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Abstract This paper addresses the problem of
sensor fault detection for a wide class of Un-
manned Vehicles (UVs). First a general model for
UVs, based on the dynamics of a 6 Degrees Of
Freedom (6-DOF) rigid body, subject to gravity
and actuation forces, is presented. This model is
shown to satisfy the necessary conditions to the
existence of a non-linear observer (Thau) when
proper assumptions for the actuation forces are
made. The observer can thus be used to gener-
ate diagnostic residuals inside a Fault Detection
(FD) system. Finally, the proposed approach is
customized for sensor fault detection on an un-
manned quad-rotor vehicle, and simulation results
show the effectiveness of the adopted solution.

Keywords Model-based fault diagnosis · Fault
detection · Quad-rotor dynamics · Observers

A. Freddi · S. Longhi (B) · A. Monteriù
Dipartimento di Ingegneria dell’Informazione,
Università Politecnica delle Marche, Via Brecce
Bianche, Monte Dago, 60131 Ancona, Italy
e-mail: sauro.longhi@univpm.it

A. Freddi
e-mail: freddi@diiga.univpm.it

A. Monteriù
e-mail: a.monteriu@univpm.it

1 Introduction

In the last decades, autonomous unmanned aerial,
underwater and ground vehicles have generated
considerable attraction due to their strong au-
tonomy and ability to perform relatively difficult
tasks in remote, uncertain or hazardous environ-
ments where humans are unable to go.

The purposes of such Unmanned Vehicles
(UVs) are extremely various, ranging from scien-
tific exploration and data collection, to provision
of commercial services, military reconnaissance
and intelligence gathering. A number of UV sys-
tems have become available and research is on-
going in a number of areas that will significantly
advance the state of the art in UV technology.
Moreover designers have more freedom in the de-
velopment of such vehicles, not having to account
for the presence of a pilot and the associated life-
support systems. This potentially results in cost
and size savings, as well as increased operational
capabilities [9, 12].

Since these vehicles operate in an environment
subjected to a high degree of uncertainties and
disturbances, the problem of precise and accurate
control and estimation of these vehicles is difficult
and requires advanced control and estimation the-
ories [3, 8, 25]. On the other hand, with an increas-
ing requirement for control systems to be more
secure and reliable, fault diagnosis and tolerance
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in such control systems is becoming more and
more critical and significant [21].

Strong autonomy implies the ability of each
unmanned vehicle to work properly and safely for
a long time, and thus to successfully complete the
mission. In presence of undesirable effects such
as faults in the actuators or sensors, the vehicles
control systems must be responsive and adaptive
to such faults [10]. Specifically, one is required
to develop an autonomous fault diagnosis, health
monitoring and reconfigurable control systems.

An ad-hoc Fault Detection (FD) system is usu-
ally developed for the specific UV under consider-
ation, with the result that the developed diagnostic
system cannot be used for other UVs. This paper
deals with developing an observer-based diagnos-
tic system for a wide class of UVs, exploiting the
knowledge of the non-linear mathematical model,
used as a faithful replica of the UV dynamics. The
main problem to deal with is that the nonlinearity
of the UV model does not permit to exploit the
significant developments which have been made
in the area of model-based fault detection in linear
systems [4]. The proposed model-based approach
makes use of a Thau observer [4, 17, 24] to gen-
erate diagnostic signals - residuals. In the frame-
work of fault diagnosis, faults are detected by set-
ting a variable threshold on each residual signal.
The subsequent analysis of each residual, once a
threshold is exceeded, then leads to fault detection
[16]. This represents the essential information for
developing an effective fault tolerant system for a
wide class of UVs.

The contribution of this paper is to successfully
develop and apply a well-known diagnostic ob-
server technique to a wide class of UVs (aerial,
underwater or ground) modelled with a general
non-linear model in which each vehicle is consid-
ered as a six Degrees Of Freedom (6-DOF) rigid
body subject to gravity and actuation forces. This
model can be adapted to a specific application
simply specifying the physical parameters and the
actuation forces which do not alter the Lipschitz
properties of the model. In this way a full order
Thau observer [4] can be built to generate resid-
uals to be used inside a FD system. In faultless
situations, residuals remain around zero, while if
a fault occurs, their values change, permitting to
detect the fault.

A four-rotor aerial vehicle, known as quad-
rotor, is considered here to show the effec-
tiveness of the proposed diagnostic system which
is capable of detecting faults on the onboard iner-
tial measurement unit. A quad-rotor is an under-
actuated system with four independent inputs and
six coordinate outputs. This vehicle has been cho-
sen by many researchers as a very promising vehi-
cle for indoor/outdoor navigation [1, 2, 13, 23].

The paper is organized as follows. In Section 2,
the nonlinear model for a wide class of unmanned
vehicles is derived and presented. The fault de-
tection system is described and developed for the
considered class of UVs in Section 3. Section 4
is devoted to the presentation of the simulation
results obtained for various fault scenarios when
the proposed fault detection scheme is applied
to a particular UV system, namely a four-rotor
aerial vehicle. Conclusions and future directions
are presented at the end of the paper.

2 Mathematical Model for Unmanned Vehicles

In this section a general model for a wide class
of UVs, suitable for the construction of a Thau
observer for FD purposes, is proposed. The UV
is regarded as a 6-DOF rigid body subject to
gravity and actuation forces. The solution which
will be described in the next section, is thus suit-
able for UVs whose dynamics can be manly de-
scribed using the rigid body approximation subject
to gravity and actuation forces, as long as the
assumptions described below are satisfied. The
rigid body dynamics is described using an Euler-
Lagrangian formulation in which three assump-
tions are made. These assumptions allow to derive
a simple model which, at the same time, is com-
plex enough to account for the major dynamics of
a rigid body moving freely in all the six degrees of
freedom.

Two frames are used to study the system mo-
tion: an inertial earth frame {RE} (O, x, y, z), and
a body-fixed frame {RB} {OB, xB, yB, zB}.

Assumption 1 OB is placed at the center of mass
of the rigid body.
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In this way {RB} is related to {RE} by a position
vector ξ = [

x y z
]T

, describing the position of the
center of gravity in {RB} with respect to {RE}
and by a vector of three independent angles η =
[
φ θ ψ

]T
, respectively roll, pitch and yaw, which

represent the orientation of the body-fixed frame
{RB} {OB, xB, yB, zB} with respect to the earth
frame {RE} (O, x, y, z). The adopted notation is
based on the assumption that the earth frame
{RE} (O, x, y, z) can reach the same orientation
of the body-fixed frame {RB} {OB, xB, yB, zB} by
first performing a rotation of an angle ψ around
the z-axis (yaw), then a rotation of an angle
θ around the new y-axis (pitch) and finally a
rotation of an angle φ around the new x-axis
(roll). All the rotations are right-handed with(−π

2 � φ � π
2

)
,

(−π
2 � θ � π

2

)
, and ψ is unre-

stricted. Note that the considered UVs usually
work with much more conservative angles and the
above constraints on φ and θ are widely satisfied
in common real applications, and thus should be
seen as an unreacheable limit.

The translational kinetic energy of the vehicle
is expressed as [22]

Ttrans � 1
2

mξ̇
T
ξ̇ (1)

where m denotes the whole mass of the rigid body.
The rotational kinetic energy is given by [19]

Trot � 1
2
η̇TJη̇ (2)

where J is the inertia matrix expressed directly in
terms of the generalized coordinates η

J = WT
η IWη (3)

with

Wη =
⎡

⎣
1 0 −Sθ

0 Cφ SφCθ

0 −Sφ CφCθ

⎤

⎦ (4)

where S(.) and C(.) represent sin (.) and cos (.)

respectively, and I is the moment of inertia tensor.

Assumption 2 The body frame axis are the prin-
cipal inertia axis of the rigid body.

With this assumption one can express matrix I
as a diagonal matrix

I �

⎡

⎣
Ixx 0 0
0 Iyy 0
0 0 Izz

⎤

⎦ , (5)

and thus

J =

⎡

⎢
⎢
⎣

Ixx 0 −IxxSθ

0 IyyC2
φ + IzzS2

φ

(
Iyy − Izz

)
SφCφCθ

−IxxSθ

(
Iyy − Izz

)
IxxS2

θ + IyyS2
φC2

θ

× SφCφCθ + IzzC2
φC2

θ

⎤

⎥
⎥
⎦ .

(6)

The only potential energy which needs to be
considered is due to the gravitational field. There-
fore, potential energy is expressed as

U = mgz . (7)

Let q = [
ξT ηT

]T = [x, y, z, φ, θ, ψ]T ∈ R
6 be

the generalized coordinates vector for the rigid
body, the Lagrangian is given by

L
(
q, q̇

) = Ttrans + Trot − U =

= 1
2

mξ̇
T
ξ̇ + 1

2
η̇TJη̇ − mgz

= 1
2

mq̇TMq̇ + 1
2

q̇TNq̇ − oTq

where M =
[

I3×3 03×3

03×3 03×3

]
, N =

[
03×3 03×3

03×3 J

]
and

o = [
1 1 mg 1 1 1

]T
.

The model for the vehicle dynamics is obtained
from the Euler-Lagrange equations with external
generalized force FE

.= [
FT

ξ τ T
η

]T
:

d
dt

(
∂L
∂q̇

)
− ∂L

∂q
= FE (8)

Fξ defines the translational force applied to the
rigid body due to the control inputs and relative to
the frame {RE}, and τ η is the generalized torques
vector.

Denoting with F0 the translational force ap-
plied to the rigid body due to the control inputs
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and with τω the torques vector, both expressed
using the body frame coordinates, one can write:

Fξ =RBEF0 (9a)

τ η =RBEτω (9b)

where RBE is the rotation matrix which allow to
express in earth frame coordinates a vector previ-
ously expressed using the body frame coordinates.

RBE =
⎡

⎣
CθCψ Cψ Sθ Sφ−Cφ Sψ CφCψ Sθ +Sφ Sψ

Cθ Sψ Sθ Sφ Sψ +CφCψ Cφ Sθ Sψ −Cψ Sφ

−Sθ Cθ Sφ CθCφ

⎤

⎦ .

(10)

Note that for a generic rigid body evolving in
space, both F0 and τω should depend on ξ , η and
the system input vector, namely u.

Assumption 3 The contribution of the small body
forces (Euler, centrifugal and Coriolis) to the set
of equation describing the translational dynamics
is neglectable.

This assumption implies that the Lagrangian
contains no cross-terms in the kinetic energy com-
bining ξ̇ and η̇ [3], thus the Euler-Lagrange equa-
tion can be partitioned into the dynamics for
the ξ coordinates and the dynamics for the η

coordinates:

mξ̈ +
⎡

⎣
0
0

mg

⎤

⎦ =Fξ (11a)

Jη̈ + J̇η̇ − 1
2

∂

∂η

(
η̇TJ

)
η̇ =τ η (11b)

Defining the Coriolis matrix as

Fc (η, η̇) = J̇−1
2

∂

∂η

(
η̇TJ

)
(12)

the expression 11b can be rewritten as

Jη̈ + Fc (η, η̇) η̇ = τ η (13)

where

Fc (η, η̇) =
⎡

⎣
F11 F12 F13

F21 F22 F23

F31 F32 F33

⎤

⎦ (14)

and

F11 = 0 (15a)

F12 = 1
2

(−ψ̇cθc2
φ + 2θ̇cφsφ + ψ̇cθ s2

φ

) (
Iyy − Izz

)

(15b)

F13 = − θ̇cθ Ixx

− 1
2

cθ

(
θ̇c2

φ + 2ψ̇cθcφsφ − θ̇s2
φ

) (
Iyy − Izz

)

(15c)

F21 = 1
2
ψ̇cθ Ixx (15d)

F22 = − 2φ̇cφsφ

(
Iyy − Izz

) + 1
2
ψ̇cφsθ sφ

(
Iyy − Izz

)

(15e)

F23 = (
φ̇cθc2

φ − θ̇cφsθ sφ − φ̇cθ s2
φ

) (
Iyy − Izz

)

+ 1
2

(
φ̇cθ Ixx − 2ψ̇cθ sθ Ixx + θ̇cφsθ sφ Iyy

+ 2ψ̇cθ sθ s2
φ Iyy + 2ψ̇cθc2

φsθ Izz − θ̇cφsθ sφ Izz
)

(15f)

F31 = − θ̇cθ Ixx (15g)

F32 = (
φ̇cθc2

φ − θ̇cφsθ sφ − φ̇cθ s2
φ

) (
Iyy − Izz

)

(15h)

F33 = 2cθ

(
θ̇sθ Ixx + φ̇cθcφsφ Iyy − θ̇sθ s2

φ Iyy

−θ̇c2
φsθ Izz − φ̇cθcφsφ Izz

)
. (15i)

Since J is nonsingular, the equations of motion
for the rigid body can be finally expressed as

mξ̈ =Fξ +
⎡

⎣
0
0

−mg

⎤

⎦ (16a)

η̈ =J−1 [
τ η − Fc (η, η̇) η̇

]
(16b)

It is our claim that the assumptions made in
order to derive the model described by Eqs. 16a
and 16b do not imply a significative reduction to
the model capability of describing the dynamics of
a generic 6-DOF rigid body. In particular, in the
Assumption 1, the origin of the body frame can
be chosen to coincide with the center of gravity
of the body frame whenever the geometry and
the mass distribution of the vehicle is well known.
This is the case for many UVs with fixed mass.
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In Assumption 2, by the spectral theorem, there
is always a Cartesian coordinate system in which
the inertia tensor is diagonal. It is sufficient to
find the suitable coordinate system and use it as
the body frame coordinate system. In Assumption
3, neglection of the small body forces allows to
obtain a simplified model. This simplification is
justified by the fact that in common UVs the
effect of actuation forces on the system dynamics
is several times greater than that of small body
forces.

3 The Fault Detection System

A fault detection system is usually made of two
main components: a residual generation module
and a residual evaluation module. The residual
generation module has the task to use information
both from the model and from the actual inputs
and outputs of the system to provide a signal
whose value should be almost zero when no fault
is affecting the system, while it should differ from
zero when a fault is present. The residual evalua-
tion module, instead, has the task to provide the
correct interpretation of the residual signal in or-
der to reduce (theoretically to zero) the number of
false alarms. In this paper we focus our analysis on
both residual generation and residual evalution.

The easiest solution when dealing with model-
based techniques for residual generation in non-
linear systems is to apply linear techniques based
on the linearized model of the system around a
proper working point. In [6], for instance, the au-
thors realize a number of Auto Regressive eXoge-
nous models to be used for FDI purposes. How-
ever this solution is suitable only for those vehicles
operating most of the time near the considered
conditions. In all the other cases there are two
possible solutions: linearizing the system around
different operating conditions or using a non-
linear model-based approach. Among the non-
linear approaches known in literature, one can
find the extended and unscented Kalman filters
(see, e.g., [18] and [20]), the structural analysis [14]
and several non-linear observers for Lipschitz sys-
tems [26].

This section describes how to put Eqs. 16a and
16b in a suitable form to apply a Lipschitz nonlin-

ear observer for residual generation, namely the
Thau observer, and derives the class of unmanned
vehicles to which the proposed solution can be
adopted. The obtained residuals can be evaluated
using an adaptive threshold policy, built using a
linear combination of mean value, variance and
a constant value updated on a moving window.
The proposed evaluation technique is detailed in
Section 3.3.

3.1 Mathematical Model in State Space Form

Let us consider Eqs. 16a and 16b and put them in
state space form by choosing x = [x1 x2 . . . x12]T

as

[
x1 x2 x3 x4 x5 x6

]T = [
x y z φ θ ψ

]T
(17a)

[
x7 x8 x9 x10 x11 x12

]T = [
ẋ ẏ ż φ̇ θ̇ ψ̇

]T
(17b)

The system dynamics can thus be written as

⎡

⎣
ẋ1

ẋ2

ẋ3

⎤

⎦ =I3×3

⎡

⎣
x7

x8

x9

⎤

⎦ (18a)

⎡

⎣
ẋ4

ẋ5

ẋ6

⎤

⎦ =I3×3

⎡

⎣
x10

x11

x12

⎤

⎦ (18b)

⎡

⎣
ẋ7

ẋ8

ẋ9

⎤

⎦ = 1
m

Fξ −
⎡

⎣
0
0
g

⎤

⎦ (18c)

⎡

⎣
˙x10

˙x11

˙x12

⎤

⎦ =J−1

⎛

⎝τ η − Fc

⎡

⎣
x10

x11

x12

⎤

⎦

⎞

⎠ (18d)

where Ii×i is an identity matrix of dimension i. The
dynamics can be written in a compact form as:

{
ẋ(t) = Ax(t) + h(x(t), u(t))
y(t) = Cx(t)

(19)

where A =
[

06×6 I6×6

06×6 06×6

]
, C = [

I6×6 06×6
]

and

h(x, u) is a vector whose first six components are
“0” and the other six components are the right-
terms of Eqs. 18c and 18d. The form of the output
matrix C implies that linear and angular positions,
relative to the earth frame, are accessible.
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3.2 Residual Generation

Thau [24] developed an observer for a special class
of non-linear systems. This observer has already
been applied to the fault detection and isolation of
non-linear dynamic systems and uses the following
non-linear system model [4]:

{
ẋ(t) = Ax(t) + Bu(t) + h(x(t), u(t)) + F1γ (t)
y(t) = Cx(t) + F2γ (t)

(20)

where x ∈ R
n is the state vector, u ∈ R

r is the input
vector, y ∈ R

p is the output vector, γ ∈ R
h is the

fault vector, A, B and C are known system ma-
trices with appropriate dimensions, h(x(t), u(t))
represents the nonlinearity, and F1 and F2 are
known fault entry matrices which represent the
effect of faults on the system.

For developing the Thau observer, the sys-
tem model 20 has to satisfy the two following
conditions:

(c1) the pair (C, A) must be observable;
(c2) the non-linear function h(x(t), u(t)) must

be continuously differentiable and locally
Lipschitz with constant 
, i.e.

||h(x1(t), u(t)) − h(x2(t), u(t))||
≤ 
||(x1 − x2)||, ∀x1, x2 ∈ R

n . (21)

When these two conditions are satisfied, a stable
observer for the system 20 has the form
⎧
⎨

⎩

˙̂x(t) = Ax̂(t) + Bu(t) + h(x̂(t), u(t))
+ K(y(t) − ŷ(t))

ŷ(t) = Cx̂(t)
(22)

where K is the observer gain matrix defined by

K = P−1
δ CT . (23)

The matrix Pδ is the solution to the Lyapunov
equation

AT Pδ + Pδ A − CT C + δ Pδ = 0 (24)

where δ is a positive parameter which is chosen
such that Eq. 24 has a positive definite solution.

In order to apply the observer of Eq. 22 to the
system described by Eq. 19, it is necessary to state

when conditions (c1) and (c2) are satisfied. The
following propositions hold true.

Proposition 1 For the system described by Eq. 19
the pair (C, A) is observable.

Proof The observability matrix results

O = [
CT (CA)T (CA2)T · · · (CA11)T

]T
(25)

where
[
CT (CA)T

]T = I12, while CAi = 0(6×12)

(i = 2, . . . , 11). Thus the observability matrix has
full rank, and the pair (C, A) is observable.

��
Condition (c1) is thus always satisfied as long

as the system described by Eq. 19 has accessible
linear and angular positions relative to the earth
frame.

Proposition 2 Suppose that F0(x, u) and τω(x, u)

(see Eq. 9a) are C1 (i.e. the partial derivatives
with respect to the state variables exist and are
continuous) and that u(t) is continuous in t. Then
in Eq. 19 the non-linear function h(x, u) is con-
tinuously dif ferentiable and locally Lipschitz with
constant 
.

Proof From [7] we know that, given a function
f (t, x), continuous together with its partial deriv-
atives ∂ f

∂x (t, x) on [a, b ] × D ⊂ R
n, then f (t, x) is

locally Lipschitz in x on [a, b ] × D. By definition
we know that if a multivariable function is contin-
uously differentiable (i.e. it is of class C1), then its
partial derivatives exist and are continuous. Since
the input u is supposed to be continuous in t and
the state vector x is continuous in t, then it is
sufficient to show that f (t, x) is of class C1 to prove
the proposition.

h(x(t), u(t)) has thus to be of class C1. Let us
analyze separately Eqs. 18c and 18d. The first term
is:

⎛

⎝ 1
m

Fξ −
⎡

⎣
0
0
g

⎤

⎦

⎞

⎠ =
⎛

⎝ 1
m

RBEF0(x, u) −
⎡

⎣
0
0
g

⎤

⎦

⎞

⎠

(26)
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whose non-constant elements are due to the prod-
uct of RBE and F0(x, u). Since RBE contains only
sine and cosine non-linearities (see Eq. 10), it is of
class C∞. However, by hypothesis, we assume that
F0(x, u) is of class C1, and thus the product term
expressed in Eq. 18c is of class C1 too.

Let us analyze the second term (Eq. 18d):

J−1

⎛

⎝τ η − Fc

⎡

⎣
x10

x11

x12

⎤

⎦

⎞

⎠ = J−1

⎛

⎝RBEτω − Fc

⎡

⎣
x10

x11

x12

⎤

⎦

⎞

⎠

(27)

As already said before RBE is of class C∞. Ma-
trix Fc (see Eqs. 15a and 15i) is made of elements
which are the algebraic sum of products between

– sine and cosine terms of the state variables x4,
x5 and x6;

– the square of sine and cosine terms of the state
variables x4, x5 and x6;

– state variables x8, x9 and x10;

and it is of class C∞ too. Matrix J−1 (see Eq. 6) is of
class C∞ as long as the constraints (−φl < φ < φl),
(−θl < θ < θl) are satisfied, where |φl| � π

2 and
|θl| � π

2 . By hypothesis τω is of class C1, thus
the term expressed in Eq. 18d is of class C1.
It follows that function h(x, u) is continuously
differentiable.

��
Condition (c2) is thus satisfied as long as the

actuation forces acting on the system are “smooth
enough” and time-continuous. This means that
UVs with time-continuous inputs and fixed actua-
tors are always good candidates, while UVs whose
actuators vary their position in time can result in
good candidates depending on the motion of the
actuators. It is our belief, however, that most UVs
satisfy condition (c2) at least near conservative
operating points as usually adopted in many ap-
plications (e.g. hover for flying vehicles, straight
motion for ground vehicles, etc).

When conditions (c1) and (c2) are satisfied,
a Thau observer can be built for FD purposes.
Attention must be paid in the choice of the δ value
(see Eq. 24), as this value describes how fast the
output of the observer converge to the output of
the system. A fast converging estimation of the

state is not usually desirable for diagnostic pur-
poses, as it may hide the fault effect briefly after
its appearance. It is thus necessary to choose the δ

value properly. Usually this is achieved using trial
and error procedures, according to the application
scenario.

3.3 Residual Evaluation

Due to the model uncertainties and measurement
noise, in practical situations, the residual is never
zero, even when no faults occur [4]. A threshold
policy must be then used, to achieve a robust fault
detection. Robustness is achieved using adaptive
thresholds [15]. These proposed moving thresh-
olds are built using a linear combination of mean
value, variance and a constant value updated on
a moving window, which must be tuned according
to the application using a trial and error approach.
The equations used for the generation of the i-th
upper threshold �i, and the i-th lower threshold
δi are:

�i = K1i

T

∫ t+T

t
ri (τ ) dτ + K2i

T

∫ t+T

t

×
(

ri (τ ) − 1
T

∫ τ+T

τ

ri (σ ) dσ

)
dτ + K3i

(28a)

δi = k1i

T

∫ t+T

t
ri (τ ) dτ + k2i

T

∫ t+T

t

×
(

ri (τ ) − 1
T

∫ τ+T

τ

ri (σ ) dσ

)
dτ + k3i

(28b)

where k1i, k2i and k3i are the weights for the lower
threshold, K1i, K2i and K3i are the weights for
the upper threshold and T is the moving window
period.

In order to choose properly the values of these
parameters, a specific procedure must be fol-
lowed. First of all, the vehicle (or simulator) must
be functioning in a stable position (e.g.: hover
for aerial vehicles and no actuation required for
ground and marine vehicles) and each residual
must be analyzed, such that it is possible to ob-
tain approximate but useful information about the
noise and disturbances acting on the vehicle. For
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each residual ri(t), a time serie of length τi (0 < t <

τi) must be collected. Parameters k3i and K3i must
be chosen such that the i − th residual is always
k3i < ri(t) < K3i during the specified time serie.
From a theoretical point of view, these two pa-
rameters include in the threshold the information
about noise and disturbance of the vehicle when
no dynamics is excited.

The second parameter to choose is T. T is
constant and the same for all the residuals. It rep-
resents the time window during which the prop-
erties of the residual are evaluated to build the
threshold. If T is chosen small, then it will quickly
follow the residual, however the threshold built
upon it would be prone to several false alarms.
In a similar way, if T is chosen big, then it will
contain a lot of information about the residual and
the threshold built upon it would be less prone
to false alarms, but the detection time of the FD
system would increase due to the slow dynamics
of the threshold. The choice of T is thus a trade-
off between false alarm rate and detection time.

If the constraint to satisfy implies a restriction
on the detection time, then a fault can be simu-
lated (in the sensors of the real system or in the
simulator) and T chosen such that the detection
time satisfies the time constraint when the para-
meters k3i and K3i are those chosen before, while
k1i, k2i and K1i, K2i are zero. If the constraint to
satisfy implies a restriction on the false alarm
rate, then a fault can be simulated (in the sensors
of the real system or in the simulator) and T
chosen such that the false alarm rate satisfies the
constraint when the parameters k3i and K3i are
those chosen before, while k1i, k2i and K1i, K2i

are zero. Note that, once the fault alarm rate has
been fixed, than the detection time depends on
it, and vice versa, however they can be improved
with a proper choice of the remaining parameters
k1i, k2i and K1i, K2i. The procedure of simulating
a fault on the vehicle and adjust T according to
the main constraints on the system is effective (as
it will be shown in simulation in the Section 4.2),
however it depends on the type of the fault used
for the test. The choice of k1i, k2i and K1i, K2i,
instead, depends mainly on the type of fault which
must be detected. For additive faults, usually k1i

and K1i are set close to 1, and k2i and K2i are at
least a magnitude order less than k1i and K1i. For

multiplicative faults, k2i and K2i must be greater
than k1i and K1i.

Because of its effectiveness, low complexity
and high customizability, the proposed threshold
process can be applied for residual evaluation of a
wide class of unmanned vehicles scenarios.

4 The Quad-rotor Vehicle: A Case of Study

We decided to test the proposed diagnosis system
on a four-rotor aerial vehicle, also called quad-
rotor (Figure 1). This vehicle is an interesting and
challenging case of study, and it has been chosen
by many researchers as a very promising vehicle
for indoor/outdoor navigation using multidiscipli-
nary concepts [1, 2, 13, 23].

Before testing the FD system on a real quad-
rotor vehicle, aim of our future research activities,
we decided to validate it in a simulation scenario,
where the real system has been replaced by a sim-
ulator based on a complex mathematical model,
described in Appendix A.

In order to develop the proposed diagnostic
system, the quad-rotor is modeled with Eqs. 18a–
18d, and the diagnostic observer (Eq. 22) is built
on them.

Note that the simulator dynamics described by
the model of Appendix A is more comprehensive
than one described by Eqs. 18a–18d. In this way
the simulation represents a good testbed to show
the robustness against model uncertainty of the
proposed FD system.

4.1 Simulation Scenario

A common scenario for a quad-rotor vehicle con-
sists on environment surveillance and data col-
lection. For these purposes, the quad-rotor has
to reach desired targets of the considered envi-
ronment, and has to remain in hovering flight
over them. Comparing the duration of hovering
flight with respect to that of forward/lateral flight,
typically the second one is smaller than the first
one. For this reason, in this study we focus on
the quasi hovering flight conditions. Note that the
considered study case is typical for such vehicles
but the proposed diagnostic observer can be suc-
cessfully applied to different scenarios as well.
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Fig. 1 Quad-rotor
rotorcraft

An unmanned quad-rotor system is usually
equipped with either a GPS receiver (outdoor op-
eration) or a vision system (indoor flight) and an
Attitude and Heading Reference System (AHRS)
which provide linear and angular positions of the
vehicle. These sensors used in autonomous heli-
copters can fail in several ways [6]. Some failure
types are general for various sensors, while others
are specific of a single sensor. In our scenario,
the system outputs are the position in the earth
frame (x, y and z) and the attitude angles (φ,
θ and ψ). The faults simulated are additive and
incipient (ramp-like faults), and affect the AHRS
while the quad-rotor operates in near hover flight
conditions as described above.

The residuals are built as the difference be-
tween the system outputs and the proposed diag-
nostic observer outputs, that is to say:

r1(t) = x(t) − x̂(t) (29)

r2(t) = y(t) − ŷ(t) (30)

r3(t) = z(t) − ẑ(t) (31)

Table 1 Parameters of lower and upper thresholds

δi �i

k1i k2i k3i K1i K2i K3i Ti

i = 1, 2, 3 1 0.05 −0.0125 1 0.05 0.0125 12
i = 4, 5, 6 1 0.05 −0.05 1 0.05 0.05 12

r4(t) = φ(t) − φ̂(t) (32)

r5(t) = θ(t) − θ̂ (t) (33)

r6(t) = ψ(t) − ψ̂(t) (34)

which are supposed almost zero as long as there
are no faults on the sensors and are different from
zero in case of faults. In practical situations, due
to the measurement noise and disturbances, the
residuals are never zero even no faults occur. For
brevity we focus the analysis on residuals r1, r2, r3

and r4 since residuals r5 and r6 behave very similar
to r4 for the proposed scenario.

The residual evaluation has been implemented
according to the proposed procedure described in
Section 3.3, where the lower and upper thresholds
have been chosen as shown in Table 1.

4.2 Simulation Results

The non-linear quad-rotor system along with the
diagnostic observer have been simulated using
the Matlab and Simulink® software. The GPS or
vision system model has not been implemented
in the simulator since it is considered to be
unaffected by fault during the simulations, while
the AHRS is supposed to be subject to faults and
has been modeled taking into account sampling,
quantization error and noise according to the
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Fig. 2 Fault affecting the AHRS

data-sheet of the Microstrain® 3DM-GX1 [11],
which is a widely known, low weight and low
cost AHRS. The faults simulated are additive and
incipient (ramp-like faults), and affect the system
at t f = 25s while the quad-rotor operates in near
hover flight conditions. The analysis of the residu-
als is performed on r1, r2, r3 and r4 since residuals
r5 and r6 behave very similar to r4 for the proposed
scenario.

4.2.1 Fault on the AHRS Roll Output

In the first simulation scenario an incipient ramp-
like fault, whose behavior is shown in Fig. 2,
affects the roll angle measure of the AHRS, while
all other measurements are not affected by any
fault. As it can be seen in Fig. 3, residual r1 is
always between the adaptive upper and lower
thresholds, and thus showing that longitudinal
motion is almost unaffected by the AHRS roll
fault. Similarly, residual r4 remains between the
two thresholds, but in this case the residual be-
havior is due to the noise which is responsible to
hide the fault. Residual r3 is inside the fault free
band showing that altitude is not sensitive to the
simulated fault. Differently for residual r2, it can
be observed that it crosses the upper threshold,
confirming that it is sensitive to the AHRS roll
fault. Moreover, this residual behavior shows that
the lateral motion is the most affected in case of a
fault on the roll sensor.

4.2.2 Fault on the AHRS Pitch Output

In the second simulation scenario an incipient
ramp-like fault affects the pitch angle measure

Fig. 3 Residuals in case
of fault on AHRS roll
channel
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Fig. 4 Residuals in case
of fault on AHRS pitch
channel

of the AHRS, while all other measurements are
not affected by any fault. As it can be seen in
Fig. 4, residual r1 crosses the lower threshold, and
it is sensitive to the fault, thus showing that the
longitudinal motion is the most affected in case of
a fault on the pitch sensor. Residual r2 is always
between the adaptive upper and lower thresh-
olds, and this shows that lateral motion is almost
unaffected by the AHRS pitch fault. Consider-
ations about residuals r3 and r4 are identical to
those stated for the previous simulation scenario.

5 Concluding Remarks

Autonomous vehicles are becoming very popular
and play an important role in an increased number
of applications, due to their strong autonomy and
ability to perform relatively difficult tasks in re-
mote, uncertain or hazardous environments where
humans are unable to go. In order to complete
their missions in a safer manner, a key require-
ment for these UVs is the ability to be responsive
and adaptive in case of undesirable effects such
as faults in the actuators or sensors. An ad-hoc

fault detection system is usually developed for the
specific UV under consideration, with the result
that the developed diagnostic system cannot be
used for other UVs.

In this paper, an observer-based diagnostic
scheme for the detection of faults has been pre-
sented for a wide class of UVs (aerial, underwater
or ground). For this class of vehicles, a general
model has been proposed, which only needs pa-
rameter tuning for the specific application. This is
achieved modelling the UV as a 6-DOF rigid body
subject to gravity and actuation forces. With this
formulation, the model is shown to be useful for
diagnosis purposes by exploiting its Lipschitzianity
properties. In this way a full order Thau observer
has been developed to generate residuals to be
used inside the fault detection system. This also
represents an essential information for further de-
veloping an effective fault tolerant system for a
wide class of UVs. A residual evaluation policy
has been proposed and validated through simu-
lation trials. The proposed diagnostic scheme has
been validated making use of a four-rotor aerial
vehicle, known as quad-rotor. The developed FD
system is capable of detecting sensor faults on the
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onboard inertial measurement unit. The simula-
tion results show the effectiveness of the proposed
fault diagnostic scheme.

Providing useful information on the actuation
forces, actuator fault detection can be achieved
too. Moreover, the proposed FD architecture can
be improved introducing a smart threshold gen-
erator algorithm, based on a bank of filters, and
a fault-tolerant control policy. All of these chal-
lenging aspects are currently under investigation.
Validation of the proposed diagnostic solution
adopting a real vehicle is the aim of the next future
research.

Appendix A

Using the well known rigid body equations [5],
the quad-rotor simulator, which includes small
body forces, translational and rotational drag, is
expressed by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ = 1
m

[
(CφCψCθ + Sφ Sψ)u f − ktẋ2]

ÿ = 1
m

[
(Cφ Sθ sψ − Cψsφ)u f − kt ẏ2]

z̈ = 1
m

[
(CθCφ)u f − mg − ktż2]

ṗ = 1
Ixx

[−kr p2 − qr(Izz − Iyy) + τp
]

q̇ = 1
Iyy

[−krq2 − pr(Ixx − Izz) + τq
]

ṙ = 1
Izz

[−krr2 − pq(Iyy − Ixx) + τ r

]

φ̇ = p + qSφ tθ + rCφTθ

θ̇ = qCφ − rSφ

ψ̇ = 1
Cθ

[
qSφ + rCφ

]

(35)

where S(.), C(.) and T(.) denote sin (.), cos (.) and
tan (.) respectively, ω = [

p, q, r
]T is the rotational

velocity with respect to the body frame axis,
kt is the translational drag, kr is the rotational
drag, F0 = [

0, 0, u f
]T is the force acting on the

quad-rotor expressed using the body frame coor-
dinates and τω = [

τp, τq, τr
]T is the torque vec-

tor expressed using the body frame coordinates
(see Fig. 1).

Denoting with f1, f2, f3 and f4 the forces pro-
vided by the rotors along zB, one can write

⎧
⎪⎪⎨

⎪⎪⎩

u f = f1 + f2 + f3 + f4

τp = l ( f4 − f2)

τq = l ( f3 − f1)

τr = l ( f1 − f2 + f3 − f4)

(36)
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