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Abstract Emerged as salient in the recent home
appliance consumer market is a new generation of
home cleaning robot featuring the capability of Si-
multaneous Localization and Mapping (SLAM).
SLAM allows a cleaning robot not only to self-
optimize its work paths for efficiency but also
to self-recover from kidnappings for user con-
venience. By kidnapping, we mean that a robot
is displaced, in the middle of cleaning, without
its SLAM aware of where it moves to. This pa-
per presents a vision-based kidnap recovery with
SLAM for home cleaning robots, the first of its
kind, using a wheel drop switch and an upward-
looking camera for low-cost applications. In par-
ticular, a camera with a wide-angle lens is adopted
for a kidnapped robot to be able to recover its
pose on a global map with only a single image.
First, the kidnapping situation is effectively de-
tected based on a wheel drop switch. Then, for
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an efficient kidnap recovery, a coarse-to-fine ap-
proach to matching the image features detected
with those associated with a large number of robot
poses or nodes, built as a map in graph represen-
tation, is adopted. The pose ambiguity, e.g., due
to symmetry is taken care of, if any. The final
robot pose is obtained with high accuracy from the
fine level of the coarse-to-fine hierarchy by fusing
poses estimated from a chosen set of matching
nodes. The proposed method was implemented
as an embedded system with an ARM11 proces-
sor on a real commercial home cleaning robot
and tested extensively. Experimental results show
that the proposed method works well even in the
situation in which the cleaning robot is suddenly
kidnapped during the map building process.

Keywords Home cleaning robot ·
Kidnap recovery · SLAM · Global localization

1 Introduction

Home cleaning robots are the most successful con-
sumer robot introduced over the past few years.
However, the conventional home cleaning robots
frequently become stuck on something in a man-
ner such that a wheel is off the ground during
navigation. When this happens, users usually re-
locate the robot so that it can continue to per-
form the cleaning task that it was given before
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Fig. 1 Home cleaning
robot and our embedded
vision board (including
a camera, an ARM11
processor, and
64 MB RAM)

it got stuck. Unfortunately, the conventional
home cleaning robots cannot resume the previous
cleaning task in this situation, because they cannot
recover from the localization error without any
odometric feedback about the actual motion. In
this situation, users can only command the robot
to start a new cleaning because the robot will
erase the previous cleaning area in its memory.
The more this situation is repeated, the more
increased an unnecessary cleaning time becomes.
In robotics, this situation is referred to as the
“kidnapped robot problem” and is a variant of the
global localization problem [6]. The kidnapped
robot problem is more challenging as the robot is
typically confused.

Simultaneous Localization and Mapping
(SLAM) [1, 15] can be used to estimate a home
cleaning robot pose within an incrementally
built map and concurrently remember a cleaning
area. However, most SLAM algorithms cannot
correct the significant localization error such as
a kidnapping situation. In order to solve this
problem, we propose a practical global localiza-
tion algorithm that efficiently solves kidnapping
problems in home cleaning robots. The original
contribution of this work is in addressing major
problems that must be solved for developing a
reliable vision-based global localization system,
as follows:

– Detecting a kidnapping situation.
– Matching features extracted from the current

image with map elements composed of nu-
merous features.

– Removing the pose ambiguity caused by
matching error.

– Fusing the uncertain multiple hypotheses
about the current robot pose obtained from
the matching results.

The organization of this paper is as follows.
First, we describe related works in Section 2 and
a brief review of our vision-based SLAM system
in Section 3. Second, we propose a kidnapping
detection method using a wheel drop switch in
Section 4 and a novel localization algorithm based
on the matching process at multiple levels of
resolution that takes advantage of the use of an
upward-looking camera with a wide-angle lens in
Section 5. Third, we apply the proposed global
localization algorithm to an embedded system
with an ARM11 processor of a home cleaning
robot (See Fig. 1), and demonstrate the validity of
the proposed method through indoor experiments
in Section 6. Finally, we conclude this paper in
Section 7.

2 Related Works

Self-localization addresses the problem of deter-
mining a robot pose relative to a given map of the
environment [9]. This map can be built by SLAM
[1]. Such a setup is feasible and could be useful
in many applications. Self-localization is essential
for most applications, because safe navigation (in-
cluding path planning) requires knowledge of the
current pose of the mobile robot. This problem
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has received considerable attention over the last
decades [20–24]. Depending on the types of in-
formation available initially and at runtime, the
localization problem can be characterized as local
or global. Local techniques aim to update a robot
pose by using its current sensor data as well as
sensor data that have already been accumulated.
One popular approach to robot localization is
the use of the Kalman filter [25]. Kalman filter
based approaches are computationally efficient,
but are only suitable for pose tacking because they
require bounding of the initial localization error
[26, 27]. Localization on a local level is mandatory
for algorithms that address the SLAM problem.

In contrast to local techniques, global tech-
niques are capable of localizing a robot without
prior knowledge about its pose. One approach for
the global techniques based on visual data is to
find certain easily identifiable objects in an envi-
ronment when one or more of those objects are
in the camera’s field of view. When the robot sees
any of these landmarks, the perceived locations of
the landmarks can be compared to their known
locations within the environment, and the robot
pose can be deduced. The landmarks can be either
artificial or natural.

A key problem in vision-based global localiza-
tion concerns the matching of features extracted
from an image with map elements without prior
knowledge of the robot pose. Solving this match-
ing problem becomes more challenging when the
map contains a very large number of landmarks.
Recent studies have substantially improved the
matching process for localization by using invari-
ant local descriptors [6, 7]. In [6], a global lo-
calization algorithm is extended by proposing a
submapping strategy that relies on highly specific
Scale Invariant Feature Transform (SIFT) fea-
tures [5] to match a local submap to a pre-built
SIFT database map. Three-dimensional submaps
are built by aligning multiple frames while the
global map is built by aligning and merging multi-
ple 3D submaps. The SIFT features help to prese-
lect potential matches in order to reduce the com-
putational complexity of the matching process.
In [7], the Speeded-Up Robust Features (SURF)
method [2] is applied in feature matching between
omni-directional images. The camera pose is com-
puted from two images that have their location

information determined by a triangulation me-
thod. The experimental results demonstrate that
the SURF is better in terms of accuracy and
computational costs when compared with the
SIFT.

Blob-like features generated by the SIFT or
SURF methods can change dramatically accord-
ing to the lighting conditions. In addition, feature
matching with SIFT or SURF descriptors may
yield comparatively high false-positive rates with a
significant change in the illumination. In order to
overcome these problems, some researchers em-
pirically demonstrated the robustness of their pro-
posed localization method under various outdoor
lighting conditions using both monocular camera
images and 3D laser point cloud data [12]. The
main advantage of this method over previous ap-
proaches is the ability to autonomously generate a
3D edge map.

However, the aforementioned approaches to
global localization are not suitable for low-cost
applications such as home cleaning robots because
they use relatively expensive sensors (such as laser
range finders, stereo cameras, or omni-directional
cameras), or require a high-performance proces-
sor that cannot be easily applied in low-cost
applications.

In particular, schemes based on cameras point-
ing straight up at the ceiling, [30–33], have several
advantages compared to other schemes in indoor
environments. First, there is no significant effect
caused by dynamic obstacles such as moving peo-
ple since the camera points at the ceiling. In addi-
tion, there is no scale change for features between
neighboring images in most indoor environments.
Therefore, under the aforementioned conditions,
visual features can be extracted quickly from an
image, while robust matching results are obtained.
In [30], a camera pointed to the ceiling is used to
match the current image to a large ceiling mosaic
covering the whole operational space of the robot.
The mosaic has to be constructed in advance,
which involves a complex state estimation prob-
lem. In [32], a vision-based simultaneous localiza-
tion and mapping technique is proposed, which
uses corner features as landmarks in the scene and
localizes and reconstructs 3D corner landmarks at
the same time using an extended Kalman filter
based framework. With the reconstructed 3D
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corner landmarks, the robot pose is globally local-
ized based on the Hough clustering technique but
it is not suitable for embedded systems because
the feature matching problem in a map including
numerous landmarks is not addressed. In [33], a
panorama image of the ceiling is generated by
using a visual motion between adjacent images
and is used to estimate the robot pose. However,
it is not designed for an embedded system based
low-cost robot applications.

For home cleaning robots as shown in Fig. 1, we
have developed a vision-based global localization
algorithm using a simple camera that satisfies the
small size, light weight, and low energy require-
ments. The camera points in the zenith direction
perpendicular to the ground plane due to the
aforementioned advantages, and a wide-angle lens
of 160◦ is also utilized to localize the robot globally
with a single image in the matching process.

3 Brief Review of Vision-Based SLAM

In this work, the SLAM algorithm employs a
pose graph optimization technique [10, 11, 16–
18] that successfully solves large SLAM problems
with many loops. There is no privileged pose,
and recovering the landmark estimates requires
a graph traversal. Each node on a graph repre-
sents a robot pose at which a sensor measurement
was acquired. The edges in the graph represent
the spatial constraints between the nodes. In this
paper, the constraint zi, j is obtained using sensor
measurements and describes a relative transfor-
mation (composed of the 3-dimensional vector
zi, j = [�x(zi, j), �y(zi, j), �θ(zi, j)]) between two poses
xi = [x(xi), y(xi), θ(xi)]T and x j = [x(x j), y(x j), θ(x j)]T

to represent the relative pose of x j with respect
to the pose xi. Let (zi, j − x j � xi) be the error
introduced by the constraint zi, j, where � is the
inverse of a compounding operation ⊕ and it is the
same operation as defined in [14]. Assuming that
the constraints are independent, a SLAM formula
that minimizes the sum of the weighted square
costs introduced by the error (zi, j − x j � xi) is
given by:
∑

i, j

(
zi, j − x j � xi

)T
Wi, j

(
zi, j − x j � xi

)
, (1)

where W−1
i, j is a 3 × 3 covariance matrix of zi, j.

One approach for efficiently solving Eq. 1 is to
linearize a constraint zi, j with respect to the ori-
entation θ(xi), as described in [11]. The linearized
version is solved by a linear solver that handles a
linear least-square problem such as AX=B.

There are two types of constraints to be con-
sidered for Eq. 1: the incremental constraint and
the loop closure constraint. The incremental con-
straint describes a relative transformation be-
tween successive poses which have continuity with
the time. The loop closure constraint models a
relative transformation between non-consecutive
poses.

Algorithm 1 Loop closure constraint calculation
• Input: 2d image features at the pose xi, 3D

feature points at the pose x j

1. Choose five random pairs.
2. Compute the relative transformation zi, j using

a non-linear optimization algorithm that min-
imizes Eq. 2 by adjusting zi, j.

3. Check the number of inliers and their re-
projection error.

4. Repeat the line 1 to 3 until n relative transfor-
mations for zi, j are obtained.

5. Determine the best hypothesis among the n
relative transformations.

In this work, odometry is primarily utilized
to obtain the incremental constraint zi, j between
successive poses based on an odometry motion
model algorithm described in [29]. The loop clo-
sure constraint zi, j = [�x(zi, j), �y(zi, j), �θ(zi, j)]T is
obtained based on a non-linear optimization tech-
nique given local point features in the image coor-
dinate system of the pose xi and the corresponding
3D points in the robot base reference frame
of the pose x j. The cost function to be min-
imized by adjusting the optimized variables
{�x(zi, j), �y(zi, j), �θ(zi, j)} is given by:

∑

s

⎛

⎜⎝ψ(xi)[s] − Ccalib .TCamera
Robot

(
Rp(x j)[s] + T

)
︸ ︷︷ ︸

=ε(s)

⎞

⎟⎠

T

×
⎛

⎜⎝ψ(xi)[s] − Ccalib .TCamera
Robot

(
Rp(x j)[s] + T

)
︸ ︷︷ ︸

=h(s)

⎞

⎟⎠, (2)
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where

R =
⎛

⎝
cos

(
�θ(zi, j)

) − sin
(
�θ(zi, j)

)
0

sin
(
�θ(zi, j)

)
cos

(
�θ(zi, j)

)
0

0 0 1

⎞

⎠ , (3)

T =
⎛

⎝
�x(zi, j)

�y(zi, j)

0

⎞

⎠ , (4)

Ccalib is a known camera calibration matrix,
TCamera

Robot is a known coordinate transformation
from 3D robot base coordinates to 3D camera
coordinates, ψ(xi)[s] is the sth measured feature
location [u, v, 1]T in the image coordinate system
of the pose xi, and p(x j)[s] is the sth 3D feature
point [x, y, z]T in the robot base reference frame
of the pose x j. Equation 2 is solved by iteratively
computing a correction term δzi, j using the Gauss-
Newton form [28], as follows:

δzi, j = (
JT J

)−1
JTε, (5)

where J is the Jacobian matrix ∂h/∂zi, j, and ε

is the matrix form of ε(s). Here, (JT J)−1 ob-
tained in the final iteration process means the
3 × 3 covariance matrix of the solution and
is used as the covariance matrix W−1

i, j of zi, j =
[�x(zi, j), �y(zi, j), �θ(zi, j)]T . An algorithm for com-
puting the loop closure constraint zi, j is briefly
described in Algorithm 1 and a method for fea-
ture matching between neighboring images will be
presented in Section 5.1. In our tests, good result
in terms of the map accuracy were achieved when

diagonal terms of the covariance matrix for the
loop closure constraint were about 1 to 4 times
greater than those for the incremental constraint.
This condition was satisfied by heuristically ad-
justing the odometry motion model parameters
described in [29].

In our SLAM system, the 3D locations of fea-
tures for poses stored in the map are needed for
obtaining the loop closure constraint using Algo-
rithm 1. With the matching results between suc-
cessive images, we initialize a 3D location of each
feature using a triangulation method [19] which
is popular in computer vision. Odometry is used
to predict a camera motion between successive
images while capturing images at 30 cm intervals.

In order to reduce the computational complex-
ity of the SLAM process, we introduce two strate-
gies as follows. First, the current pose stored in
the map can have a single loop closure constraint.
Second, the largest loop closure constraint among
multiple loop closure candidates is selected for the
current pose. These strategies are necessary to ap-
ply a pose graph optimization technique in a low-
cost system because the computational complexity
is proportional to the number of poses and the
number of loop closure constraints.

The details of our SLAM system are not pre-
sented in this paper, because the objective of this
paper is to focus on proposing a vision-based
global localization algorithm that can efficiently
recover from kidnapping of the robot.

Figure 2 shows the 3D locations of features
reconstructed from successive images in a local

Fig. 2 Experimental
results obtained by our
SLAM system. a 3D
visual map. b Obstacle
grid map constructed
following exploration
of the experimental
environment
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area and the obstacle grid map built by our SLAM
system in an indoor environment. A red obstacle
grid map (See Fig. 2b) superimposed onto the ro-
bot’s movement trajectory was built with Position
Sensitive Device (PSD) sensors that can measure
a short-range distance, because it was better than
the 3D visual map in depicting an indoor envi-
ronment. The robot trajectory estimated by our
SLAM system is drawn with a black line.

4 Kidnapping Situation Detection

In the kidnapped robot problem, a robot is usually
lifted and moved to a different location; therefore,
it does not have any odometric feedback on this
motion. This problem aims to test the system in
situations where the robot’s odometric informa-
tion is totally wrong or when the robot has to
recover from incorrect localization. If the robot
is moved to a new location without perceiving
the kidnapping, it will never recover from the
localization error.

One approach to detecting kidnapping of the
robot is to examine a tracking failure because it
indicates that the robot may have been kidnapped
[6]. However, it is unclear how long the track-
ing failure must happen in order to determine
the kidnapping situation. When the robot is kid-
napped during map building, this problem can be
more serious, because a distortion of the map is
not avoidable if the robot is not responsive to
kidnapping. For this reason, a wheel drop switch
that is able to immediately detect kidnapping was
employed in this work.

Many home cleaning robots have been devel-
oped over the past few years. Most have the ability
to detect when a wheel has dropped; this usually
happens if the robot gets picked up and carried to
an arbitrary location during its operation, or if it is
stuck on something in a manner such that a wheel
is off the ground. The wheel drop is detected using
a small switch located in the vicinity of the wheel
motor, as shown in Fig. 3. The switch sends an
on/off indication according to the wheel location.

Another alternative is to attach range sensors
such as sonar or PSD sensors to the bottom of a
robot platform in order to measure the distance
between the robot and the floor. Changes in the

(a)

(b)

Fig. 3 Example of detecting kidnapping using a wheel
drop switch. a Normal situation. b Wheel drop situation

distance indicate that the robot may have been
lifted.

5 Vision-Based Global Localization

This section presents a novel localization algo-
rithm that efficiently recovers from kidnapping
with a map built by our SLAM system, which
was briefly described in Section 3. The proposed
localization algorithm contains several main mod-
ules, and Fig. 4 shows the algorithm overview
that illustrates a work-flow between the modules.
The feature matching (FM) and recursive poses
estimation (RPE) modules are commonly used in
the coarse and fine level localization modules.
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Fig. 4 Overview of the proposed localization algorithm

5.1 Feature Extraction & Matching Based
on an Upward-Looking Camera

Feature matching is performed with an upward-
looking camera that looks in the zenith direction
perpendicular to the ground plane, because such
a camera has considerable advantages in terms of
cost, efficiency, and robustness compared to oth-
ers in indoor environments. First, visual features
can be quickly extracted because there is no need
to consider the scale invariance property of fea-
tures. In addition, feature matching between ad-
jacent images captured from the upward-looking
camera can be performed regardless of a rotation
of the robot about the z-axis of the robot base
reference frame.

Figure 5 shows an example that demonstrates
an advantage of the upward-looking camera in
feature matching when compared with a frontal
view camera. The frontal view camera is strictly
restricted by a rotation of the robot about the z-
axis of the robot base reference frame in feature
matching between two images despite the fact that
the two images are captured at adjacent locations
(See Fig. 5a). On the other hand, feature matching
between two adjacent images captured from the
upward-looking camera is possible regardless of a
rotation of the robot about the z-axis of the robot
base reference frame, as shown in Fig. 5b. The
maximum distance required between two camera
reference frames for obtaining the appropriate

(a)

(b)

Fig. 5 Advantage of an upward-looking camera in feature
matching when compared with a frontal view camera. a
Frontal view camera. b Upward-looking camera

matching result depends on the camera’s field of
view and a ceiling height.

The SURF method [2] is a well-known ap-
proach to wide-base line matching. However, the
location accuracy of a blob-like feature extracted
by the SURF method is relatively poor compared
to that of a corner-like feature. In addition, the
feature location extracted by the SURF technique
is sensitive to changes in scene illumination. In
order to extract more stable features, the Harris
corner detector [3] is employed to use corner-like
features as points of interest. The mid-points of
straight-lines are also considered to be points of
interest because they allow for improvement in
the feature matching performance. The straight-
lines are extracted from an image based on the
edge following approach [4].

Features are only extracted at the original im-
age scale because there is no need to consider
the scale invariance property of features extracted
with a camera pointing in the zenith direction per-
pendicular to the ground plane. This assumption
is true for most indoor environments. The SURF
descriptor with 64 dimensions is used as a local
descriptor for robust feature matching.
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Fig. 6 Flowchart for feature matching between an input
image and the database

In order to match features between different
images, we employ the Best-Bin-First algorithm
[5] to query for similar features in the database
and the best candidate matches are founded by
checking the ratio of distance from the closest
neighbor to the distance of the second closest in
the feature descriptor space. When the distance
ratio of a certain match is less than 0.6, it is
considered as a correct one.

To reduce false matches, we additionally ap-
ply the epipolar constraint of the corresponding

points ψ i and ψ j between two images such as
ψT

i Fψ j = 0 described by the fundamental matrix
F between two cameras. The fundamental matrix
F is computed using the Random Sample Consen-
sus (RANSAC) based algorithm described in [13]
and the algorithm requires at least eight matched
features. In this work, the Euclidean distance of
local descriptors and the distance from ψ i or
ψ j to the epipolar line were used as a quality
of correspondence between the two points ψ i

and ψ j.
A flow chart of the feature matching algorithm

presented in this section is shown in Fig. 6. In or-
der to evaluate the feature matching performance,
we examined the correct-matching-ratio using 100
image pairs captured from an upward-looking
camera. In this test, we considered matches with
less than 5-pixel error as correct ones and 81%
was the average correct-matching-ratio. This re-
sult was suitable for a robot pose estimation
method based on a recursive Bayesian formula
and the method will be presented in the next
section.

Figure 7 graphically illustrates the matching
results between upward looking scenes arbitrarily

Fig. 7 Matching results
in different views
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selected among the 100 image pairs. Most matches
were good ones and certain features were partially
invariant to illumination changes.

5.2 Recursive Pose Estimation
from a Single Image

This section describes how to estimate the robot
pose on the coarse or fine level using a recursive
Bayesian estimation approach given a single im-
age. Here, we apply the recursion (which is limited
to a single time-stamp) to obtain the optimal pose
estimate. As our upward-looking camera is re-
stricted to approximate only a 2D planar motion,
a 3D point pi associated with a node xv of the
graph can be re-projected to its expected image
coordinates at the robot pose xk to be estimated
at time k using the pinhole camera model based
on a 2D robot pose

[
x(xk), y(xk), θ(xk)

]T . Under this
condition, the observation model for estimating
the robot pose xk is given by:

p (�i|xk, xv, pi) ⇔ �i = g (xk, xv, pi) + vi, (6)

where �i is the measured image coordinates, and
vi is Gaussian observation noise. Figure 8 shows a
schematic diagram for Eq. 6.

A recursive Bayesian formula was derived in
this work in order to efficiently estimate the robot
pose with Eq. 6. In a Bayesian sense, the posterior
of the robot pose xk given a node xv of the graph,
a set of 3D points [p1,. . . ,pn]T , and their observa-
tions [�1,. . . , �n]T is represented by:

p (xk|xv, p1, ..., pn, �1, ..., �n) . (7)

Equation 7 can be rewritten as the following equa-
tion because the node xv of the graph and the
set of 3D points [p1,. . . ,pn]T do not provide new
information about the robot pose xk without the
observations [�1,. . . , �n]T in a global localization
algorithm that deals with the kidnapped robot
problem.

∝ p(�1, ..., �n|xk, xv, p1, ..., pn)p(xk|xv, p1, ..., pn)

∝ p(�1, ..., �n|xk, xv, p1, ..., pn)p(xk) . (8)

By making two assumptions that the set of 3D
points [p1,. . . ,pn]T are mutually independent and
that �i is associated with xk, xv , and pi, Eq. 8 can
be factored as follows:

∝ p (xk)

n∏

i=1

p (�i|xk, xv, pi). (9)

Note that the correlation between the locally ref-
erenced features that know their 3D locations at
each node can be disregarded in a pose graph
optimization technique to SLAM because the map
consistency relies on the spatial constraints iden-
tifying a relative transformation between poses
rather than the geometric information between
the features. Here, Eq. 9 is one of the recursive
Bayesian formulas. One major difference between
Eq. 9 and the traditional formula for recursive
Bayesian estimation is the dynamic system model.
The dynamic system model does not need to be
considered in Eq. 9, because the updated state
denotes only a single robot pose.

Fig. 8 Geometric
relationship between
the two poses xk and xv
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In this work, p(xk) is approximated by
Gaussian distribution with any mean x̂−

k and a
large amount of error covariance matrix C−

k , and
is updated with the same formula used for up-
dating the state in an extended Kalman filter
(EKF) [8]. The filtering result is also represented
by Gaussian distribution. The Gaussian distrib-
ution is again used as the prior probability dis-
tribution in updating the estimate of the robot
pose xk with the next observation. The above
process is repeated until the posterior of the robot
pose xk is obtained by n iterations. The algo-
rithm for computing Eq. 9 is briefly described in
Algorithm 2.

Algorithm 2 Calculation of Eq. 9

• Input: Node xv , 3D points [p1, ..., pn]T , obser-
vations [�1, ..., �n]T

1. Initialize p(xk) ∼ N(x̂−
k , C−

k ).
2. for i = 1 to n

if i = 1 then
Prior = p(xk)

else
Prior = p(xk | xv, p1, ..., pi−1, �1, ..., �i−1)

end
EKF_update (Prior, p(�i | xk, xv, pi))

end

Algorithm 3 Recursive pose estimation algorithm
(RPEA)
• Input: Node xv , 3D points [p1, ..., pn], obser-

vations [�1, ..., �n]T .

1. Initialize p(xk) ∼ N(x̂−
k , C−

k ).
2. for j = 1 to max_iter

Estimate the posterior N (x̂+
k , C+

k ) using the
line 2 of Algorithm 2.
if convergence criteria = true then

Return N(x̂+
k , C+

k ).
else

Initialize p(xk) ∼ N(x̂+
k , C−

k ).
end

end

In order to find a local minimum that is identi-
cal to that attained with the Levenberg-Marquardt
algorithm (LMA, one of nonlinear optimization
techniques), Eq. 9 is solved iteratively until some

Algorithm 4 RPEA based on the ransac approach

• Input: Node xv , 3D points [p1, ..., pn]T , obser-
vations [�1, ..., �n]T .

1. Choose 5 random pairs among
[p1, ..., pn]T and [�1, ..., �n]T .

2. Estimate the robot pose using the RPEA
(See Algorithm 3).

3. Check the number of inliers and their re-
projection error.

4. Repeat the line 1 to 3 until n poses are
obtained.

5. Decide the best hypothesis.

convergence criteria are matched. One difference
between this iterative scheme and the LMA is
that the initial state covariance of the EKF is
replaced with a relatively large amount of error
covariance compared to the observation noise at
all iterations. The recursive pose estimation algo-
rithm that iteratively solves Eq. 9 will henceforth
be referred to as the RPEA, and is summarized in
Algorithm 3.

Using all of the observations, the simple estima-
tion of the robot pose is sensitive to outliers. To
cope with this problem, the RANSAC approach
is employed to obtain the best pose against the
outliers. In our implementation, the best result
was achieved using 5 random pairs of correspon-
dences between the image features and their 3D
locations in a reference frame. In order to find
the best hypothesis, each hypothesis is checked
for inliers by re-projecting the 3D points to their
expected image coordinates. The best hypothesis
is determined by the number of inliers and their
re-projection errors. The algorithm is briefly de-
scribed in Algorithm 4.

However, the RPEA implemented by the EKF
may be unstable because it is a suboptimal so-
lution like the LMA. It depends strongly on the
initial guess in the case of multiple minima. There-
fore, the RPEA has a problem with divergence
when the initial condition is far from the global
minimum. Shown in Fig. 9 is a simulation re-
sult that includes a few divergence cases among
3,600 runs with different initial guess values. In
the simulation, 5 features were used to estimate
the robot pose. In order to solve the divergence
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Fig. 9 Divergence cases
of the RPEA under
certain initial conditions.
The translation and
rotation angle errors
were obtained by using
3,600 runs with randomly
generated initial guess
values

problem, multiple initial guess values were used
in this work. Fortunately, the RPEA mainly con-
verged to the ground truth regardless of the initial
conditions in various simulation tests, as shown
in Fig. 9. Under this condition, the robot pose
that is identically estimated from the majority of
initial guess values is more likely to converge to
the global minimum. Here, we used 4 initial guess
values to find the global minimum.

5.3 Multi-Level Localization

In this work, a key problem in localizing a ro-
bot without prior knowledge regarding its pose
concerns feature matching between the current
image and a graph composed of a very large num-
ber of nodes. In order to solve this problem, the
matching process is performed at multiple levels
of resolution. The basic idea is to discretize the
graph at different levels of resolution. The match-
ing process on a coarse level effectively limits
the search area for matching between features
extracted from the current image and a set of
auxiliary features associated with nodes of the
graph. The matching process on a finer level then
allows for more accurate pose estimation.

A hierarchy of coarser levels is easily con-
structed by discretizing the graph onto grids with
increasing grid spacing, (i.e., onto fewer sampling
points). Figure 10 shows an example with a three-

level hierarchy for efficiently obtaining the nodes
that yield a large number of matches with an input
image in the graph composed of numerous nodes.
The grid size of the 1st coarse level depends on the
camera’s field of view and a ceiling height. A rep-
resentative node is selected in the vicinity of each
grid center and is used to match features extracted
from the input image with the auxiliary features
associated with the node, as shown in Fig. 10a.
With the feature matching results between the in-
put image and the representative nodes, multiple
poses are generated by the RPEA based on the
RANSAC approach. In order to decide the search
area of the feature matching on the fine level, an
X-Y histogram with 0.5 m × 0.5 m bins is built
from the multiple poses, as shown in Fig. 10b. The
highest peak in the histogram is detected, and the
weighted average location is then calculated in the
vicinity of the peak.

There are two thresholds to consider when
evaluating the validity of the weighted average
location: the minimum number of poses and the
ratio of the poses used to calculate the weighted
average location to the total number of poses. The
two thresholds are decided empirically; we used 3
poses and a ratio of 0.7, respectively. If the two
thresholds are satisfied, the weighted average lo-
cation is considered to be the best location on the
coarse level. Otherwise, the above process is re-
peated on the next coarse level until the best loca-
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Fig. 10 Example of a
three-level hierarchy to
reduce the computational
complexity of the
matching process.
a 1st coarse level.
b X-Y histogram.
c 2nd coarse level.
d Fine level

(a)

(c)

(b)

(d)

tion is determined. The next coarse level is formed
by simply reducing the sizes of grids that include
the poses generated on the previous coarse level
(See Fig. 10c). Note that the grid size of the 1st

coarse level must be reduced if no valid poses exist
on the 1st coarse level. Of course, this scheme may
continuously fail. In this case, the robot moves to
another place and tries again to recover from the
kidnapping.

If the best location is decided on the coarse
level, the fine level matching process is performed
with nodes that are located in the vicinity of the
best location (See Fig. 10d). The multiple poses
on the fine level are ultimately used to estimate
the final robot pose in the kidnapping situation.
Because the multiple poses that are obtained by
the RPEA are represented by Gaussian distrib-
ution with mean and covariance matrix, the final
robot pose at time k can be simply estimated

using the standard Kalman filter formulation, as
follows:

x̂∗
k =

(
n∑

i=1

(
C(i)+k

)−1

)−1 n∑

i=1

((
C(i)+k

)−1
x̂(i)+k

)
,

C∗
k =

(
n∑

i=1

(
C(i)+k

)−1

)−1

, (10)

where x̂(i)+k and C(i)+k are the mean and covari-
ance matrix of the ith pose on the fine level,
respectively. In order to reduce the likelihood
of incorrect data association, the validity of the
final robot pose is evaluated using the standard
deviation of multiple poses used in the calculation
of Eq. 10 because the standard deviation is able
to measure the spread of multiple poses about
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the final robot pose. This standard deviation is
given by:

σ
(
x̂∗

k

) =
√√√√ 1

n

n∑

i=1

(
x̂(i)+k − x̂∗

k

)2
. (11)

In this work, three thresholds for the standard
deviation σ(x̂∗

k) were set to 15 cm, 15 cm, and
3◦. If these criteria are not matched, the match-
ing process on the fine level is iteratively per-
formed while capturing a new image in the vicin-
ity of the current location until the criteria are
matched.

Another aspect to be considered in global lo-
calization is the handling of ambiguous situations.
The ambiguity of initial poses occurs due to sym-
metry of a certain environment or multiple areas
with similar textures. In vision-based localization,
a camera with a wide-angle lens reduces the like-
lihood of ambiguous situations. However, there
is a trade-off between the camera’s field of view
and localization accuracy. In the proposed local-
ization algorithm, the pose ambiguity is naturally
identified in the process that decides the best loca-
tion from multiple poses generated on the coarse
level. If an ambiguous situation is detected while
recovering from a kidnapping situation, the robot
simply moves to another place until the ambiguity
of the robot pose disappears.

6 Experimental Results

We implemented the proposed kidnap recovery
method using C programming language on an
embedded vision board with an ARM11 processor
of a real home cleaning robot (See Fig. 1). The
ARM11 processor was running at 533 MHz. A
single camera on the embedded vision board was
pointing in the zenith direction perpendicular to
the ground. To demonstrate the validity of the
proposed method, we extensively tested the pro-
posed method in home environments. In all of the
tests, the robot moved at a speed of 0.3 m/s. All
sensor data and experimental data were collected
during all of the tests through a wireless LAN.
Logged time-stamps were again used to recreate

and analyze the experimental results on a laptop
computer. A 320 × 240 resolution image captured
by the camera with a wide-angle lens of 160◦
was used after the lens calibration. The ceiling
height from the camera in the experiments was
about 2.3 m.

6.1 Home Environment Test

The first experiment was conducted in a home
environment. The experimental environment was
7 × 9 m in size. The sensor data were divided
into three categories. First, numerous images of
the robot being moved by a zigzag motion-based
navigation system were saved in order to incre-

(a)

(b)

Fig. 11 X-Y histograms of the two coarse levels.
a 1st coarse level. b 2nd coarse level
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mentally build a map. This type of navigation sys-
tem was effective for exploring the entire experi-
mental environment. Second, additional images of
the robot were collected when it was kidnapped.
Third, new images of the robot continuing to ex-
plore after recovering from the kidnapping situ-
ation were saved in order to build a map of the
entire experimental environment. The map was
constructed using our SLAM system described in
Section 3.

The global localization capability of the pro-
posed method is illustrated in Figs. 11, 12
and 13. The black path shows the robot trajectory
estimated by our SLAM system. An obstacle grid
map with red superimposed onto the robot tra-
jectory was constructed with PSD sensors. In the
experiment, the robot was suddenly carried to an

(a)

(b)

Fig. 12 Localization result of the first experiment. a Poses
on the fine level. bAchieved localization

(a)

(b)

Fig. 13 Maps constructed at the end of the explo-
ration during the first experiment before and after ap-
plying the proposed method in a kidnapping situation.
The ground truth (including big obstacles such as sofa,
furniture, doors, and walls) is shown by blue dotted lines.
a Without kidnap recovery. b With kidnap recovery

arbitrary unknown location while the robot was
building a map. At that time, the robot detected
its kidnapping by a signal sent from the wheel
drop switch, and then switched to kidnap recovery
mode. A new image was autonomously captured
when the robot was placed on the ground. With
the new image, the best location on the coarse
level was determined on the 2nd coarse level
with a grid size of 1 m × 1 m. Figure 11 shows
X-Y histograms for each coarse level and multiple
poses generated on each coarse level were voted
to fixed bins with a 0.5 m × 0.5 m size regardless
of grid sizes in each coarse level. Twelve poses
were then generated in the vicinity of the best
location (See Fig. 12a), and were used to estimate
the final robot pose using the standard Kalman
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Table 1 Computation time of the proposed method in the
experiment

Functional Module Time (ms)

Feature Extraction 253
Feature Matching (1st coarse level) 954
X-Y Histogram (1st coarse level) 19.3
Feature Matching (2nd coarse level) 636
X-Y Histogram (2nd coarse level) 27.5
Feature Matching (fine level) 1272
Final Pose Estimation 68.8

filter (Refer to Section 5.3 for details). The final
robot pose is shown in Fig. 12b.

In the experiment, the grid size of the 1st coarse
level was set to 2 m × 2 m and the total execution
time for global localization was 3.23 s given 287
nodes with approximately 36,000 features. The
computational costs of the proposed method in
this experiment are presented in Table 1. The
highest processing time was consumed by the fea-
ture matching module in the fine level, but the

processing time is almost constant regardless of
the map size because we use a fixed searching
range in the fine level. For this reason, the speed
of the proposed method depends on the map size
and the grid size of the 1st coarse level to deter-
mine the best location. The smaller the grid size
of the 1st coarse level is, the more increased the
total execution time becomes.

For verification of the localization accuracy,
a map depicting the entire experimental envi-
ronment was built in addition to the previous
map constructed before the kidnapping. The final
maps built before and after applying the proposed
method in the kidnapping situation are illustrated
in Fig. 13. The map built without the aid of the kid-
nap recovery algorithm had large distortions, and
was difficult to use for navigation. However, the
map error accumulated when applying the pro-
posed method was much smaller, and the obstacle
location error between the proposed method and
the ground truth data was less than 17 cm (See
Fig. 13b).

Fig. 14 Second
experimental settings.
a Seven areas in a home
environment. b Sample
images in the seven areas

Room 1 Room 2 Room 3 Room 4

Kitchen Living Room Corridor

(a)

(b)
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6.2 Statistical Analysis

The second experiment was conducted to statis-
tically evaluate the performance of the proposed
method in a home environment. Low-cost ser-
vice robots such as home cleaning robots are
frequently kidnapped in real-world situations be-
cause the robots are often stuck on something
in a manner such that a wheel is off the ground
during navigation, and are then carried to another
location relatively close to the stuck place by a
user. In this case, the user will want the robot
to continue to perform the task that it was given
before it got stuck. In order to solve this problem,
the localization system must ensure that it can
quickly recover from such a kidnapping with a
relatively high probability, regardless of the kid-
napped place in a home environment.

The experimental environment was 17 × 20 m
in size, and was divided into multiple small areas,
as shown in Fig. 14. The robot was suddenly car-
ried to another location in each area while it was
building a map. For statistical analysis, 10 tests
were performed in each area and the maximum
trials allowed to recover from the kidnapping in
each test were limited to 5 times.

Figure 15 shows the success rate when apply-
ing the proposed method in various kidnapping
situations. The highest success rate is shown in a
kitchen because there were highly textured pat-
terns (See Fig. 14b). On the other hand, the lowest
success rate is shown in two rooms and a corridor,
with 80% of success. Similar or poorly textured
patterns of the ceiling in some indoor environ-

Fig. 15 Success rate when applying the proposed method
in the kidnapping scenario of the second experiment

Fig. 16 Estimation error of the proposed method

ments were likely to make it harder to localize
the robot using an upward-looking camera. In this
experiment, the localization failure was caused by
two reasons. First, sufficient matches required for
place recognition in the feature matching process
did not exist in some places. Second, the robot
pose estimation was impossible due to a high re-
projection error caused by depth errors or false
matches. A naive approach to solving these prob-
lems may be to allow the robot to continuously
wander until it recovers from its kidnapping. If
we applied this approach to this experiment, the
success rate of the proposed method would reach
almost 100% in all areas of this experimental
environment. However, this approach is a com-
paratively time-consuming procedure.

Figure 16 shows the average root mean square
error (ARMSE) between the ground truth loca-
tion of the robot and its estimated location by the
proposed method in the experiment. For the pro-
posed method, the robot location error is clearly
bounded and does not diverge in the experiment.

7 Conclusions

In this paper, we have presented a global local-
ization algorithm using a wheel drop switch and
an upward-looking camera that efficiently solves
the problem of robot kidnapping in unstructured
indoor environments. The proposed method was
applied to a real home cleaning robot that yields
poor odometric estimates and low resolution im-
ages taken by an upward-looking camera. The
camera, which has a wide-angle lens, allowed us to
localize the robot globally with a single image. In
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order to recover from a kidnapping situation in a
reasonable amount of time, the matching process
was performed at multiple levels of resolution.
The matching process on a coarse level effectively
limited the search area for feature matching be-
tween the current image and the map elements.
The finer matching process was used to estimate
a more accurate pose. The experimental results
show that the proposed method can achieve a high
level of localization accuracy on an embedded
system for a home cleaning robot in a situation in
which a robot is suddenly kidnapped.

In our research, there still remain some prob-
lems to be addressed. The first arises when global
localization continuously fails due to poorly tex-
tured patterns of the ceiling in some indoor en-
vironments. To solve this problem, we have to
improve the feature matching performance using
additional range sensors such as PSD sensors or
develop an active path-planning method to re-
locate the kidnapped robot to highly textured
places in the map through trial and error. The
second problem is global localization in large-
scale indoor environments. The proposed localiza-
tion method iteratively performs feature matching
between two images through the matching process
at multiple levels of resolution. To reduce compu-
ting time, a more efficient and robust feature
matching method must be developed in future
research. The last problem is depth errors of visual
point features caused by a ceiling height. Theoret-
ically, the proposed method works well in indoor
environments including different ceiling heights if
feature depths are accurately estimated regardless
of the ceiling height. However, the higher the
ceiling height is, the more increased the feature
depth error becomes. For home cleaning robots,
we have to solve this problem without resorting to
expensive hardware.
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