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Abstract This paper provides a survey of motion
planning techniques under uncertainty with a fo-
cus on their application to autonomous guidance
of unmanned aerial vehicles (UAVs). The paper
first describes the primary sources of uncertainty
arising in UAV guidance and then describes rele-
vant practical techniques that have been reported
in the literature. The paper makes a point of dis-
tinguishing between contributions from the field
of robotics and artif icial intelligence, and the field
of dynamical systems and controls. Mutual and
individual contributions for these fields are high-
lighted providing a roadmap for tackling the UAV
guidance problem.
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1 Introduction

Autonomous vehicles are candidates for a broad
variety of applications ranging from reconnais-
sance, target acquisition, search and rescue, sur-
veillance, environmental monitoring, disaster area
surveying and mapping. An important capability
needed to broaden the range of applications under
autonomous control is to be able to operate in the
presence of various sources of uncertainty.

The problem of motion planning under uncer-
tainty has been a topic of interest in both the
Artif icial Intelligence and Robotics community as
well as the Dynamical Systems and Controls com-
munity. In the Artif icial Intelligence and Robot-
ics community this problem is often referred to
as decision-theoretic planning under uncertainty,
where decision making–which provides a way to
select among multiple plans with uncertain state
outcomes–is the central problem [1, 2]. In Dynam-
ical System and Control, however, it is referred
to as control-theoretic planning under uncertainty,
where the emphasis is on the dynamical response,
including taking full advantage of vehicle dynam-
ical capabilities and accounting for state and con-
trol constraints. Here, safety and stability are usu-
ally the main issues.

The main focus of this paper is to survey plan-
ning algorithms in the presence of uncertainty
with an emphasis on methods that can be applied
to autonomous aerial vehicles. UAVs, due to their
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faster speed, more complex dynamics and stricter
payload limitations tend to pose more challenges
in obstacle avoidance and planning than ground
robots. UAVs have to deal with the typical types
of uncertainties that have already been classified
by LaValle and Sharma [3, 4]:

• Uncertainty in vehicle dynamics and limited
precision in command tracking.

• Uncertainty in the knowledge of the environ-
ment (e.g., obstacle locations).

• Disturbances in the operational environment
(e.g., wind, atmospheric turbulence).

• Uncertainty in pose information.

Goerzen et al. [5] reviewed deterministic motion
planning algorithms in the literature from the per-
spective of UAV guidance. This survey extends
the existing literature in the following directions.
First, the paper focuses on the identification and
understanding of the different sources of uncer-
tainty arising in the UAV guidance problem. Sec-
ond, the paper describes practical methods that
have been reported in the literature for handling
these uncertainties in the formulation of motion
planning problems.

In the following sections, we briefly review the
relevant literature for each source of uncertainty
given above and describe them separately mak-
ing a point of distinguishing between the robotics
and controls approach. The last section deals with
reactive planning methods necessary for obsta-
cle avoidance using on-board exteroceptive sen-
sors. Reactive planning was included since it is
an integral part of the approach that provides a
‘last resort’ solution for dealing with uncertainty.
Throughout this article we tried to keep the level
of mathematics to a minimum, focusing instead on
the concepts behind the different techniques.

2 Uncertainty in Vehicle Dynamics

Under uncertainty in vehicle dynamics, the future
robot configuration cannot be predicted accu-
rately. This could be due to the inherent charac-
teristics of the vehicle dynamics itself or limited
precision in the system’s command tracking per-
formance. Disturbances, which are extraneous
effects, will be considered separately in Section 4.

2.1 Robotics and Artificial Intelligence Approach

In robotics literature this type of uncertainty is
referred to as the uncertainty in action ef fect
(see e.g., [6]). The mathematical framework used
to tackle this type of uncertainty is mainly the
Markov Decision Processes (MDPs). In the MDP
framework, the mapping from state s to stochastic
action a is known as the control policy. A re-
ward function specifies the instantaneous reward
R(s, a) that the robot derives from taking each ac-
tion a at each state s. Good actions receive positive
reward, bad actions are punished with negative
reward. The Markov property entails that the next
state st+1 only depends on the previous state st and
action at, i.e.,

p(st+1|st, st−1,. . . , s0, at, at−1,. . . a0)= p (st+1|st, at) .

(1)

The goal of the agent is to act in such way
that it maximizes the long term reward. This can
be achieved by maximizing E

{∑∞
t=0 γ t R(st, at)

}
,

which is the expected value of the long term
reward (γ is a discount factor, 0 ≤ γ < 1, which
controls the influence of rewards in the planning
horizon). One way to characterize an MDP policy
is to consider its value function Vπ (s), which is for
every state s the amount of reward the agent can
accumulate when it starts in s and acts according
the policy π [7],

Vπ (s) = R(s, π(s)) + E

[ ∞∑

t=0

γ t R (st, π(st))

]

. (2)

Applying the stochastic transition model, it leads
to Bellman recursion [8]

Vπ (s) = R(s, π(s)) + γ
∑

s′∈S

p
(
s′|s, π(s)

)
Vπ

(
s′) . (3)

This can be turned into an optimality principle,
which specifies the following optimal value func-
tion known as a Bellman equation

V∗(s)=max
a∈A

[

R(s, a) + γ
∑

s′∈S

p
(
s′|s, a

)
V∗(s′)

]

, (4)

Solving this equation for each state s yields the
optimal value function, and the corresponding op-
timal policy π�.
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The basic dynamic programming approaches to
solved MDPs are referred to as value iteration and
policy iteration (see e.g., [9, 10]). In Cassandra
et al. [11] some heuristic control strategies were
proposed to navigate a mobile robot with model
uncertainty.

However, it is well-known that many real-world
problems modeled by MDPs tend to have huge
state/action spaces, leading to the curse of di-
mensionality making the solution of the result-
ing models intractable [12]. MDPs were shown
to be P-hard by Papadimitriou and Tsisiklis [13].
Chang et al. [14] presented various sampling and
population-based numerical algorithms to over-
come the computational difficulties of computing
an optimal solution in terms of a policy and/or
value function.

2.2 Optimal Control Based Approaches

In the controls community focus is placed on
the system’s dynamic with an emphasis on the
physical properties. The planning algorithms for a
dynamic system can be cast as an Optimal Control
Problem (OCP). The standard nonlinear OCP can
be formulated as follows

inf
u(.)

∫ ∞

0
q(x, u) dτ (5)

s.t. ẋ = f (x, u).

These OCP methods have been the primary tech-
niques to plan trajectories in early aerospace
applications [15, 16]. One popular approach to
solve the OCP, is by converting it into a para-
meter optimization problem [17, 18], i.e., a Non-
linear Programing Problem (NLP). However, the
corresponding NLP that represents the guidance
problem is NP-hard and cannot be solved in
real-time [19]. Therefore, approximate OCP is
typically used for real-time implementation. The
subsections below give an overview of these
techniques.

2.2.1 Model Predictive Control (MPC) or
Receding Horizon Control (RHC)

Among the techniques that have been used for
real-time optimization one of the most popu-
lar is the family of Model Predictive Control

(MPC) (also known as Receding Horizon Control
(RHC)). While used mainly for slow processes,
like those found in process engineering [20], the
availability of faster and cheaper computers as
well as efficient numerical algorithms, has made
these techniques popular in robotic’s and UAV
applications.

MPC is essentially a feedback control scheme
in which the OCP is solved over a finite horizon
[t, t + T], where at each time t step the future
states are predicted over the horizon length T
based on the current measurements. The first con-
trol input of the optimal sequence is applied to the
system and the optimization is repeated.

The closed-loop implementation provides ro-
bustness against modeling uncertainties and dis-
turbances. However, because of the finite horizon
(discarding the system’s future state history after
t + T) if no special precautions are taken in the
design and implementation, the closed-loop stabil-
ity cannot be guaranteed [21].

One way to address this issue is to use terminal
constraints or cost-to-go functions. In Primbs et al.
[22] the global stability of RHC is achieved by
combining a Control Lyapunov Function (CLF)
and including an additional state constraint on the
CLF (V(x)) at the end of the horizon. The pro-
posed Constrained RHC+CLF is stated as follows

Constrained RHC+CLF [22]

inf
u(.)

∫ t+T

t

(
q(x) + uTu

)
dτ (6)

s.t. ẋ = f (x, u)

∂V
∂x

[
f (x, u)

] ≤ −εσ (x(t))

V(x(t + T)) ≤ V(xσ (t + T)).

where 0 < ε ≤ 1, σ(x(t) is a continuous positive
definite function and T is the horizon length.

An alternative approach proposed by
Jadbabaie et al. [23], is through the use of an
a priori CLF as terminal cost of the optimization
(or cost-to-go) rather than imposing additional
constraint to the problem. The proposed
Unconstrained RCH+CLF is computationally
faster and also the stability is guaranteed as long
as CLF is an upper bound on the cost-to-go.
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Unconstrained RHC+CLF [23] The f inite hori-
zon OCP

inf
u(.)

∫ T

0
q(x, u) dτ + V(x(T)) (7)

s.t. ẋ = f (x, u),

where V(.) is a non-negative C2 function with
V(0) = 0 satisfying V(x) ≥ c‖x‖2 such that

min
u

(
V̇ + q

)
(x, u) ≤ 0, (8)

is exponentially stable.
With uncertainties in the system behavior, the

state evolution will not match the prediction. As
mentioned earlier, the MPC framework has some
inherent, implicit robustness to uncertainties due
to the closed-loop implementation. In order to ex-
plicitly handle uncertainties, the MPC framework
has been extended into Robust Model Predictive
Control (see [24] for a survey in 1999). Uncer-
tainty can be considered as either plant variability
(cf. [25–27]) or affine disturbances (cf. [28, 29]).
Considering uncertainty in the MPC formulation
alleviates the need for accurate a-priori knowl-
edge of the model.

2.2.2 Finite-state Approximate Optimal Control
Techniques

In an effort to reduce the size of the state-space,
finite-state approximations of the dynamics such
as Maneuver Automaton (MA) (see [30]) have
been proposed. With a finite-state representa-
tion of the vehicle dynamics, the trajectory opti-
mization becomes a sequential decision problem,
which can be solved as a dynamic program [9].
The approach was simulated for a miniature X-
Cell helicopter [31]. To address uncertainties in
the dynamics, Schouwenaars et al. [32] propose
a robust MA, which takes the uncertainty in the
maneuver outcome explicitly into account. They
considered uncertainty in the duration of action

itself and the uncertainty in the time-to-go result-
ing from uncertainty in the end state of action. The
solution involves applying dynamic programming
considering the expected value of the outcome.

2.2.3 Stochastic Predictive Control Techniques

Predictive stochastic control considers probabilis-
tic uncertainty in dynamic systems and aims to
control the predicted distribution of system state
over a finite planning horizon in some optimal
way. This is done by optimizing over the space
of possible future distributions. In this regard
Calafiore and El Ghaoui [33, 34] formulate a
linear program in which the data that specify
the constraints are subject to random uncertainty.
Blackmore et al. [35] used this idea and proposed
chance constrained predictive control under sto-
chastic uncertainty. The chance constraints specify
the probability of collision with an obstacle or
failure to reach a goal region.

It was shown in the literature that approx-
imating the probability distribution of random
variables using samples or particles can lead to
tractable algorithms for estimation and control.
Methods have been developed by which a distri-
bution of particles can be controlled in an op-
timal manner. These methods, appearing under
the names of Monte Carlo filters and particle
filters, have made it possible to numerically solve
many complex problems that were previously in-
tractable (see [36]). Shapiro [37] showed that sto-
chastic programming problems can be solved with
a reasonable accuracy by Monte Carlo sampling
techniques. Blackmore et al. [35] formulated a so-
called chance constrained model predictive control
using particle method and solved it using Mixed
Integer Linear Programming (MILP). Blackmore
et al. [38] uses a probabilistic representation of
the uncertainty in vehicle motion and determines
the control based on the distribution of the ve-
hicle state such that the probability of collision
with obstacles is below a pre-specified threshold.
The problem was posed as a Disjunctive Linear
Program (DLP) and solved using constrained op-
timization methods to generate a finite sequence
of optimal inputs. In the same vein, Richards
[39] uses norm-bounded uncertainties. The ad-
vantage of the former is that vehicle localization
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techniques often provide probabilistic distribution
over the possible location. This is also the case
of disturbances, such as wind, which are often
modeled as random processes.

Goerzen and Whalley [40] describe the prob-
abilistic modeling of the inner-loop tracking er-
ror for a UAV helicopter. They proceeded by
performing in-flight obstacle field navigations ex-
periments in a variety of atmospheric conditions
under varying speed and acceleration levels. To
minimize the risk of obstacle collision, the esti-
mated probability distribution of the inner-loop
tracking error is incorporated into the navigation
function.

3 Uncertainty in Environment Knowledge

Under environment knowledge uncertainty, the
robot has incomplete or imperfect information
about its environment. This could be due to in-
accuracy in the a-priori map or imperfect and
noisy exteroceptive sensory information that is
provided to the robot in order to map the
environment.

3.1 Planning Techniques for an Uncertain
Environment

Weiß et al. [41] proposed a real-time path plan-
ning method for UAVs in an uncertain environ-
ment. In their approach, the kinematic system of
the vehicle is reduced to a set of feasible trim tra-
jectories and maneuvers (similar to the maneuver
automaton in Frazzoli [42]). In addition, the en-
vironment is partitioned based on low-risk points
given by the risk map. After computing the cost
of all branches between the low risk points, the
Dijkstra algorithm is used to find a best sequence
of points. Finally a local, finite horizon planner is
used to plan the trajectory between the important
waypoints of the initial path. The local planner
iteratively determines the best trim trajectory by
minimizing a cost function that considers the time
integral of the risk and the path length.

Randomized motion planning techniques
such as Probabilistic Roadmap (PRM) [43] and

Rapidly-exploring Random Trees (RRT) [44]
have been successful in dealing with the high-
dimensional configuration space arising in many
real-world applications (see e.g., Pettersson and
Doherty [45] for an application to unmanned
helicopter). However they rely on accurate
models of the environment. Missiuro and Roy
[46] proposed an extension of PRM that computes
motion plans that are robust to environment
uncertainty by incorporating uncertainty in PRM
sampling as well as modeling the cost of collision
in traveling through uncertain regions of the map.

In the aforementioned approaches, the uncer-
tain area of the map is globally known and the
vehicle has to determine a plan to reach the goal
as safely as possible. However, many urban UAV
applications require the vehicle to have sufficient
on-board situational awareness to avoid collision
with unanticipated obstacles in the immediate en-
vironment while fulfilling the global planning re-
quirements. This can be achieved by environment
sensing, mapping and fast re-planning in real-time.

To accommodate plan updates when operat-
ing in partially known or unknown environments,
mainly incremental graph search algorithm have
been proposed [47]. Ramalinam and Reps [48]
proposed an incremental algorithm for a gener-
alization of the shortest path problem in a graph
with an arbitrary edge insertion, edge deletion and
edge-length changes. Stenz [49] proposed the D*
algorithm (Dynamic A∗) for optimal and efficient
re-planning in partially known environments. In
this approach, rather than re-calculating the op-
timal path for the entire map when changes in
the map are detected, a reduced set of cells are
checked and the optimal path to the robot’s pose
is updated incrementally. Focused D∗ [50], focuses
the repairs using heuristics to reduce the total
time for re-planning. Koeng and Likhachev [51]
proposed D∗ Lite, which implements the same
navigation strategy as Focused D∗ but is algo-
rithmically different. These incremental planners,
which make use of the results of the previous
plans to generate a new plan, can substantially
speed up the planning cycles. However, finding an
optimal plan within the available time might not
be possible. Anytime algorithms [52], in contrast,
try to find the best plan within the given available
time, Likhachev et al. [53] propose the Anytime
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D∗ planning algorithm, which is both anytime and
incremental.

3.2 Environment Mapping Techniques

Robot mapping is an active research area in Ro-
botics. It addresses the problem of acquiring spa-
tial models of the environment through robot’s
on-board sensors. Thrun [54] has presented a sur-
vey of robot mapping algorithm with a focus on in-
door environments. Since both the robot pose and
the map are uncertain, a vast body of literature
has focused on solving the mapping problem and
the induced problem of localizing the robot with
respect to the map. This process is referred to as
Simultaneous Localization and Mapping (SLAM)
(see e.g., [55]). The fundamental mathematical
principles used in robot mapping and localization
is Bayesian filtering. The filter is used to calculate
the robot pose and map posterior probability dis-
tribution, given all the control and measurements
via the following recursion [54]

p
(
st, m|zt, ut) = ηp (zt|st, m)

×
∫

p (st|ut, st−1) p
(
st−1, m|zt−1, ut−1

)
dst−1, (9)

where m and s denote the map and robot pose,
respectively. Also z is the sensor measurements
and η is a normalizing factor. The superscript t
refers to all data up to time t and subscript t
refers to current time. In addition, the probability
p(st|ut, st−1) specifies the effect of control u on the
state s. The probability p(zt|st, m) is referred to as
the perceptual model. A fundamental issue with
this formulation is that the posterior probability
distribution (Eq. 9) has infinitely many dimen-
sions and cannot be implemented. Hence most
practical localization and mapping algorithms in
the literature, such as the Kalman f ilter [56], Ex-
pectation Maximization (EM) [57] and particle
f ilter [36], resort to simplifying assumptions on the
original Eq. 9 such as assuming normal probability
distribution or representing the probability distri-
butions by samples in order to provide a working
mapping algorithm.

Many localization and mapping algorithms fo-
cus on indoor and cyclic environments (such
as office space) that provide many landmarks.
Therefore most of these algorithms cannot be
directly applied to aerial vehicles flying in 3D
outdoor environments. The problem of mapping
with known pose alleviates some of the practical
challenges and received much attention in the lit-
erature. One of these mapping algorithms, known
as occupancy grid map (originating from Moravec
and Elfes [58]), is an approach to model the world
and robot perception by using a probabilistic rep-
resentation of spatial information. This approach
employs a multidimensional tessellation of space
into cells, where each cell stores a probabilistic
estimate of its state. The probabilistic environ-
ment cell estimates are obtained by interpret-
ing the spatial sensor data using the probabilistic
sensor model [59]. Improvements to the original
occupancy grid algorithms have been proposed
recently (see e.g., [60, 61]).

3.3 Integration of Planning and Mapping

Many of the UAV planning methods that have
been proposed in the literature to operate in un-
certain environments use a combination of sens-
ing, mapping and re-planning. Shim et al. [62]
presented an exploration method in unknown en-
vironments using MPC-based obstacle avoidance
for a UAV helicopter that carries a laser scanner
to build obstacle maps. Sinopoli et al. [63] applied
stereo vision to autonomous UAV navigation in
partially known environments. Off-line computa-
tion, which is based on wavelet transformation
of the map and Dijkstra’s algorithm, exploits the
a-priori knowledge of the environment and pro-
vides an initial guess of the optimal route. The
local planner exploits the sensory information to
update the occupancy grid map and plans the
path based on dynamic programming principle.
The results were validated in simulation. Hrabar
[64] represented the 3D environment using oc-
cupancy maps obtained from stereo-based mea-
surements. For path planning of the UAV rotor-
craft, a combination of D∗ Lite and PRM was
used. Scherer et al. [65] used the plan globally
and react locally approach to control a UAV heli-
copter that combined a slower path planning layer
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based on Laplacian (which is a from of potential
function inspired from fluid motion model [66])
and a high-frequency reactive obstacle avoidance
algorithm. In their approach, a 3D laser scanner
is used to sense the environment and provide
the information to populate the occupancy grid.
Andert and Adolf [67] presented an approach for
3D environment perception and global planning
for unmanned helicopters. In their work, a 3D
occupancy grid is built incrementally. In order to
have a compact representation, an approximate
polygonal prism shape world model is created
from the occupancy grid data. Finally, sampling-
based planning methods (such as PRM and QRM
(Quasi Random Roadmap)) were used for path
planning. Davis and Chakravorty [68] posed mo-
tion planning of a UAV helicopter in an uncertain
environment as the adaptive optimal control of
an uncertain Markov decision process and use
the certainty equivalence principle [69] to compute
the control policy based on the current estimate
of the environment. In the previously discussed
risk minimization motion planning technique pro-
posed and flight tested on a UAV helicopter
by Goerzen and Whalley [40], the environmental
sensing error as well as inner-loop tracking error
are combined into a risk map. The risk map is then
used to determine a navigation function to guide
the helicopter.

4 Environmental Disturbances

Disturbances in the operational environment
make the true trajectory deviate from the planned
trajectory and therefore limit the effectiveness of
deterministic path planning techniques. This is
especially true for miniature UAVs. Their slower
speed and limited propulsion and control forces
make them less capable to directly reject the effect
of atmospheric disturbances.

A number of researchers have addressed the
problem of optimal path planning in the presence
of wind with known magnitude and direction. In
the optimal control field this problem is know as
Zermelo’s navigation problem [15]. Jennings et al.
[70] proposed a dynamic programming method to
find the minimum-time waypoint path for a UAV

flying in known wind. McGee et al. [71] explored
the problem of generating optimal path from an
initial position and orientation to a final position
and orientation in the 2D plane for an aircraft
with bounded turning radius in the presence of
a constant known wind. In the absence of wind,
this problem is known as a Dubin car problem
(see [72, 73]). The original problem of finding
an optimal path in the presence of a constant
wind can be re-expressed as one of finding the
optimal path with no wind to a final orientation
over a moving virtual target whose velocity is
equal and opposite to the velocity of the wind
[71]. The approach was extended by McGee and
Hedrick [74] to account for multiple point sur-
veillance in constant wind. Ceccarelli et al. [75]
address the path planning problem of MAV for
the purpose of obtaining video footage of a set
of known ground targets with preferred azimuthal
viewing angles, using fixed on-board cameras. The
approach is based on planning a finite sequence of
waypoints such that the resulting trajectory of the
MAV allows reconnaissance of each of the targets.
Ketema and Zhao [76] formulated the problem
of UAV trajectory optimization in an obstacle-
free environment in the presence of wind as a
nonlinear optimal control problem. Constraints
on state and control variables arising from oper-
ational and performance limitations are included
in the optimization problem.

In many real scenarios, the direction of wind
is not known a-priori or it changes from time to
time. Therefore it is more relevant to design path
planners that are robust to wind disturbances.
Nelson et al. [77] presented an approach based on
overlaying a vector field of desired headings and
then command the UAV to follow the vector field.
They showed through Lyapunov stability criteria
that the ground track heading error and lateral
following error approaches zero asymptotically in
the present of constant wind or disturbances. In
Kuwata et al. [78], an RH controller was used to
generate trajectories for an aerial vehicle oper-
ating in an environment with disturbances. The
proposed algorithm modifies the on-line RH op-
timization constraints (such as turn radius and
speed limits) to ensure that it remains feasible
even when the vehicle is acted upon by unknown,
but bounded, disturbances.
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5 Uncertainty in Pose

With uncertainties in pose, the robot’s location is
uncertain with respect to the environment map.
Most aerial robots nowadays are equipped with
a Global Positioning System (GPS), which en-
ables sufficient accuracy in the pose estimate. The
pose estimation problem is primarily an issue for
operation in GPS-denied environments (see e.g.,
[79–81]). In this case, the vehicle has to localize
itself using environmental landmarks and features
through on-board sensors (laser scanner or stereo-
vision cameras).

In robotics literature, this type of uncertainty
is sometimes referred to as uncertainty in percep-
tion [6]. The underlying mathematical framework
to address this uncertainty is known as Partially
Observable Markov Decision Process (POMDP)
which is a general form of fully observable MDP
discussed earlier. The term “partial” indicates that
the state of the world cannot be sensed directly
i.e., the robot is likely to suffer from uncertainty
(such as noise and limited view of the environ-
ment) in its sensors.

POMDP is a stochastic decision making ap-
proach based on probabilistic estimates of the
state of the environment. A POMDP uses an a
priori model of the world together with the past
history of the control actions and observations in
order to infer a probability distribution, or belief,
over the possible states of the world [82]. A belief
state is a probability distribution over all states.
It essentially summarizes the information of the
past. The planner chooses actions, based upon the
current belief as it maximizes the reward it expects
to receive over time.

POMDP is essentially a belief-state MDP in
which the agent summarizes all information about
its past using a belief vector b(s) [7]. Every time
the agent takes an action a and makes an obser-
vation o, its belief is updated according the Bayes’
rule

b ao (
s′) = p

(
o|s′, a

)

p(o|b , a)

∑

s∈S

p
(
s′|s, a

)
b(s). (10)

In POMDP framework, the value function is
defined as the expected future reward Vb (π) that

the agent can gather by following π starting from
belief b 0

Vb (π) = Eπ

[
h∑

t=0

γ t R (b t, π (b t)) | b 0

]

, (11)

where R(b t, π(b t)) = ∑
s∈S R(s, π(b t)) b t(s). The

value of an optimal policy is defined by the opti-
mal value function V∗, that satisfies the Bellman’s
optimality equation

V∗(b) = max
a∈A

[
∑

s∈S

R(s, a)b(s)

+γ
∑

o∈O

p (o|b , a) V∗ (
b ao)

]

. (12)

Equation 12 is equivalent to Eq. 4 for MDPs in the
fully observable case.

Unfortunately, solving POMDPs optimally has
been proven PSPACE-hard (see [13]). A vast
body of literature has focused on various approx-
imate and heuristic solution techniques (see e.g.,
a survey by Aberdeen in 2003 [83]), but nonethe-
less, computation time remains the primary limit-
ing factor for using POMDPs in realistically large
domains arising in practical applications.

In the area of mobile robot path planning,
Roy and Thrun [84] proposed an approximation
to POMDP by representing the high dimensional
belief space as the entropy of the belief space. The
results suggest that by navigating sufficiently close
to the areas of the map that have high information
gain, the likelihood of getting lost is minimized.
The belief space variant of the PRM algorithm
[43] known as the Belief Roadmap (BRM) was
proposed by Prentice and Roy [85] to cope with
pose uncertainty where the belief space is tracked
using a type of Kalman filter.

A variety of probabilistic estimation techniques
were proposed in the literature for mobile robot
localization (See e.g., [86, 87]). For an indoor or
GPS-denied environment, the robot’s ability to
keep track of its position can vary considerably
with the current robot’s position with respect to
the environment. Parts of the environment may
lack proper features for localization. In Takeda
and Latombe [88], given a model for a robot’s
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environment a Sensory Uncertainty Field (SUF) is
computed over the robot configuration space. At
every point in the configuration space, SUF is the
expected uncertainty in the sensed configuration
that is computed by matching the sensory data
against the environment model if the robot was
at that point. The planner can then use of the
computed SUF to generate paths that minimize
expected uncertainty.

6 Reactive Planning

Even if successful global planning algorithms for
uncertain environments were available, a per-
fectly up-to-date map of the environment may not
be available and the exteroceptive sensors carried
by the UAV cannot reach far enough, or behind
obstacles, to account for a priori unknown infor-
mation within the planning process. In these situa-
tions, the robot can only deal with these unknown
elements using a reactive planning algorithm. The
main difference between reactive planners is how
tightly they are integrated with the global planner.
Many reactive planning algorithms use only local
knowledge of obstacles to plan trajectories, i.e.,
they do not take the global planning problem
into consideration. The proposed algorithms also
vary based on the type of sensors that can be
carried by the robot. In this section we review two
different techniques for reactive planning: vision
based methods and depth sensor based methods.
While vision sensors are relatively cheap and light
weight, incorporating vision sensors in planning
algorithms require more computation to extract
obstacle locations from the raw sensor data. Many
mobile robots carry depth sensors such as scan-
ning laser or flash laser sensors. They provide
an accurate depth map, which is a format that
can more readily be incorporated in the planning
algorithm. The shortcoming, however, is that the
laser scanner sensors are often heavier and more
expensive than vision sensors. Flash laser sensors
that have sufficient range are still in the mak-
ing. Finally, reactive planning algorithms can be
combined with global path planning algorithms
to provide a complete navigation solution (see,
e.g., [89]).

6.1 Vision Based Reactive Methods

Reactive planning using vision sensors mostly re-
lies on two methods: Stereo Vision and Optic Flow.

6.1.1 Stereo Vision Based Techniques

Stereo vision is perhaps one of the oldest and
most established topics in computer vision. It
has served the robotics community as a reliable
means for recovering depth in the visual field.
Inspired by human vision, two images are taken
from slightly different perspectives. By comparing
the two images and exploiting the known trans-
formation between the two image planes, it is
possible to recover the depth of objects in the field
of view. Many approaches have been proposed
ranging from correlation, edge-based to corner
based methods. Stereo vision has proved useful
for robotics because of its reliability in measure-
ment and its robustness to environment types.

It is also possible to use monocular vision to
estimate the depth map through Structure-from-
Motion (SFM) techniques [90]. The aim of SFM
is to infer the geometry of the visual field. Using
consecutive images taken at different camera posi-
tions, the relative motion of the scene is calculated
which can then be used to estimate the depth
of objects in the field of view. It is often imple-
mented using the optical flow [79] or a feature
tracking method [91]. The velocity and position
of the vehicle is needed to project this map into
real world coordinates. For this reason, most SFM
approaches rely on IMU and GPS data provided
by sensor packages on-board the aircraft [91].

Prazenica et al. [92] used a SFM algorithm
to estimate the depth of environment features.
Then, an adaptive multi-resolution based learning
algorithm is applied to estimate the geometry of
the environment. The adaptive learning algorithm
solves the problem of learning a depth surface
from a collection of independent feature points.
The receding horizon path planning algorithm is
then used to generate obstacle free paths. Yu
et al. [93] developed a path planning and obstacle
avoidance method for MAVs using depth map
information from forward looking on-board cam-
eras. Higher resolution was given to the areas in
the depth map that are closer to the MAV and
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lower resolution to areas that are farther away.
Dijkstra’s algorithm was used to plan the obstacle
free path. Watanabe et al. [94] proposed a colli-
sion avoidance strategy using a vision sensor for a
UAV helicopter. In their approach, an Extended
Kalman Filter (EKF) is used to estimate the rela-
tive position of the obstacle from the vision-based
measurements. The collision avoidance strategy
called minimum-ef fort guidance is then designed
by minimizing the helicopter lateral accelerations.

6.1.2 Optic Flow (OF) Based Techniques

As mentioned earlier Optical Flow (OF) is an-
other technique for reactive planning. OF is the
measurement of apparent motion in the visual
field, resulting from camera motion or the mo-
tion of objects. It is a fundamental measurement
in computer vision motion analysis. Many other
branches of computer vision, such as feature de-
tection, begin by calculating OF. OF gained in-
terest in UAV research as a bio-inspired sensing
method, similar to the sensing used by flies or
bees [95]. For this reason, the focus of optical flow
UAV research is often on reactionary tasks, such
as avoiding obstacles, maintaining height above
ground or landing [96]. Since optical flow is a
measurement of apparent visual motion, it is re-
lated to both the relative velocity of the object and
the distance to the object. As the UAV is flying,
objects far away appear to move slowly in the
visual field, while objects nearby appear to move
quickly. For obstacle avoidance the common ap-
proach is to move away from areas of high optical
flow. The standard way to estimate OF is by using
cameras and computer vision processing. How-
ever, the need for optic flow sensors for MAVs
motivated the research for small OF sensor chips.
Barrows et al. [95] designed micro OF sensors
that weigh 10 grams. The same sensor was used
by Green et al. [97, 98] to perform autonomous
take off, obstacle avoidance, and landing of a
fixed-wing indoor aircraft. Beyeler et al. [99] de-
signed an autopilot for MAV for near obstacle
flight based on an optic mouse sensor to detect
the OF. The OF has two components: Rotational
OF and Translational OF. The Rotational OF is
induced by the lateral or rotational motion of the
aircraft. It is necessary to remove the Rotational

OF component in order to estimate the proximity
of the obstacles. This can be done using rate gyro
measurements [100]. Without this measurement,
a sudden aircraft turn will produce a spike in the
optical flow measurement. In fact, to calculate the
distance to surrounding obstacles, both the optical
flow and velocities must be measured. Assuming
constant translational speed, the Translational OF
can be interpreted as proximity signal [99].

To provide a more reliable obstacle avoidance
solution, optic flow measurements can be com-
bined with other sensors. Hrabar et al. [101] used
a combination of optic flow and stereo vision for
obstacle avoidance through urban canyons. The
optic flow from a pair of sideways-looking camera
is used to stay centered in a canyon while stereo
vision from a forward facing cameras is used to
avoid obstacles in the front. The proposed ap-
proach was tested on a UAV helicopter.

As with all computer vision problems, stereo
vision and SFM algorithms have difficulty in low
contrast scenarios. As a result, 2D laser scanners,
which can be thought of as two dimensional depth
map sensors, are widely used in ground and aerial
robots which will be discussed next.

6.2 Depth Map Based Reactive Methods

A number of reactive planning algorithms have
been developed that directly utilize range sensor
data. Among the earliest is Virtual Force Field
(VFF) developed by Borenstein and Koren [102].
As the mobile robot navigates in the environment,
range reading from a depth sensor is used to
form a 2D certainty grid histogram. At the same
time, the algorithm considers a small window of
environment cells around the robot (called active
histogram). Each occupied cell inside the win-
dow exerts a repulsive force pushing the robot
away from the cell, while a constant magnitude
attracting force pulls the robot toward the tar-
get. The authors improved this method in their
later work [103] by proposing the Vector Field
Histogram (VFH) approach. In VFH, a transfor-
mation maps the 2D active histogram into a 1D
polar histogram whose sector holds a value that
represents the obstacle density in the direction
of that sector. The algorithm can then steer the
robot toward the sector with a low polar obstacle
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density. Minguez and Montano [104] developed
Nearness Diagram (ND) navigation algorithm for
driving a robot in free space. By using a nearness
diagram, the proximity of obstacles and areas of
free spaces are constructed from the depth map
sensor information and the best collision free path
is chosen. These algorithms (VVF, VFH and ND),
all find a set of steering angles for a robot to
follow. There is another family of reactive plan-
ning methods that compute command in terms
of velocity. Curvature-Velocity Method (CVM),
developed by Simmons [105] and later extended
to Lane-Curvature Method (LCM) by Ko and
Simmons [106], are in this category. CVM selects
a point in translational-rotational velocity space
that satisfies some constraints and maximizes an
objective function. The LCM approach improves
some of the shortcomings by supplying a proper
local collision-free heading to CVM.

7 Conclusions

In this paper we surveyed motion planning algo-
rithms that deal with the primary sources of uncer-
tainty arising in real world missions. Emphasis was
placed on algorithms that can be applied to au-
tonomous UAV guidance. Throughout the paper
we compared the relative weakness and strength
of the two main schools of thoughts in this field:
Robotics and Controls. The main challenges in
UAV guidance problems are a 3D partially known
environment, limited payload capacity, limited
on-board computation power, differential con-
straints, environmental disturbances and uncer-
tainty in state and measurements. While efficient
algorithms addressing each sub-problem exist, the
solution to general planning in the presence of un-
certainty is still intractable in real time. Therefore,
for practical applications the algorithm must be
chosen based on the mission scenario and charac-
teristics of the problem. For instance, examples of
criteria that narrow down the selection of possi-
ble motion planning algorithms include: accurate
knowledge of vehicle’s dynamics, availability of
up-to-date global maps, possible GPS dropouts,
and level of disturbances in the operational en-
vironment. Finally, most of the practical UAV
guidance methods are based on some modular

organization of the control system, mapping
process, obstacle avoidance module and trajec-
tory planning system. The modularity makes it
possible to select the modules based on mission
specifications and conditions and also allows to
segregate the sources of uncertainties and address
them with dedicated approaches. Given the matu-
rity of the theory, the improvement in sensors will
likely have a big impact on the applications. This
progress will enable applications of autonomous
UAVs under broader operational conditions and
will also increase the operational flexibility and
reduce the needs for a human operator. Empirical
data from these applications are needed to help
further unify and consolidate the field.

References

1. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic
planning: structural assumptions and computational
leverage. J. Artif. Intell. Res. 11, 1–64 (1999)

2. Blythe, J.: Decision-theoretic planning. AI Mag.
20(2), 37–54 (1999)

3. LaValle, S., Sharma, R.: A framework for motion
planning in stochastic environments: modeling and
analysis. In: IEEE International Conference on Ro-
botics and Automation (1995)

4. LaValle, S., Sharma, R.: A framework for motion
planning in stochastic environments: application and
computational issues. In: IEEE International Confer-
ence on Robotics and Automation (1995)

5. Goerzen, C., Kong, Z., Mettler, B.: A survey of mo-
tion planning algorithms from the perspective of au-
tonomous UAV guidance. J. Intell. Robot. Syst. 57(1),
65–100 (2010)

6. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robot-
ics. The MIT Press (2005)

7. Spaan, M.T.J.: Approximate planning under uncer-
tainty in partially observable environments. Ph.D. dis-
sertation, Universiteit van Amsterdam, Netherlands
(2006)

8. Bellman, R.: Dynamic Programming. Princeton Uni-
versity Press (1957)

9. Bertsekas, D.: Dynamic programming and optimal
control: vols. 1 & 2. Athena Scientific, Belmont, MA
(2005)

10. Cassandra, A.R.: Exact and approximate algorithms
for partially observable markov decision process.
Ph.D. dissertation, Brown University, USA (1994)

11. Cassandra, A., Kaelbling, L., Kurien, J.: Acting un-
der uncertainty: discrete bayesian models for mobile-
robot navigation. In: IEEE Conference on Intelligent
Robots and Systems (IROS) (1996)



244 J Intell Robot Syst (2012) 65:233–246

12. Kaelbling, L., Littman, M., Cassandra, A.: Planning
and acting in partially observable stochastic domains.
Artif. Intell. 101(1–2), 99–134 (1998)

13. Papadimitriou, C., Tsisiklis, J.: The complexity of
markov decision processes. Math. Oper. Res. 12(3),
441450 (1987)

14. Chang, H., Fu, M., Hu, J., Marcus, S.: Simulation-
based Algorithms for Markov Decision Processes.
Springer Berlin (2007)

15. Bryson, A.E., Ho, Y.C.: Applied Optimal Control.
Taylor and Francis, Bristol, PA (1975)

16. Bryson, A.E.: Dynamic Optimization. Addison Wes-
ley Longman (1999)

17. Hull, D.: Conversion of optimal control problems into
parameter optimization problems. J. Guid. Control
Dyn. 20(1), 57–60 (1997)

18. Borrelli, F., Subramanian, D., Raghunathan, A.,
Biegler, L.: MILP and NLP techniques for centralized
trajectory planning of multiple unmanned air vehi-
cles. In: American Control Conference, pp. 5763–5768
(2006)

19. Schouwenaars, T., Mettler, B., Feron, E., How, J.:
Hybrid model for trajectory planning of agile au-
tonomous vehicles. Journal of Aerospace Computing,
Information, and Communication, vol. 1 (2004)

20. Mayne, D.: Nonlinear model predictive control: an
assessment. In: American Institute of Chemical Engi-
neers (AIChE) Symposium Series, pp. 217–231 (1997)

21. Mayne, D., Rawling, J., Rao, C., Scokaert, P.: Con-
strained model predictive control: stability and opti-
mality. Automatica 36(6), 789–814 (1987)

22. Primbs, J.A., Nevistic, V., Doyle, J.C.: A receding
horizon generalization of pointwise min-norm con-
trollers. IEEE Trans. Automat. Contr. 45(5), 898–909
(2000)

23. Jadbabaie, A., Yu, J., Hauser, J.: Unconstrained
receding-horizon control of nonlinear systems. IEEE
Trans. Automat. Contr. 776–783 (2001)

24. Bemporad, A., Morari, M.: Robust model predictive
control: a survey. Lect. Notes Control Inf. Sci. 207–
226 (1999)

25. Lee, Y.I., Kouvaritakis, B.: A linear programming ap-
proach to constrained robust predictive control. IEEE
Trans. Automat. Contr. 45(9), 1765–1770 (2000)

26. Cuzzola, F.A., Geromel, J.C., Morari, M.: An im-
proved approach for constrained robust model predic-
tive control. Automatica 38, 1138 (2002)

27. Lee, J.H., Yu, Z.: Worst-case formulations of model
predictive control for systems with bounded parame-
ters. Automatica 33(5), 763–781 (1997)

28. Kerrigan, E.C., Mayne, D.Q.: Optimal control of con-
strained, piecewise affine systems with bounded dis-
turbances. In: IEEE Conference on Decision and
Control (2002)

29. Lee, Y.I., Kouvaritakis, B.: Constrained receding
horizon predictive control for systems with distur-
bances. Int. J. Control 72(11), 1027–1032 (1999)

30. Frazzoli, E., Dahleh, M.A., Feron, E.: A hybrid con-
trol architecture for aggressive maneuvering of au-
tonomous helicopter. In: IEEE Conference on Deci-
sion and Control, Phoenix, AZ (1999)

31. Mettler, B., Valenti, M., Schouwenaars, T., Frazzoli,
E., Feron, E.: Rotorcraft motion planing for agile
maneuvering. In: Proceedings of the 58th Forum of
the American Helicopter Society, Montreal, Canada
(2002)

32. Schouwenaars, T., Mettler, B., How, J., Feron, E.: Ro-
bust Motion Planning Using a Maneuver Automaton
with Built-in Uncertainties. American Control Con-
ference, Denver, CO (2003)

33. Calafiore, G.C., Ghaoui, L.E.: Linear Programming
with Probability Constraints Part 1. American Control
Conference, New York City, NY (2007)

34. Calafiore, G.C., Ghaoui, L.E.: Linear Programming
with Probability Constraints Part 2. American Control
Conference, New York City, NY (2007)

35. Blackmore, A.B.L., Ono, M., Williams, B.C.: A prob-
abilistic particle control approximation of chance con-
strained stochastic predictive control. IEEE Trans.
Robot. 26(3), 502–517 (2010)

36. Doucet, A., De Freitas, N., Gordon, N.: Sequential
Monte Carlo methods in Practice. Springer Verlag
(2001)

37. Shapiro, A.: Stochastic programming approach to op-
timization under uncertainty. Math. Program. 112(1),
183–220 (2008)

38. Blackmore, L., Li, H., Williams, B.: A Probabilistic
Approach to Optimal Robust Path Planning with Ob-
stacles. American Control Conference, Minneapolis,
MN (2006)

39. Richards, A.: Robust Constrained Model Predictive
Control. Ph.D. dissertation, Massachusetts Institute of
Technology, USA (2005)

40. Goerzen, C., Whalley, M.: Minimal risk motion plan-
ning: a new planner for autonomous uavs in uncer-
tain environment. In: AHS International Specialists’
Meeting on Unmmaned Rotorcraft, Tempe, Arizona
(2011)

41. Weiß, B., Naderhirn, M., del Re, L.: Global real-time
path planning for uavs in uncertain environment. In:
IEEE International Symposium on Intelligent Con-
trol and International Conference on Control Appli-
cations, pp. 2725–2730. Munich, Germany (2006)

42. Frazzoli, E.: Robust Hybrid Control for Autono-
mous Vehicle Motion Planning. PhD Thesis, MIT,
Cambridge, MA (2001)

43. Kavraki, L., Svestka, P., Latombe, J., Overmars, M.:
Probabilistic roadmaps for path planning in high di-
mensional configuration spaces. IEEE Trans. Robot.
Autom. 12(4), 566–580 (1996)

44. LaValle, S., Kuffner, J. Jr.: Randomized kinodynamic
planning. Int. J. Rob. Res. 20(5), 378 (2001)

45. Pettersson, P., Doherty, P.: Probabilistic roadmap
based path planning for an autonomous unmanned
aerial vehicle. J. Intell. Fuzzy Syst. 17, 395–405 (2006)

46. Missiuro, P., Roy, N.: Adapting probabilistic
roadmaps to handle uncertain maps. In: IEEE
Conference on Robotics and Automation (ICRA),
pp. 1261–1267. Orlando, FL (2006)

47. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.:
Fully dynamic algorithms for maintaining shortest
paths trees. J. Algorithms 34(2), 251–281 (2000)



J Intell Robot Syst (2012) 65:233–246 245

48. Ramalingam, G., Reps, T.: An incremental algorithm
for a generalization of the shortest-path problem. J.
Algorithms 21(2), 267–305 (1996)

49. Stentz, A.: Optimal and efficient path planning
for partially-known environments. In: IEEE Inter-
national Conference on Robotics and Automation,
vol. 4, pp. 3310–3317 (1994)

50. Stentz, A.: The focussed D∗ algorithm for real-time
replanning. In: International Joint Conference on Ar-
tificial Intelligence (1995)

51. Koenig, S., Likhachev, M.: D∗ lite. In: Proceedings
of the 18th National Conference on Artificial Intel-
ligence (AAAI), pp. 476–483 (2002)

52. Zilberstein, S., Russell, S.: Approximate reasoning us-
ing anytime algorithms. In: Imprecise and Approxi-
mate Computation. The Kluwer International Series
in Engineering and Computer Science, vol. 318, pp.
43–62. Springer US (1995)

53. Likhachev, M., Ferguson, D., Gordon, G., Stentz, A.,
Thrun, S.: Anytime search in dynamic graphs. Artif.
Intell. 172(14), 1613–1643 (2008)

54. Thrun, S.: Robotic mapping: a survey. In: Exploring
artificial intelligence in the new millennium, pp. 1–35
(2002)

55. Csorba, M.: Simultaneous Localization and Map
Building. Ph.D. dissertation, University of Oxford
(1997)

56. Castellanos, J., Tardos, J.: Mobile robot localization
and map building: a multisensor fusion approach.
Kluwer Academic Pub (1999)

57. McLachlan, G., Krishnan, T.: The EM algorithm and
extensions. Wiley New York (1997)

58. Moravec, H., Elfes, A.: High resolution maps from
wide angle sonar. In: IEEE Conference on Robotics
and Automation (ICRA), vol. 2 (1985)

59. Elfes, A.: Using occupancy grids for mobile robot per-
ception and navigation. Comput. 22(6), 46–57 (1989)

60. Konolige, K.: Improved occupancy grids for map
building. Auton. Robots 4(4), 351–367 (1997)

61. Pathak, K., Birk, A., Poppinga, J., Schwertfeger, S.:
3D Forward sensor modeling and application to oc-
cupancy grid based sensor fusion. In: IEEE Confer-
ence on Intelligent Robots and Systems (IROS),
San Diego, CA (2007)

62. Shim, D., Chung, H., Sastry, S.: Conflict-free naviga-
tion in unknown urban environments. IEEE Robot.
Autom. Mag. 13(3), 27–33 (2006)

63. Sinopoli, B., Micheli, M., Donato, G., Koo, T.: Vi-
sion based navigation for an unmanned aerial vehicle.
In: IEEE Conference on Robotics and Automation
(ICRA), vol. 2, pp. 1757–1764. Seoul, Korea (2001)

64. Hrabar, S.: 3D path planning and stereo-based obsta-
cle avoidance for rotorcraft UAVs. In: IEEE Confer-
ence on Intelligent Robots and Systems (IROS),
pp. 807–814. Nice, France (2008)

65. Scherer, S., Singh, S., Chamberlain, L., Saripalli, S.:
Flying fast and low among obstacles. In: IEEE
Conference on Robotics and Automation (ICRA),
pp. 2023–2029. Roma, Italy (2007)

66. Li, Z., Bui, T.: Robot path planning using fluid model.
J. Intell. Robot. Syst. 21(1), 29–50 (1998)

67. Andert, F., Adolf, F.: Online world modeling and path
planning for an unmanned helicopter. Auton. Robots,
27(3), 147–164 (2009)

68. Davis, J., Chakravorty, S.: Motion planning under un-
certainty: application to an unmanned helicopter. J.
Guid. Control Dyn. 30(5), 1268–1276 (2007)

69. Kumar, P.R., Varaiya, P.: Stochastic Systems: Estima-
tion, Identification and Adaptive Control. Prentice-
Hall, New Jersey, USA (1986)

70. Jennings, A., Ordonez, R., Ceccarelli, N.: Dynamic
programming applied to UAV way point path plan-
ning in wind. In: IEEE International Conference on
Computer-Aided Control Systems, CACSD, pp. 215–
220 (2008)

71. McGee, T., Spry, S., Hedrick, J.: Optimal path plan-
ning in a constant wind with a bounded turning rate.
In: AIAA Guidance, Navigation, and Control Confer-
ence (2005)

72. Dubins, L.E.: On curves of minimal length with a con-
straint on average curvature, and with prescribed ini-
tial and terminal positions and tangents. Am. J. Math.
79(3), 497–516 (1957)

73. Boissonnat, J.D., Cerezo, A., Leblond, J.: Shortest
paths of bounded curvature in the plane. In: IEEE
Conference on Robotics and Automation (ICRA),
vol. 3, pp. 2315–2320 (1992)

74. McGee, T., Hedrick, J.: Path planning and control for
multiple point surveillance by an unmanned aircraft in
wind. In: American Control Conference, Minneapolis,
Minnesota, USA (2006)

75. Ceccarelli, N., Enright, J., Frazzoli, E., Rasmussen, S.,
Schumacher, C.: Micro UAV path planning for recon-
naissance in wind. In: American Control Conference,
pp. 5310–5315. New York City, USA (2007)

76. Ketema, Y., Zhao, Y.: Micro Air Vehicle Trajectory
Planning in Winds. J. Aircr. 47(4), 1460–1463 (2010)

77. Nelson, D.R., Barber, D.B., McLain, T.W., Beard,
R.W.: Vector field path following for small unmanned
air vehicles. In: American Control Conference,
Minneapolis, Minnesota, USA (2006)

78. Kuwata, Y., Schouwenaars, T., Richards, A., How, J.:
Robust constrained receding horizon control for tra-
jectory planning. In: Proceedings of the AIAA Guid-
ance, Navigation, and Control Conference and Ex-
hibit (2005)

79. Kendoul, F., Fantoni, I., Nonami, K.: Optic flow-
based vision system for autonomous 3D localization
and control of small aerial vehicles. Robot. Auton.
Syst. 57(6–7), 591–602 (2009)

80. Celik, K., Chung, S.-J., Clausman, M., Somani, A.K.:
Monocular vision SLAM for indoor aerial vehicles.
IEEE Conference on Intelligent Robots and Systems
(IROS), St. Louis, MO (2009)

81. Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy,
N.: Stereo vision and laser odometry for autonomous
helicopters in GPS-denied indoor environments. Pro-
ceedings of the SPIE, Unmanned Systems Technology
XI. Orlando, Florida (2009)

82. Roy, N., Gordon, G., Thrun, S.: Finding approximate
POMDP solutions through belief compression. J.
Artif. Intell. Res. 23, 1–40 (2005)



246 J Intell Robot Syst (2012) 65:233–246

83. Aberdeen, D.: A (revised) Survey of Approximate
Methods for Solving Partially Observable Markov
Decision Processes. National ICT Australia, Tech.
Rep., Canberra, Australia (2003)

84. Roy, N., Thrun, S.: Coastal navigation with mobile ro-
bots. Advances in Neural Processing Systems 12(12),
1043–1049 (1999)

85. Prentice, S., Roy, N.: The belief roadmap: efficient
planning in linear pomdps by factoring the covari-
ance. In: Proceedings of the 13th International Sym-
posium of Robotics Research (ISRR), Hiroshima,
Japan (2007)

86. Olson, C.F.: Probabilistic self-localization for mobile
robots. IEEE Trans. Robot. Autom. 16(1), 55–66
(2000)

87. Thrun, S., Fox, D., Burgard, W.: Robust Monte Carlo
localization for mobile robots. Artif. Intell, 128(1–2),
91–141 (2000)

88. Takeda, H., Latombe, J.: Sensory uncertainty field
for mobile robot navigation. In: IEEE Conference on
Robotics and Automation, pp. 2465–2472 (1992)

89. Djekoune, A.O., Achour, K., Toumi, R.: A sensor
based navigation algorithm for a mobile robot using
the DVFF approach. Int. J. Adv. Robot. Syst. 6(2),
97–108 (2009)

90. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An invita-
tion to 3-D Vision. Springer-Verlag, LCC (2003)

91. Qian, G., Chellappa, R., Zheng, Q.: Robust structure
from motion estimation using inertial data. J. Opt.
Soc. Am. A, 18(12), 2982–2997 (2001)

92. Prazenica, R.J., Kurdila, A.J., Sharpley, R.C.: Re-
ceding horizon control for mav with vision-based
state and obstacle estimation. AIAA Guidance, Nav-
igation, and Control Conference, South Carolina
(2007)

93. Yu, H., Beard, R.W., Byrne, J.: Vision-based lo-
cal multi-resolution mapping and path planning for
miniature air vehicles. In: American Control Confer-
ence, St. Louis, Missouri, USA (2009)

94. Watanabe, Y., Calise, A., Johnson, E.: Vision-based
obstacle avoidance for UAVs. In: AIAA Guidance,
Navigation and Control Conference, South Carolina
(2007)

95. Barrows, G., Chahl, J., Srinivasan, M.: Biomimetic
visual sensing and flight control. The Aeronautical
Journal, London: The Royal Aeronautical Society,
107(1069), 159–168 (2003)

96. Ruffier, F., Franceschini, N.: Optic flow regulation:
the key to aircraft automatic guidance. Robot. Auton.
Syst. 50(4), 177–194 (2005)

97. Green, W., Oh, P., Sevcik, K., Barrows, G.: Au-
tonomous landing for indoor flying robots using optic
flow. In: ASME international mechanical engineering
congress and exposition, vol. 2, pp. 1347–1352. (2003)

98. Green, W., Oh, P., Barrows, G.: Flying insect in-
spired vision for autonomous aerial robot maneuvers
in near-earth environments. In: IEEE Conference on
Robotics and Automation, ICRA (2004)

99. Beyeler, A., Zufferey, J., Floreano, D.: Vision-based
control of near-obstacle flight. Auton. robots, 27(3),
201–219 (2009)

100. Zufferey, J.C., Floreano, D.: Fly-inspired visual steer-
ing of an ultralight indoor aircraft. IEEE Trans.
Robot. 22(1), 137–146 (2006)

101. Hrabar, S., Sukhatme, G., Corke, P., Usher, K.,
Roberts, J.: Combined optic-flow and stereo-based
navigation of urban canyons for a UAV. In: IEEE
Conference on Intelligent Robots and Systems, IROS,
pp. 3309–3316 (2005)

102. Borenstein, J., Koren, Y.: Real-time obstacle avoid-
ance for fast mobile robots. IEEE Trans. Syst. Sci.
Cybern. 19(5), 1179–1187 (1989)

103. Borenstein, J., Koren, Y.: The vector field histogram -
fast obstacle avoidance for mobile robots. IEEE
Trans. Robot. Autom. 7(3), 278–288 (1991)

104. Minguez, J., Montano, L.: Nearness diagram (ND)
navigation: collision avoidance in troublesome scenar-
ios. IEEE Trans. Robot. Autom. 20(1), 45–59 (2004)

105. Simmons, R.: The curvature-velocity method for lo-
cal obstacle avoidance. In: IEEE International Con-
ference on Robotics and Automation, pp. 3375–3382.
Minneapolis, Minnesota (1996)

106. Ko, N., Simmons, R.: The lane-curvature method
for local obstacle avoidance. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
pp. 1615–1621. B.C, Canada (1998)


	Survey of Motion Planning Literature in the Presence of Uncertainty: Considerations for UAV Guidance
	Abstract
	Introduction
	Uncertainty in Vehicle Dynamics
	Robotics and Artificial Intelligence Approach
	Optimal Control Based Approaches
	Model Predictive Control (MPC) or Receding Horizon Control (RHC)
	Finite-state Approximate Optimal Control Techniques
	Stochastic Predictive Control Techniques


	Uncertainty in Environment Knowledge
	Planning Techniques for an Uncertain Environment
	Environment Mapping Techniques
	Integration of Planning and Mapping

	Environmental Disturbances
	Uncertainty in Pose
	Reactive Planning
	Vision Based Reactive Methods
	Stereo Vision Based Techniques
	Optic Flow (OF) Based Techniques

	Depth Map Based Reactive Methods

	Conclusions
	References



