired randomly with np/2 pairs. For
each pair, the arithmetic crossover opera-
tion is executed only when the crossover
probability pc is larger than a random
number in the range (0, 1). The popula-
tion after crossover is denoted as 
c

k =
{	c

1,k, 	
c
2,k, · · · , 	c

np,k
}.

Step 7 Mutation. As an effective operator to in-
crease and retain the population diversity
in the processing of real-coded GA, there
are several kinds of mutation operation
for choice, such as the uniform mutation
operation, the non-uniform mutation op-
eration and the Gaussian mutation oper-
ation [23, 24]. The non-uniform mutation
has the feature of searching the space uni-
formly at the early stage and very locally
at the later stage [23], and the Gaussian
mutation performs better searching in a
small local area [24]. As described above,
the operation of Steps 3 and 4 contains
the properties of non-uniform mutation
and the Gaussian mutation. In this pa-
per, the uniform mutation operation is
employed, and the (k + 1)th generation
population 
k+1 will be obtained after
executing this step.

Step 8 Repeat the Steps 2–7 until the number of
generations reaches the allowable maxi-
mum number Gt.

XTend-PKG-RF Modem

DGPS Receiver

Navigation System

DGPS Antenna

Flight Control System

LiPo Batteries

Yaw-rate Gyro

Fig. 4 On board avionics systems mounted on the Raptor-
90 RC model helicopter

4 Experiments and Results

The entire experiments were implemented on a
Raptor-90 RC model helicopter platform (See
Figs. 4 and 5). The helicopter is characterized
by a rigid main rotor equipped with a Bell–Hill
stabilizer bar and actuated by five high bandwidth
digital servos. The avionics used to implement
the automatic control is composed by a GPS/INS
based navigation system, an embedded flight con-
trol system and a data communication system. The
navigation system consists of three-axis mag-
netometers, a static pressure sensor, a DGPS

Fig. 5 Actual flight experiment
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Fig. 6 Comparison of the
actual and estimated
Euler angles over a
validation range. Actual
data is solid, estimated
data from PEM model,
CGA model and TGA
model is dotted,
dashdotted, dashed
respectively
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receiver and an IMU unit which integrates three-
axis angular rate gyros and accelerometers. An
Extended Kalman Filter is used to fuse the values
of sensors to get the data of positions, velocities,
Euler angles and angular rates. The rotor speed
is controlled by a governor. An FPGA-based I/O
board was integrated in the flight control system
to drive the five onboard servos and to read pilot
commands through a standard Futaba transmitter.
The avionics systems have an accuracy of 0.2 m

RMS for the position, 0.03 m/s RMS for the lin-
ear velocity and 0.017 rad RMS for the attitude.
During the experiments, all control inputs and
vehicle state variables were sampled at 50 Hz and
recorded in a 4 GB flash memory on the flight
control system.

For identification, firstly, the pilot provided a
stabilizing trim command for the helicopter to
make it fly in hover. Secondly, small-signal ex-
citations around the trim produced by the pilot

Fig. 7 Comparison of the
actual and estimated
linear velocities over a
validation range. Actual
data is solid, estimated
data from PEM model,
CGA model and TGA
model is dotted,
dashdotted, dashed
respectively
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Fig. 8 Comparison of the
actual and estimated
angular velocities over a
validation range. Actual
data is solid, estimated
data from PEM model,
CGA model and TGA
model is dotted,
dashdotted, dashed
respectively
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were used to impose on the top of the aileron,
elevator, rudder and the collective trim. These
control inputs result in the rolling, pitching, yaw-
ing and up-and-down motions. The control inputs
and the relative raw state variables were sampled
and recorded.

Before identification, in order to remove the
effects of the trim and the structural vibrations,
the experimental data was preprocessed by pass-
ing through a ten-point average FIR filter (See
Eq. 25, −3 db @2.2 Hz) and executing the trim
removal.

yfilter(k) = 1
10

9∑
i=0

y(k − i) (25)

It is well known that the above FIR filter will
result in delay. In order to obtain no phase dis-
tortion, the above filter was implemented via the
Matlab function ‘filtfilt’ [25] which processes the
input data in both the forward and reverse direc-
tions. And the final result is an output sequence
with noise attenuation and no phase distortion.

In this paper, for running the genetic algorithm,
a population with five hundred individuals is used
due to the complexity of the fitness function
Eq. 20 with more than twenty parameters to be
identified once. The crossover probability and the

mutation probability are chosen as 0.9 and 0.1
respectively.

Figures 6, 7 and 8 show the simulation of the
identified models over a set of experiment data.
The performance comparison of three different
identification methods PEM [20], TGA, CGA
used to derive the helicopter models is also pre-
sented as the three-axis linear velocities, Euler
angles and angular velocities illustrated in Figs. 6–
8. It shows that these three methods can all get a
model that matches the trends of the real experi-
ment data. But it is obviously that the simulation
of the model generated by the method CGA ap-
proximates the experiment data best.

To verify the precision of the identified model
by applying the three different identification

Table 1 The comparison of the performance regarding
Eq. 26 by PEM, TGA and CGA

PEM TGA CGA

Forward velocity u 0.8914 0.9559 0.9871
Sideway velocity v 0.9461 0.9363 0.9814
Vertical velocity w 0.7074 0.7937 0.8576
Pitch angle θ 0.9197 0.7315 0.9498
Roll angle φ 0.9557 0.9627 0.9877
Pitch angular velocity q 0.8755 0.5867 0.8885
Roll angular velocity p 0.9597 0.9099 0.9689
Yaw angular velocity r 0.9624 0.9584 0.9723
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Fig. 9 The evolutionary
process regarding Eq. 18
by CGA vs. TGA
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methods, the correlation coefficient between
the measured (yi(t)) and estimated (ŷi(t)) data,
defined as the normalized cross-covariance func-
tion is used to estimate how well the identified
model can reproduce the measured data, and the
function is defined as:

ρ =
∑M

i=1(yi(t) − y)(ŷi(t) − ŷ)√∑M
i=1(yi(t) − y)2

∑M
i=1(ŷi(t) − ŷ)2

(26)

Where y = 1/M
∑M

i=1 yi(t) and ŷ =
1/M

∑M
i=1 ŷi(t). The closer the correlation

coefficient is to unity, the better the identified
model is. While the coefficient is close to zero, the
identified model is poor.

Table 1 compares performance regarding
Eq. 26 by PEM, TGA and CGA. The simu-
lated data generated from the model by using
the method CGA has the largest correlation
coefficient. Since the moment of inertia of the he-
licopter with respect to the pitching axis is larger

than that with respect to the rolling axis, during
the actual flight data collection, the amplitudes of
Euler angle θ and angular velocity q are smaller
than those of Euler angle φ and angular velocity p
with small-signal excitations provided by the pilot.
In this case, the identification result with respect
to the pitching axis will be influenced to some
extent. However, the simulated data can all track
the main trends of the experiment data as shown
in Figs. 6–8. Furthermore, as presented in Table 1,
the correlation coefficients about the pitching dy-
namics, i.e., θ , q and u by applying the TGA are
0.7315, 0.5867 and 0.9559 respectively, while those
by using the CGA are 0.9498, 0.8885 and 0.9871
respectively. The above indicates that the CGA
method can get better identified model with its
ability to discover the information contained in
the collection data.

Figure 9 shows the evolutionary process re-
garding Eq. 18 by CGA vs. TGA. It shows that
the CGA gets better fitness value than that with

Table 2 The values of the
identified parameters

Parameter Value Parameter Value Parameter Value

Xu −0.22682 Lb 81.318 Zw −0.2539
Yv −0.37992 k1 0.04521 Zr 2.0675
Mu −0.25847 τs 0.1438 Nw −0.2972
Mv 0.2389 Xlat −6.1176 Nr −7.5162
Mq 0.15592 Ylon 6.82024 Nr f b −30.5372
Ma −3.7369 Mlat −5.32552 kr 1.0673
Mb −35.057 Mlon −7.74152 kr f b 15.0324
Lu 0.95332 Llat −6.10456 Zm −3.2315
Lv −0.72645 Llon 10.384 Zt −6.1224
Lp −4.8079 Alat 2.64568 Nm −3.1891
La 51.199 Blon −3.0364 Nt 30.5372
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Fig. 10 The control
structure of the helicopter
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TGA due to the combination of the chaotic op-
timization operator and GA which enhances the
spatial search ability. The chaotic optimization
operator inherits the ergodicity and irregularity of
the chaotic variable can not only avoid the search
being trapped in local optimum, but also make the
search have more chance to get the solution in the
defined space. All of the above verifies the ad-
vantages of the method CGA used for identifying
the helicopter model. The identified parameters
by applying the method CGA are adopted for
controller design, and they are listed in Table 2.

Since there are some unmeasured states
(as, b s, rr f b ) in the linear models, the LQG tech-
nique is useful for controlling this type of model. It
is well known that the LQG controller is designed
from the combination of linear quadratic regu-
lator and linear quadratic estimator, named as
Kalman Filter. According to the separation princi-
ple, the optimal controller and optimal estimator
can be designed separately based on the linear
model. Figure 10 presents the control structure
used for implementing autopilot. For tracking the
predefined path, the path generator in Fig. 10
generates the reference velocity, the difference of
the position and heading. And then four PI con-
trollers (The gains are listed in Table 3) are used
to produce the difference of the velocity and the
yaw rate. These variables, together with the Euler
angles, the angular and linear velocities are then
used as the inputs for the LQG controller which
will output the control variables to be acted on
the actuators. Finally the helicopter is controlled
under autopilot.

Figure 11 shows an actual automatic flight of
the helicopter with the flight speed equal to 2 m/s,
and the predefined path is A → B → C → D →
E → F → G → H. The helicopter implemented
the automatic take-off from point A to point
B, and then tracked the polyline trajectory B →
C → D → E → F → G. When the helicopter ar-
rived at the point G, the helicopter executed the
hovering for lasting 20 s. Finally, it descended
vertically from the point G.

While implementing the automatic take-off
from point A, the path generator generated the
commands that the reference velocities uref, vref,
wref and angular velocity rref were set as 0 m/s,
0 m/s, −2 m/s and 0 rad/s respectively. Addi-
tionally, when the absolute value of the altitude
difference (defined as Herror) between the heli-
copter and the point B was larger than one meter,
the PI controller for the vertical position control in
Fig. 10 did not work with �zb set as 0. When Herror

was less than one meter, the reference velocity
wref was set as 0 m/s, and the PI controller for the
vertical position control worked.

For automatic landing from point G, the mech-
anism how the path generator generated the
commands was similar to that for the automatic

Table 3 The gains of PI controllers used for position
control

�xb �yb �zb �ψ

P 0.6 0.6 0.1 0.5
I 0.2 0.2 0.1 0.2
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Fig. 11 The real 3D flight
test under the control of
the LQG regulator
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take-off except that the direction of the reference
velocity wref was opposite.

Figure 12 presents the horizontal trajectory
of the fight path B → C → D → E → F → G.
While the helicopter was switching the waypoint,
it can be found that there were some overshoots
and oscillations around the points C, D and E.
That is because while the helicopter had reached
these points, the reference velocities uref and vref

were changed. In the future work, the normal

LQG controller will be modified with feedforward
and integral parts added. Also, the path generator
will be improved to generate more smooth refer-
ence signals for the LQG controller. Nonetheless,
the special show in Fig. 12 that the precision dur-
ing hovering at the point G was within a 1.2 m
diameter circle indicates the effectiveness of the
controller designed based on the identified model.
These further verify the accuracy of the identified
model and the effectiveness of the method CGA.

Fig. 12 The horizontal
trajectory of the real
flight test
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5 Conclusion and Future Work

Parameter identification of a small unmanned
helicopter model in hover or low-speed flight
conditions was investigated in this paper. With
the flight data collected from actual experiments,
a novel identification method CGA which in-
tegrates the chaotic optimization operation and
TGA was used to identify the parameters in
the two decoupled linear models. Furthermore,
other two identification methods PEM and TGA
were also used to identify the parameters, and
the simulation of the identified models gener-
ated by using the three methods was compared
with the actual experiment data. The comparison
indicates that the model generated by applying
the method CGA matched the actual flight data
better than the other two. Additionally, the evolu-
tionary process of CGA and TGA showed that the
CGA can get better fitness value than that from
TGA. Furthermore, an LQG controller designed
based on the identified model was used to stabi-
lize the helicopter. Actual automatic flight exper-
iment shows that the helicopter regulated by the
LQG controller can realize the automatic take-
off, landing, low-speed predefined path tracking
and hovering within a 1.2 m diameter circle. The
good consistency between experimental data and
simulation data demonstrated the accuracy of the
identified model and the adequacy of the iden-
tification method CGA.

Since the flight speed of the small unmanned
helicopter can reach 20 m/s or more, the future
work will focus on the modeling and identification
of the helicopter in different flight speeds. Since
the flight environment is full of disturbance, such
as wind, the robust control algorithm and intelli-
gent path tracking algorithm will also be consid-
ered to stabilize the inner loop of the helicopter
and guide the helicopter to follow the predefined
complex path respectively.
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