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Abstract In this article we describe the architec-
ture, algorithms and real-world benchmarks per-
formed by Johnny Jackanapes, an autonomous
service robot for domestic environments. Johnny
serves as a research and development platform
to explore, develop and integrate capabilities re-
quired for real-world domestic service applica-
tions. We present a control architecture which
allows to cope with various and changing domestic
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service robot tasks. A software architecture sup-
porting the rapid integration of functionality into
a complete system is as well presented. Further,
we describe novel and robust algorithms centered
around multi-modal human robot interaction, se-
mantic scene understanding and SLAM. Evalua-
tion of the complete system has been performed
during the last years in the RoboCup@Home com-
petition where Johnnys outstanding performance
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led to successful participation. The results and
lessons learned of these benchmarks are explained
in more detail.

Keywords Domestic service robots ·
Semantic scene understanding ·
Human robot interaction

1 Introduction

During the last decades robotic research moved
from stationary robotic systems in constrained en-
vironments to mobile and service-oriented robots
operating in realistic and unconstrained environ-
ments. Based on recent progress in fundamen-
tal robotic algorithms like mapping, navigation,
and perception mobile robots are almost ready
to be deployed as assistants in challenging envi-
ronments. One up-and-coming application field
of service robots is the domestic domain where
robots can support humans as daily-life assistants.
Thereby robots could assist and support us in
daily-life tasks like cleaning, washing, or ironing
[59]. A useful assistant needs to perform such
tasks in a reasonable manner, for instance within
an acceptable time frame or without constrain-
ing the environment. To do so, a domestic ser-
vice robot must be equipped with diverse abilities
such as: human robot interaction, person detec-
tion and tracking, planning, reasoning, object de-
tection, classification and manipulation. However,
all these abilities are active and interdisciplinary
research fields itself. The integrative nature of do-
mestic service robot research opens thereby novel
research challenges centered around the trade-
off between precise and robust abilities. To meet
requirements as robustness against environmental
changes or the safe interaction with humans the
abilities must be carefully selected, improved or
even developed from scratch. Recently, research
on complete domestic service robots has attracted
the community. In [66] Srinivasa et al. presented
HERB, a home exploring butler with promising
object manipulation skills. Another complete ser-
vice robot is the PR2 by WillowGarage, a robot
equipped with a dual arm system for e.g. opening
doors [50]. The Care-O-bot system, which is al-
ready in its 3rd generation, appears as a friendly

butler, explicitly designed for domestic environ-
ments [60]. The DESIRE platform, a dual arm ro-
bot, is a research platform for studying abilities re-
quired in domestic environments as manipulation
and perception [56]. In [5] Beetz et al. presents a
robot which is able to perform everyday manipu-
lation tasks incorporating knowledge from various
sources.

However, evaluation of these complete sys-
tems in realistic and real-world environments is
difficult due to the uniqueness of the robots,
missing measures and procedures and the lack of
a benchmarking methodology. Though, one ac-
cepted and feasible way to perform benchmarking
is through scientific competitions. Examples are
the DARPA challenges [10, 11], the European
Robot Trials [63] and the various leagues under
the umbrella of the RoboCup initiative. Along
with the various robot soccer competitions, the
RoboCup@Home1 league [71, 72] explicitly tar-
gets the benchmarking of autonomous service ro-
bots in domestic environments. The competition
defines a set of benchmarks or tests inspired by
domestic environments and performance metrics
centered around key abilities required to perform
these tests. To support these benchmark efforts
and to explore novel design and algorithm chal-
lenges in the field of domestic service robots we
developed Johnny Jackanapes or just Johnny.

Johnny is an autonomous service robot for
domestic environments participating for several
years in the RoboCup@Home league. In this
article we present the architecture, algorithms
and real-world benchmarks performed by Johnny.
First, in Section 1.1, we describe a future appli-
cation of domestic service robots. Thereby, we
derive several capabilities which are required for
a robot to be ready to be deployed in domestic en-
vironments. Namely, an architecture (Section 2),
multi-modal human robot interaction (Section 3),
and semantic scene understanding (Section 4).
In Section 5 we discuss the benchmarking re-
sults obtained through the participation in the
RoboCup@Home competition.

1Detailed information about the league can be found on
http://www.ai.rug.nl/robocupathome/.

http://www.ai.rug.nl/robocupathome/
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1.1 Johnny in the Restaurant

In the following a scenario where Johnny serves
guests in a restaurant is described. The scenario
is based on the real-world performance of Johnny
during the finals of RoboCup@Home 2010 in
Singapore.2 The restaurant-like environment is
densely composed of dynamic objects as guests
walking around and static objects as tables, shelfs,
and chairs. Johnnys tasks are the following:

– Receive seat reservations
– Welcome known and unknown guests at the

entrance
– Escort guests to reserved and free seats
– Receive orders from guests like drinks, candy

or chips
– Grasp and deliver the orders to the right

guests
– Entertain guests by recognizing their mood

and playing an appropriate song
– Find items lost or forgotten by guests in the

restaurant

To perform the tasks the following capabilities
are required:

Semantic scene understanding: For a domestic
service robot it is not sufficient to simply per-
ceive the environment. Modern robots are re-
quired to interpret raw sensor data in a more
elaborated way. More precisely, understand-
ing the semantics of a scene from raw sensor
data is required. Thereby semantic scene un-
derstanding could range from the classification
of laser-scans to places, e.g. kitchen or living
room to the categorization of objects placed on
shelves or tables. The process of semantic scene
understanding is the key factor for achieving
more complex tasks as described above. For
instance, assuming a guest called Bob leaves the
restaurant and recognizes, while being already
at home, that he forgot his cell phone in the
restaurant. Bob could call the restaurant and
ask Johnny to search for the cell phone. In
doing so Johnny requires several capabilities
as the categorization of objects into e.g. cell

2A complete video of the finals can be found on http://b-it-
bots.de/Media/Media.html.

phones or the background knowledge that cell-
phone are often placed on tables or shelfs.

Human robot interaction: A service robot which
is not able to interact with its recipient is mean-
ingless. For instance, in our scenario Johnny is
required to perceive the orders by the guest.
Therefore, means for human robot interaction
are required. Thereby several modalities could
be used. Ordering a drink through a speech in-
teraction might be more feasible than pointing
on a menu. However, a pointing gesture is more
intuitive for signaling on which table the guest
wants to sit.

Object manipulation: One mean for a service ro-
bot to interact with the environment is through
the manipulation of objects. In the restaurant
scenario Johnny is required to deliver orders,
such as drinks or snacks. The delivery includes
grasping of the orders from shelfs or tables and
the hand-over to the guest.

Planning: There are two approaches to perform
tasks in the service robotic domain. In the
first approach, the robot is equipped with
pre-programmed capabilities, e.g. navigate,
following-a-person, etc. With this approach, the
robot can perform tasks based on user com-
mands. However, in the long run it would not
be able to solve problems in dynamic envi-
ronments and perform more complex tasks.
The second approach is using a planning sys-
tem. The planning system enables the robot
to solve complex tasks composed of several
pre-programmed capabilities of the robot. The
domestic service robot domain can be quite
complex if all the objects in the planning do-
main needs to be modeled. Such a complex
domain could make the planning problem in-
tractable. Hence, Johnny uses the Hybrid De-
liberative Layer (HDL), where a Description
Logic (DL) reasoner is used to store the plan-
ning domain and the world model. Details of
HDL are presented in Section 2.2. Beside, for
supporting the planning system, the DL system
is used to store additional knowledge and sup-
port the Human Machine Interaction (HMI)
system. It supports the HMI system by bridging
the gap between the semantic information and
the metric information. For example, DL stores
the objects in its model. These objects contains

http://b-it-bots.de/Media/Media.html
http://b-it-bots.de/Media/Media.html
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some properties, from which some are needed
by the planning system and some others by the
users. In the case of a dialog system, if a user
asks Johnny to bring something, the DL rea-
soner provides Johnny with objects that have
the property graspable, which excludes objects
that are too heavy for its manipulator. If more
than one object is available, Johnny can ask the
user by providing what options the user has.

Plan execution: The output of a planning sys-
tem is a sequence of actions. These actions
have a symbolic representation. For exam-
ple, in the task of grasp and deliver order, it
may consist of the following actions: navigate-
to-table, move-to-dexterous-workspace, grasp-
chips, drive-backward and so on. These actions
are still in symbolic representation, which are
not enough for the low level controller. The
controller would not understand where the ta-
ble is or how chips look like. Therefore, a plan
execution system is needed to translate these
actions into understandable commands for the
low level controller. This translation process is
supported by the HDL system, where the plan-
execution system could ask additional informa-
tion to interpret the actions. For example, it
can ask the HDL system to provide the SIFT
feature of the chips or ask the pose of the

table it should navigate to. The plan-execution
monitors the execution of these actions, so that
the goal is achieved. In case of un-repairable
failure, it will ask the planning system to pro-
duce new plan.

2 System Architecture

2.1 Robot Platform

Johnny is based on a modular mobile platform
called VolksBot [70], which has been designed for
rapid prototyping of robot applications in edu-
cation, research and industry by the Fraunhofer
Institute for Intelligent Analysis and Information
Systems (IAIS). We use a customized variant, see
Fig. 1, equipped with a Neuronics Katana 6M180
robot arm with 5 Degrees of Freedom (DoF). The
manipulator has a two-fingered gripper, which is
equipped with infrared reflectance as well as force
sensors. It can handle a maximum payload of 500
g and is mounted in a way to provide good reach-
ability and maneuverability. One of the primary
sensors for perceiving the environment is a SICK
LMS 200 laser range finder mounted in the ro-
bot’s center of rotation. It provides accurate range
measurements to surrounding objects intersecting

Fig. 1 Johnny Jackanapes
moving around the BRSU
campus (a) and a
simulated kitchen
environment (b)

(b)(a)
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the 2D scan plane in an angular range of 180◦.
Further, Johnny is equipped with a Bumblebee
stereo camera as well with a commercial and out
of the shelf monocular webcam; both mounted on
a pan tilt unit. The drive unit used for locomotion
uses a differential drive with two actively driven
wheels, powered by two 150-W motors, and two
caster wheels to enhance rotating and stability un-
der load. The robot’s maximum velocity is 2 m/s.

2.2 Robot Control Architecture

The overall control approach is based on a de-
liberative layer which is needed in a complex
domain, such as domestic robotics. It provides
the robots with additional cognitive capabilities to
solve complex tasks. An example of such complex
task in domestic robotics is pick and place (e.g.
“bring a coke to the guest in the armchair”). To
perform this task, the robot needs to combine sev-
eral actions such as navigation, object recognition,
and object grasping. As the number of capabilities

of a robot grows, more complex combinations of
tasks can be performed.

In our robot, we use a novel approach which
is called Hybrid Deliberative Layer (hdl) [28]. It
extends the planning component in hybrid control
architecture that is usually used in mobile robotics
with a Description Logic (dl) [2] reasoning sys-
tem. Figure 2 shows the hdl as our robot control
architecture. As planning component, hdl uses
jshop2 [53], a Hierarchical Task Network (htn)
planner [25]. The dl reasoning component is im-
plemented using Pellet [65].

The planning-related information and robot-
specific information are stored in the ontology
model instead of being merely planning problem
descriptions. Two major benefits can be gained
from this approach. Firstly, one can store huge
number of objects or rooms in the ontology model
without affecting the size of the planning-problem
descriptions. Only planning-related objects or
rooms are included in the problem descriptions.
Secondly, the dl provides the capability to model

Fig. 2 HDL system
architecture [28]
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Fig. 3 A reasoning
process over dl
representation to extract
a concrete HTN planning
problem [28]
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domestic environments more naturally. Thus it
can be used with other components such as a
speech recognition engine, so that it can map the
human objects with the planning system symboli-
cally. The numerical information of the objects is
modeled as property of the instances of the onto-
logy model.

2.2.1 Concept

The reasoning process over the dl model for ex-
tracting a planning problem description is shown
in Fig. 3. All necessary information for the plan-
ning system and the robot is stored in the dl
model. In addition to the robot’s world model, it
can store the planning domains as well. The plan-
ning domains are not limited to one domain only.
Additional domains will not influence the overall
planning performance, as only relevant instances
and domains are considered for the problem de-
scription. The dl reasoner filters the dl model
and generates a valid problem description for the
jshop2 planner.

In the Description Logic representation, the
objects and planning related information are mod-
eled and stored in two boxes. The first box is
the Terminological Box (TBox), which stores the
information as set of concepts. The second box
is the Assertional Box (ABox), which stores the
instances of the conceptual information on the
TBox [2].

2.2.2 Modeling RoboCup@Home Domain

Let us take a concrete example in RoboCup@
Home domain, namely the pick and place task.
Figure 4 shows the TBox model in this domain.
As shown in this figure, the world model is cap-
tured and represented as set of concepts, which
are denoted as ellipses. The robot itself is part
of this model and represented as Robot � Actor.
Not of less significance than the robot, the objects
including the furnitures are represented as well
in the dl. Not every object has to be modeled
in the dl. However, the planning related objects
have to be captured and modeled in this model. As

Fig. 4 An example of RoboCup@Home ontology [28]
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mentioned before, additional conceptual models
will not affect the planning performance as the dl
reasoning engine will filter irrelevant concepts.

In Fig. 4, some concepts are shown in orange
colored ellipses. These concepts do not have di-
rect instances. Instead the dl reasoner will reason
about the model and fill these concepts with in-
stances that fulfill the rule defined on the concept.
For example the Graspable−Ob ject is defined as
follows:

Graspable-Ob ject ≡ RoboCup-Ob ject �
� hasProperty(small) �
� hasProperty(lessThan500g)

Table 1 shows the number of instances on the
RoboCup@Home concepts. The number of as-
serted instances represents the amount of objects
which are explicitly asserted into the system. The
dl reasoner reasons about the model and pro-
duces inferred instances as a result. As shown
in the table, although some concepts have no
explicit instances they will have some instances
that met their definitions. Therefore, we can easily
extend some concepts by refining their definitions
in order to reduce the amount of instances and
remove irrelevant instances from the planning
problem. As shown in the table, the number
of Manipulable-Object is 22 but only seven are
Graspable-Object and three are Drinkable-Object.

Table 1 RoboCup@Home concepts and their in-
stances [28]

Concept # of # of
asserted inferred
inst. inst.

Fixed-Object 0 62
Building 3 40
Room 16 19
RoboCup-Room 0 3
Container 5 22
ContainerWithObject 0 6
ContainerWithObjectRoboCup 0 4
Furniture 17 17
SeatableFurniture 0 4
Manipulable-Object 0 22
RoboCup-Object 15 15
Drinkable-Object 0 3
Graspable-Object 0 7

2.3 Software Architecture

The software architecture—realizing the control
architecture—of our robot is inspired by the
component-oriented paradigm [67]. Here, com-
ponents encapsulate a functionality and expose
it through well-defined interfaces. The resulting
building blocks are decoupled from each other
and therefore easier to reuse and to compose.
In general the software architecture may be de-
scribed best as a loosely integrated aggregation of
dedicated autonomous components (ACos). This
is, on one hand, in contrast to the classical three
layer architecture (3T) consisting of controllers
(skill level), a sequencer (execution level) and
a planner (deliberation level), on the other, it
resembles some principles of 3T, see [24]. One
example is the combined navigation, localization
and drive unit (NLD) which works self sufficiently
while executing tasks like path planning and fol-
lowing or tracking of a human operator. Similarly
we have a combined manipulation/object recog-
nition component and HRI components. These
components do not match to any single layer
in the 3T architectural pattern since they them-
selves already comprise several of these levels.
The NLD, for example, offers services for low
level motor control, guidance or path following
yet also contains path and motion planners as well
as own deliberation and sequencing components.
Furthermore, the NLD maintains different envi-
ronment representations and contains several
components for simultaneous localization and
mapping (SLAM). It can work self sufficiently
on the achievement of goals (like: move to the
refrigerator) and may also decide all by itself
when to stop. The same holds true for our
combined manipulation/object recognition/pan-
tilt-camera component which takes care of search-
ing, fixating, identifying and grabbing a known
object. An ACo is defined as a unit of com-
position, containing two (possibly all) of the afore-
mentioned classical three levels and working self-
sufficiently on goal achievement of its respective
task. In our architecture, the integration of a
communication between ACos is realized via the
ICE middleware [29]. The middleware allows to
compose heterogeneous components (e.g. compo-
nents running under Windows, Linux and Mac
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OS X and developed in various programming lan-
guages). Table 2 exemplifies the heterogeneity in
our robot. In general, integration takes place only
on the level of ACos and a classical scheduler
sequences all operations which are derived from
the planning process described in Section 2.2.

2.4 Service Robot Simulation and Architecture
Integration

Simulation is a valuable tool for testing robot com-
ponents or hardware designs without the avail-
ability of the real robot. Simulation can therefore
fulfill several purposes while we are focusing on
integration tests and component tests. Integration
tests are used to test the whole software system
on the robot integrating all hardware and software
components like manipulation, navigation, HMI
or planning. Component tests can be performed in
simulation where single components can be tested
in a virtual scenario. The simulator provides there-
fore efficient usage of resources since multiple
developers can work on the same hardware simul-
taneously although only a single robot is available.

We use a kinematics and dynamics simulation
of the robot in Microsoft Robotics Developer
Studio (MRDS) [37]. The simulator is tightly cou-
pled in the MRDS architecture which is based
on the Decentralized Software Services (DSS),
a custom Webservice Oriented Architecture de-

veloped with the .NET platform. The runtime
environment called DSS Node offers a set of
system services providing basic middleware func-
tionalities e.g. Naming Services or Security Man-
ager. Communication between DSS Services is
defined by the Distributed System Services Proto-
col (DSSP) that is compatible to HTTP and adds
further functionalities like state manipulation and
event notifications.

As mentioned afore, the simulation environ-
ment is integrated in the MRDS as an own service
and can be interfaced in exact the same man-
ner as every DSS service. The simulation service
contains a virtual world and every simulated ele-
ment that shall be interfaced, e.g. sensors or robot
actuators, has its own DSS service that acquires
and preprocesses the data from the virtual world.
Those services are used to publish the simulated
data to other services.

For efficient use, the switching between real
robot and simulation must be possible without
changing the robot software. On the other hand
the simulation replaces some essential part of the
robot software, namely the perception and acting
elements by a virtual counterpart. To perform re-
alistic experiments in the simulation, this process
must be transparent. In particular, the robot
software framework shall not know whether it
works with a simulated model or a real robot. In
order to fulfill this requirement, a software bridge

Table 2 Overview of the capabilities of Johnny Jackanapes and the respective autonomous components realized in a
programming language (PL) and running under a certain operating system (OS)

Capability Autonomous components PL OS

Human robot interaction Face recognition C++ Windows
Facial expression recognition C++ Windows
People detection and tracking (laser-based) C++ Linux
People detection (sound based) Matlab/C++ Windows
Gesture recognition C++ Windows
Speech recognition C++ Windows
Speech synthesis C++ Mac OS X

Semantic scene understanding Object categorization C++ Windows
Text mining and understanding Python/C++ Linux
Simultaneous localization and mapping (SLAM) C++ Linux

Manipulation Vision-based manipulation C++ Windows
Planning DL-based hierarchical task networks Java Mac OS X
Plan execution State machine based task execution and monitoring C++ Windows
System integration ICE-based integration framework Independent Independent

Simulation and emulation framework .NET Windows
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Fig. 5 Structural
overview of the ICE to
MRDS bridging of a
simulated service

has been developed that allows communication
between the ICE based framework and the Mi-
crosoft DSS framework.

In the presented software framework, all soft-
ware components have an exclusive access to their
used hardware. In a simulated scenario, those
software components are replaced by an exact
copy which does not directly access the hardware
but uses a simulated representation instead. This
exchange is transparent to the rest of the frame-
work since both components, simulated and real
one, supply the same ICE interface description
file (slice). The simulated component uses a pro-
prietary TCP communication to access a MRDS
Service. This communication can be used to query
simulated data in a synchronous communication
or to set simulated actuators in a synchronous or
asynchronous way. For the MRDS an interface
service was developed that decomposes the in-
coming messages from the ICE framework and
converts them in a DSS message. Further, it re-
quests the DSS naming service to identify the
target simulated sensor or actuator service via
its string based unique identifier that is part of

the message. Finally the message is forwarded to
the identified target service. The reply message
is handled in a similar way. The invoked MRDS
simulation service will send the reply to the in-
terface service which will convert the message in
the proprietary TCP format and redirect it to the
target ICE component where it is processed. A
structural overview of this communication is given
in Fig. 5.

The performance of the system is analyzed by
a set of round-trip messages for getting or setting
simulator data with a payload of 10 bytes. The test
was executed with simulation and robot software
running on one computer and both running on
different machines.

The results of the performance evaluation is
given in Table 3. It shows that, if a fast machine
runs both architectures, the messaging time is in
the μs range. Network communication adds some
delay but the round trip time of the messages is
still below 5 ms.

At the moment we use the simulation to test the
integration of different components. However, for
a complete software test we need to model the

Table 3 Performance of round-trip message with two different systems involved

Architecture ⇒ Simulator Message messages
second

mseconds
message

A ⇒ B GET 227 4.41
SET 355 2.82

B ⇒ B GET 1,074 0.93
SET 1,627 0.62

System A is a 1.4 Ghz Pentium M, system B an Intel quad core with 2.6 Ghz each core
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whole environment in which the robot acts. A very
important aspect in this regard is the modeling of
humans to integrate HRI.

3 Multi-Modal Human Robot Interaction

Human robot interaction (HRI) is a multidisci-
plinary field aiming to find ever faster and more
intuitive manners of communication between hu-
mans and robots. Mostly humans express their
intentions via speech, gestures, expressions and
sounds. Domestic service robots (DSR) must be
aware of those intentions and also be able to un-
derstand them. In this section we present our four
HRI modules endowed into our DSR Johnny. For
some scenarios the different modules have been
combined to increase the robustness of our robot.

3.1 Laser-Based People Detection and Tracking

People detection and tracking is one crucial part
of human-robot-interaction. HRI techniques like
gesture- or facial expression recognition operate
robustly only up to a certain distance between
the robot and the human, e.g. in a range of 1–
2 m. The presented people detection and tracking
approach uses two sources of information—one
Laser Range Finder (LRF) in leg height and one
in waist height. Current LRFs provide ranges of
up to 30 m and allow a robot to sense people
at farther distances. The detection mechanism is
divided into three stages: preprocessing of the raw
laser scans (1), detection of legs and waists in
the respective layer (2) and fusion of both sensor
information (3).

In the preprocessing stage (1), we have applied
a Point-Distance-based Method (PDBS) [58] in
order to cluster the raw laser scan into smaller seg-
ments. A laser scan is processed as follows: let L =
{pi|i = 1 : N} be a laser scan containing a sequence
of N polar coordinates pi = (r, α), then a new
segment is established when Distance(ri, ri+1) >

ThresholdJumpDistance. Otherwise pi is added to
the current segment. The applied threshold is
also named as the Jump Distance Criteria (JDP).
The segmentation results in an ordered sequence
of segments where each segment can have vari-
ous appearances. A segment which represents a

wall includes usually many points and appears
as a straight line. On the other side a garbage
bin involves fewer points and appears as a cir-
cular object. Such kind of geometrical properties
have been proposed by Arras et al. [1]. This set
has been adopted and extended by an additional
property—namely the distance to the respective
segment. Since the appearance of an object is
strongly dependent on how far it is away from the
LRF, these additional features have been added to
the feature set.

The actual detection (2) in both heights is real-
ized by a supervised machine learning approach,
namely AdaBoost [23]. The geometrical proper-
ties of a segment build the feature space for Ad-
aBoost. Positive and negative training samples
have been collected from different environments
(e.g. office, corridor and apartment). Each layer
is trained separately during the training phase.
In the detection-/classification phase, the generic
AdaBoost model is applied to the respective layer
and each segment is labeled whether it belongs to
a person or not. During each detection cycle, a list
of possible leg and waist positions is generated.

The information of the leg- and the waist-layer
are fused together in order to increase the detec-
tion accuracy and detect multiple people reliably
in a cluttered environment. The major idea of
this layered architecture is the verification of each
detection in one layer by possible detections in the
other layer. A Priority Shape Model (PSM) has
been applied which considers the spatial relations
between a waist and two related legs (adopted
from [52]). During our evaluation it turned out
that the trained model of the waist-layer has a
reasonable higher detection rate than the leg-
layer. The performance difference comes from the
simple fact, that there are many leg-like objects
(chair-legs, table-legs and even other small ob-
jects) in low height which have been collected
and are labeled as negative samples. Therefore,
it occurred that both sample sets, positive and
negative, include similar samples and the machine
learner is not able to separate them in an optimal
way. In the waist-layer, the positive samples con-
sists of larger segments because there are not so
much similar object in the same height. Hence,
the learned model in the waist-layer performs
more accurate than the model of the leg-layer.
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According to these observations, a scoring sys-
tem has been established which assigns a higher
confidence to waist detections.

Furthermore, a single person tracker has been
implemented based on a particle f ilter (adopted
from visual tracking [30]). The tracking is divided
into two stages:

1. The tracker applies the static person detector
which is looking for a person to track. The
actual tracking is initialized when a person is
detected in a specific range of the robot. With
the first detection the initial distribution P(x0)

is build and all particles are initialized with
random noise wt.

2. The particle filter tracks the related laser scan
segment of the initially detected person. The
transition model P(xt|xt−1) is established on
a second-order auto-regressive model. This
model does not consider only the last state
(xt−1, yt−1), but also the second last state (xt−2,
yt−2) to predict the new state of a particle (for
details we refer to [30]). Afterwards all parti-
cles are weighted by their likelihood according
to the observation model P(zt|xt). Finally, all
particles are resampled based on Sequential
Importance Resampling (SIR). We only re-
sample whenever the effective samples size
Nef f falls below a certain threshold Nth [43].

The experimental results have shown a sig-
nificant influence of the additional distance fea-
ture. We have achieved in average a 4.4% lower
misclassification rate than without the distance
feature. This can be explained by the cirumcum-
stance that the appearance of a leg or a waist in
a laser scan is strongly dependent on how far it
is away from the source of measurement. A table
leg at close distance might look like a human leg
at far distance and they might also share the same
geometrical properties. In this case only the dis-
tance makes a distinction possible. The proposed
shape model has mainly increased the overall per-
formance regarding the false positive detection
(see Table 4). Especially in the leg layer many
false positive detections occurred (≈5.4–13.2%).
Through the application of the shape model we
achieved a false positive rate of only ≈1.3–4.4%.

Further, we evaluated the performance of the
shape model regarding the true positive detec-

Table 4 The robot was navigated through different envi-
ronments at 0.2 m/s

Location

Apartment Lab Corridor Office
(%) (%) (%) (%)

Legs 11.96 13.20 5.39 12.26
Waists 4.22 3.23 1.74 6.91
PSM 3.11 2.76 1.29 4.39

Simultaneously, the number of false positive detections
were collected. The table shows the misclassification rate
for each single layer (leg resp. waist) and for the fusion by
the priority shape model

tions. In one test, a person had to be detected
at different distances and angles relatively to the
robot. Table 5 shows the detection rates for the
PSM model. If the model was not able to detect
a person, there had been still detections in one
of the single layers. The results of the proposed
shape model have shown a significantly decreased
false positive rate, while also providing a consis-
tent true detection rate of ≈92%.

Although the results are quite promising, there
are still some limitations. Due to the fixed
mounted LRF, the detection only works for peo-
ple which have a certain height. People with less
height—like children–can not be detected in the
upper LRF and would not match to the shape
model. Furthermore people which are sitting on
a chair or a couch might not be detected as well
since the legs are not aligned with the waist as it is
defined in the shape model.

The described people detection mechanism
build the primary component to find persons in
the robots surrounding. The provided position
information are used to approach a person and

Table 5 A person has been standing at different distances
and orientations to the robot

Distance to person

1 m (%) 2 m (%) 3 m (%)

Only leg(s) 1.23 1.17 1.71
Only waist 2.47 1.59 2.22
PSM 93.40 92.24 93.07

For each position 50 laser scans were taken while the
detection through the PSM was performed. If there was no
detection by the PSM, we also checked the detections in
the single layers
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apply then e.g. facial expression recognition which
requires a certain distance to the robot.

3.2 Facial Expression Recognition

Facial expression recognition (FER) offers do-
mestic service robots (DSR) a natural way to
interact with humans. This channel of information
can be used by the robots in order to receive feed-
back on their executed actions as well as to convey
empathy. However, there are many difficulties
that have to be tackled before a domestic agent
can completely exploit such mode of interaction.
Some of these difficulties are, for instance, the fact
that faces might be completely unknown to the
robot, they could appear poorly illuminated, and
they might look drastically rotated and scaled.

Our DSR has been endowed with the capa-
bilities to recognize up to seven different facial
expressions in still images: joy, surprise, sadness,
fear, anger, disgust and neutrality. The followed
approach has as cornerstone the use of Gabor
filters of different frequencies and orientations to
extract the shape and texture information repre-
sentative of each facial expression. Gabor filters
are characterized by modeling some visual cor-
tical cells [45] and also by providing a spatially
localized frequency analysis of the signals (e.g.,
local line and edge detection). Among the most
relevant works studying the performance of Ga-
bor filters for FER we find [18], where the au-
thors use local Gabor filter banks together with
Principle Component Analysis (PCA) plus Linear
Discriminant Analysis (LDA) for dimensionality
reduction. Furthermore, [44] presented a local
approach where Gabor features are extracted at
the location of eighteen facial fiducial points. One
of the most extensive studies is presented in [3],
where a comparison of different image sizes, fea-
ture selectors, classifiers and methods to extend
them for the multi-class problem is presented.
The result of their work is a high-accuracy, real-
time, automatic, person-independent system. In
the following we describe the architecture of our
system and present the experimental results ob-
tained after testing against images of the Cohn-
Kanade AU-Coded Facial Expression Database
[41] (hereinafter referred to as the C-K Database).

Training is carried out in four different stages
and ends up with a model indicating what Gabor
features are the most relevant to discriminate be-
tween the different classes (see Fig. 7a). First the
eye locations in all training samples are manu-
ally marked and used to normalize the face im-
ages. By normalization we actually aim to obtain
face images of equal size, where both eyes are
always fixed at the same position. The former
is achieved by cropping the face region with a
geometric face model based on [64] and scaling
the result image to 48 × 48 pixels. After scaling,
d Gabor features are extracted from each normal-
ized image to create an n × d observation matrix
X = (x1, x2, ..., xn)

T , where n is the number of
training samples and xi (i = 1, 2, . . . , n) is a d-
dimensional feature vector describing a training
sample. In this work a bank of 40 Gabor filters
of radial frequencies υ = 3, 3

√
2, 6, 6

√
2 and 12

cycles/image-width and orientations φ = 0◦, 22.5◦,
45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.5◦ has been used.
However, as the result of convolving each image
with the 40 Gabor filters is a feature vector of size
d = 92,160(= 48 × 48 × 40), selection of the most
discriminative Gabor features was necessary.

For feature selection, as well as for multi-
classification, we have employed the AdaBoost.
MH algorithm [62]. This algorithm is a multi-
class, multi-label version of the original two-class
AdaBoost algorithm proposed by Schapire and
Freund [23]. Furthermore, we have analyzed two
different kinds of decision stumps as weak learn-
ers: single-threshold and multi-threshold decision
stumps.3 The single-threshold version aims to find
at each iteration the threshold that better sepa-
rates all classes. On the other hand, the multi-
threshold approach finds at each iteration one
threshold per class, particularly, the threshold that
better separates one class from the others [12].
Figure 6 exemplifies the two previously described
decision stumps.

Every time an image is input to the system for
recognition, first the presence of a face is asserted.

3The MultiBoost library of Norman Casagrande was used
as implementation of the AdaBoost.MH algorithm and the
two analyzed weak learners [13].
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Fig. 6 Examples of a the
single-threshold and b the
multi-threshold decision
stumps

(b)(a)

If a face is detected, then the eyes are located4 in
order to carry out normalization. Afterwards only
the relevant Gabor features are extracted from
the normalized image and then used for multi-
classification. Figure 7b illustrates the system ar-
chitecture for recognition.

In order to find out which of the two weak
learners performs better for our task, we have
measured their discriminative power on images of
the C-K Database. This standard database con-
tains video sequences starting with a neutral face
and proceeding until one of the six prototypical
facial expressions is clearly visible. All video se-
quences used in this work come from 96 sub-
jects, each playing at least one video sequence.
The experiment was repeated five times for sake
of precision, each time using different, randomly
created training and testing sets. The image sets
were always made up of the last image of each
video sequence plus the first image of all video
sequences of joy, this latter to collect neutral faces.
Additionally, we have taken care that images of
subjects in the training set do not appear in the
testing set and vice versa. In each repetition of
the experiment, images coming from 60% of the
subjects were used for training, whereas the re-
maining were used for testing.

The experimental results are illustrated in
Fig. 8. The figure shows the average error rate ob-
tained by single-threshold decision stumps (green,
dashed line), as well as by multi-threshold decision
stumps (red, solid line). Additionally, error bars
representing one standard error above and below
the mean value were added in order to display the
overall distribution of the data. In the graph we
can see that the average error rate obtained by
multi-threshold decision stumps is always smaller
than the one obtained by single-threshold decision

4The front-end module of the software development kit
(SDK) for face recognition of the company L-1 Identity
Solutions, Inc. has been used for face and eyes detection.

stumps. This former fact reveals the supremacy
of multi-threshold against single-threshold. Nev-
ertheless, the difference in accuracy between both
weak learners decreases as the number of selected
features increases. For both kinds of learners the
error rate tends to decrease as more features are
used, but after a certain number of features are
included the error rate settles down with small
oscillations. The previous described behavior is
usual in learning approaches like AdaBoost and
are a common signal of overfitting. For single-
threshold decision stumps the minimum average
error rate is obtained using 900 features (9.73%),
whereas for multi-threshold decision stumps the
minimum average error rate is 8.84%, obtained
using only 500 features.

3.3 Finding People by Acoustic Clues

For humans speaking is a very easy way to com-
municate. So the spoken word is probably also the
most natural ways to interact with a service robot.
For speech recognition we employ a very ma-
ture speech SDK from Microsoft and some hand-
crafted grammar of keywords to understand the
commands of the user. This component has been
analyzed in detail by Thomas Breuers’ R&D1 [8]
and is not the issue here. There are more ways to
interact using the voice. In this section we pro-
pose an extended use of acoustic clues. Take for
example a user, who calls for the robot from some
distance and ask for assistance either in an apart-
ment or an restaurant. Then it would be natural
to turn the attention to the speaker and reassure
for the understood command. In sequel we will
describe an algorithm which can approximately
spot a somewhat distant speaker by exploiting
only acoustical information.

The robot spots the position of the speaker
in an polar coordinate system using angle and
direction. The angle difference of the central axis
and this direction can immediately be used as a
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(a)

(b)

Fig. 7 System architecture a for training and b for recognition

control variable to turn the robots towards the
user to signal back that she successfully grasped
the attention of the robot. This seemingly sim-
ple problem is substantially impeded during a
RoboCup@Home tournament by very bad signal
to noise ratios, typically as bad as 6dB where the
environment noise may go up to 60 dB. Thus we
combined the underlying search algorithm with
a noise reduction step. The proposed method
may accordingly be called a grid based steered
response power (GBNR) with noise reduction.
Hardware-wise we use a very small microphone
array of only four microphones in a slightly un-
symmetrical configuration.

In the following we introduce the basic noise re-
duction step which is a preprocessing step for the
later localization. Afterwards the localization step
is explained and finally the experimental results
are discussed.

3.3.1 Noise Reduction

For noise reduction we use the spectrum sub-
traction method [7] (SSM). During a RoboCup
competition a high amount of background noise
greatly impacts the localization result, thus we
use the SSM to select the most proper frame for
further localization usage. The main idea of SSM
is to estimate a noise spectrum and then subtract
it from the observed current signal spectrum. SSM
first segments the signal in the time domain us-
ing a standard Hamming window followed by a
Fast Fourier Transform (FFT) to calculate the
spectrum. After this segmentation/transformation
step, during the first ten frames, we assume that no
speaker is present. The mean power Pnoise of these
initial frames is calculated and this first estimation
help to distinguish pure noise frames from speech
frames. A voice active detector is implemented

Fig. 8 Average error
obtained by
single-threshold learners
(dashed green) and
multi-threshold learners
(solid red) on five
different training and test
sets made up with images
of the C-K Database.
Error bars represent one
standard error above and
below the mean value
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as thresholding filter based on the ratio log Pnoise
Pspeech

where Pspeech denotes the power of the current
speech frame. Those frames which fail to pass
the filter will dynamically adapt the initial mean
power estimation Ppurenoise with respect to the
current conditions and furthermore we use them
to build an averaged noise spectrum. This average
is subtracted from the spectrum of all following
speech frames. The frame with the best SNR is
passed over to the Localization step described be-
low. Finally a noise reduced version of the original
signal is reconstructed via overlapping and adding
the back transformed frames. The choice of frame
with the best SNR can be done on the basis of one
microphone only, here we do not take advantage
of the multiple channels of our sound record-
ing devices. This is different in the Localization
step.

3.3.2 Localization

The sound localization relies on a low-noise
speaker frame when trying to find a global max-
imum for the received power depending on the
location of the sound source. The underlying idea
is called Steered Response Power (SRP) [19] and
it based on a linear combiner having multiple
differently delayed inputs just like in a beam-
forming filter. The inputs are given by multiple
audio streams from the different microphones.
Fixing the weights of the linear combiner to the
inverse of the magnitude of the frequency compo-
nents gives a good estimate of the power spectrum
of the beam former output signal. This depends
only on the position of the sound source and is
called PH ATβ filter. The beam former is used in
a steered, inverse way: assuming a known fixed
sound source position SRP estimates the power
of the output signal of the beam former. Current
results show that if a “signal sound source is in a
predefined region the maximum SRP value will be
located in the same 3D region” [19]. The sound
source localization based beam-forming is then
done in two steps. The first step calculates the grid
based SRP value in a predefined region taking the
geometry information of the microphone array
into consideration. In the second step SRP values
are sampled at randomly chosen source locations

Table 6 Microphone setup where Mx is the Microphone x
and the values are measured from the robot’s center

Microphone x (in m) y (in m) z (in m)

M1 0.4 0.4 0.5
M2 −0.28 0.28 0.5
M3 −0.4 −0.4 0.5
M4 0.28 −0.28 0.5

inside a predefined region. In our implementa-
tion we have chosen a cylindric shaped region to
sample the possible speaker locations. When the
SRP values are calculated for the sampled points,
the surface produced by the PH ATβ filter is in-
terpolated using cubic splines to achieve surface
smoothing for the grid based SRP values. The
smoothing of the SRP value surface eases the
global maximum search very much. The search
phase uses stochastic region contraction method
[19] to finally find the corresponding global maxi-
mum SRP value.

The approach has been validated using a re-
producible speech source to guarantee the same
input for the experiments yet allowing changeable
volume. In the following we evaluate the 2D result
from the 3D result, because our purpose of the
sound localize is to find out the 2D position of
the user. For the experimental evaluation four
microphones were set up in an eye shape around
the center of the robot with the distances from the
center given in Table 6.

We compared the conventional beam-form ap-
proach and our new GBNR-SRC approach as
shown in Table 7. The evaluation was made by
comparing the error on orientation and in the dis-
tance between the estimated source position and
the true source position. The background noise
level is 45 dB. The SNR was adjusted by changing
the signal volume. In the following, results have
been evaluated from the center of the microphone

Table 7 Comparison between conventional SRP method
and GBNR method

SNR Angle error (◦) Distance error (m)

SRP GBNR SRP GBNR

10.88 6.15 5.25 0.313 0.18
6.21 8.82 7.44 0.8511 0.47
5.522 9.13 8.87 0.957 0.52
3.79 13.7 11.1 1.3 0.78
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array , the test range of the distance is 0.5–5 m, and
from 360◦ around the microphone array.

This result shows the comparison between a
conventional beam-form approach and our new
proposed GBNR-SRC algorithm under different
kinds of SNR condition. We found that the pre-
cision in orientation has been improved by the
GBNR algorithm by 2◦ on average. The pro-
posed algorithm has significantly improvement on
the distance error by around 45%, which can
efficiently prevent false navigation of the robot.
The algorithm has been performed and verified in
German Open 2011 in the final competition.

3.4 Pointing Gesture Recognition

Pointing gestures are a promising and natural way
for the interaction with a robot. As application for
a service robot, pointing gestures could indicate
objects and locations. It is easier and more accu-
rate to point at an object than to verbally describe
the object itself or its location [40]. However,
pointing gestures are difficult to recognize [22].
The difficulty is to detect the precise 3D posi-
tions of the face and the fast moving hands of an
unknown user in front of a dynamic background
under unknown and changing lighting conditions.
Further it is difficult to detect the point in time,
when a user is performing a pointing action.

The developed person-independent dynamic
pointing gesture recognition application works
markerless and in real-time. It is able to cope with

different skin colors and clothes (e.g. short t-shirts
or pullovers change the distribution of skin col-
ored areas in the image) without manual retrain-
ing. Further the application is able to cope with
variable and complex backgrounds (including skin
colored areas like wood, paperboard, leather),
and works under dynamically changing lighting
conditions. It is also able to detect if the tracked
face or hand is lost and can be reinitialized auto-
matically.

To track the face and hand, first the frontal
face is either detected by using OpenCV or a
commercial software from L-1 Identity Solutions.
The image is converted in the HSV color space
and a skin color histogram (based on the hue val-
ues) of the face region is extracted. Based on the
extracted histogram a skin color probability image
(backprojection image) is created, smoothed and
binarized. For the initialization of the hand track-
ing the hand has to be in front of the users chest.
For both the face and the hand a 2D trackbox
in the backprojection image and a 3D trackbox
in the depth data of the used stereo vision cam-
era is defined around the last known face/hand
position. After deleting all pixels outside the
trackboxes, the face/hand is tracked in the 2D
backprojection image via the CAMSHIFT algo-
rithm. The skin color histogram is continuously
updated using the tracked face region to be able
to cope with variable changing lighting conditions.
To be able to track the hand even if the user is
wearing a t-shirt the following steps are performed
three times in a row for each frame (Fig. 9 shows

(a) (b) (c) (d) (e)

Fig. 9 Movement of trackbox towards the hand region to be able to track the hand even if user is wearing a t-shirt
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the process of the algorithm until the hand is
found in Fig. 9e):

– The pixel with the highest distance to the head
in the trackbox is used as new center for the
trackbox.

– The 3D position of the hand (or maybe the
arm if user wears a t-shirt) is detected as usual
(without moving the track-box towards the
from the head farthest away skin colored hand
pixel).

– In the found hand region it is searched for
the from the head farthest away skin colored
pixel. This pixel should be nearer to the hand
(if hand is not already detected). All pixels
farther away than 15 cm from this pixel are
deleted (in a copied image). If some area of
the arm is detected instead of the hand, this
deletion will result in keeping skin colored
pixels nearer to the hand.

– In the resulting image it is searched again
for hand region pixels. The new found hand
region is now nearer to the hand than before
(if hand was not already detected).

The pointing target lies on the line of sight from
the eyes to the fingertip [42, 54, 74]. The related
works describe only how to detect/track the hand
(instead of the fingertip) and the face (e.g. the
chin instead of the center of the face). Figure 10
visualises how the detection of the fingertip and
the center of the face improves the pointing target
recognition. Compared to the related work, the

pointing gesture recognition rate is therefore im-
proved by a fingertip detection algorithm (instead
of using the detected center of the hand) and by
the detection of the width of the face and adding
it to the measured depth value of the face (instead
of using the detected depth of e.g. the chin). As
fingertip the from the head farthest away pixel in
the tracked hand region is taken. This assumption
holds true in 92.5% of all performed pointing
gestures in the evaluation. The determination of
the width of the head is based on the (during the
initial face detection) detected eye positions. The
according face model is described in [18].

For the dynamic detection of the pointing
gesture, the geometric movement of performed
pointing actions of different subjects is evaluated.
Based on the evaluation, rules are defined which
can classify a dynamic pointing gesture, rather
than using time intensive machine learning algo-
rithms. Therefore the application can easily be
reimplemented. All described algorithms are fur-
ther described in [9].

The implementation is integrated on the robot
and can be used in the context of the RoboCup@
Home competition to dynamically detect pointing
targets (the start of the pointing gesture is au-
tomatically detected). A function is provided to
add the pointing targets for the detection. There-
fore the pointing targets could be set manually
by pointing on them and giving an appropriate
speech command or by other components like
the person detector or object classifier. For exam-
ple the person detector could add every detected

Fig. 10 Left Pointing
target recognition
accuracy is improved if
fingertip is detected
instead of just the hand
region. Right Pointing
target recognition
accuracy is improved if
center of the head is
detected instead of just
the chin

(a) (b)
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person as a pointing target. If the robot is asked
to serve some person, the person to serve could
easily be specified by pointing on it. With the
above described abilities this application can be
considered to work in the “real world” and is us-
able for “real” applications like grasping an object
pointed at or serving a person pointed on.

The experimental evaluation with eight dif-
ferent subjects shows that the overall average
pointing gesture recognition rate of the system for
distances up to 250 cm (head to pointing target)
is 86.63% (with a distance between objects of 23
cm). Considering just frontal pointing gestures for
distances up to 250 cm (head to pointing target)
the gesture recognition rate is 90.97% and for
distances up to 194 cm (head to pointing target)
even 95.31%. The average error angle (measured
angle between the line from the head to the
pointing target and the line-of-sight from the face
through the hand towards the pointing target) is
7.28◦. Without the proposed fingertip detection
and center of head detection, the overall average
pointing gesture recognition rate drops to 75.52%
and the average error angle increases to 9.52◦.

4 Semantic Scene Understanding

Objects are frequently involved in service tasks.
Object understanding is important for the ful-
fillment of the task whereas a high level of
flexibility is required to cope with real world con-
ditions. Of particular concern are the different
appearances of objects with common semantical
concepts and the similar appearances of objects
semantically unrelated. To solve this problem we
are working on a two level process. In the first step
a coarse categorization into specific object cate-
gories based on the statistical appearance of visual
object properties is achieved. This allows to relate
unknown objects-instances to known categories.
Afterwards this information is used to support
and guide a finer categorization based on text
extracted from the object. With this, we intend
to eliminate ambiguities. For example, reading
“Pepsi®” from a magazine cover is weak evidence
of the object being a “Pepsi®” in comparison with
reading the same text out of a bottle or can.

4.1 Object Categorization

The presented visual object perception system
categorizes unknown domestic object instances
like cups, glasses, bottles or cell-phones to their
respective category. Such approach provides a
new ability compared to commonly applied recog-
nition ones, like for object-related service tasks
where the semantical concept of a object instance
is of interest (e.g. in serving tasks where (possibly
unkown) instances of a glass are required) rather
than the recognition of the individual object
instance.

The system is grounded on 2D image informa-
tion and relies on a geometric-free approach called
Bag of Features(BoF) [17, 39, 55]. This approach
has shown its reliability and robustness to object
occlusions, illumination changes and especially, to
geometric deformations of objects which belong
to a common category, since the BoF approach
does not rely on global geometric information;
instead it relies on the extraction of local invariant
features. The BoF approach is based on the as-
sumption that each object category is distinguish-
able by its individual independent statistical ap-
pearance of salient-invariant-local features which
are extracted from images.

In the first step of the BoF-based object cate-
gorization process, the extraction of invariant fea-
tures from images is exploited to transform the
visual image information into a compact represen-
tation, which provides rich recallable information
of the image, i.e. similar information is extracted
if the image content is transformed by scale, shift
or rotation. Commonly Scale-Invariant-Feature-
Transform (SIFT) [47] has been successfully ap-
plied [38]; however our experiments have shown
that Speeded-Up-Robust-Features (SURF) [4]
performs a better feature extraction, due to its
feature recallability and computational lower cost.
Next, a visual dictionary is created, which is
used to analyze the feature frequencies from
images that have passed the feature extraction
process. Therein, the features of training images
are grouped by similarity, in order to generate
clusters of similar features. Based on a cluster, a
generalized feature is constructed—visual word—
which represents the center of a cluster. A k-
means-based algorithms is applied for clustering
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due to its simplicity and low computational cost.
An appropriate number of clusters k (dictionary
size) is a crucial factor which influences the cat-
egorization performance. The discriminability is
decreased if a too small or too large dictionary is
used. Most approaches heuristically examine the
dictionary size or they set the dictionary size to
a fixed number [51, 55]. In contrast, we system-
atically analyze the dictionary size by cluster vali-
dation i.e. we use the Dunn-validity index [21] to
examine the compactness of the cluster space. Ad-
ditionally discriminative visual-words are f iltered
and weighted accordingly to their relevance and
importance for each object category. After the
dictionary is generated, the extracted features of
a query image are assigned to the nearest visual
words by nearest-neighbor-search. The compari-
son between the visual word frequencies, i.e. dis-
tribution of the visual words, of a query image
and of labeled example images leads to a decision
about the corresponding category of the query
image. Supervised machine learning approaches
like Support Vector Machines (SVM) are often
applied [17, 55], since they have shown an en-
hanced robustness to discriminate sets of cate-
gories. The learners are trained with the visual
word frequencies of training objects to generate
a prediction model. However in our work we do
not rely on the decision of a single classifier, since
a single classifier provides a certain accuracy and
also a high risk of misclassification bias for specific
categories. To enhance the accuracy and to reduce
the influences of those biases, a set of six classif iers

combined with feature-selection algorithms [27]
(e.g. Entropy or Principle Component Analysis
based selectors) is trained and their outcomes are
combined by a modified majority-voting-based
sum-rule [20] to make a more robust and reli-
able decision. Moreover, our approach does not
completely neglect the object shape information,
since it provides a useful indication about the
corresponding category. We combine the set of
feature-based classif iers with an additional shape-
based classif ier which is based on shape descrip-
tors [76], in order to support an appropriate final
decision. Also, we apply a basic, but sufficient
object detection approach based on 2D image seg-
mentation which allows to detect multiple objects
on a table-top; thereby potential object bound-
aries are extracted. These boundaries are used
to relate extracted features to objects. After-
wards the features of the detected objects are
independently analyzed by the visual dictionary
and classified by the feature- and shape-based
classifiers.

The experimental evaluation has shown that
the classification accuracy is enhanced if the size
of visual dictionary is indicated by the value of the
Dunn-validity-index measure compared to ran-
domly chosen dictionary-sizes. Thereby, dictio-
nary sizes in the range from 100 to 1000 visual
words are analyzed; dictionary sizes correspond-
ing to local maxima of Dunn-validity values have
shown to be a measure that leads to a discrimi-
native visual dictionary as the results in Table 8
(green) show. Furthermore, the evaluation has

Table 8 The average classification error regarding the test set is shown of each classifier which is trained with randomly
chosen and Dunn-validity-index indicated dictionary sizes

Classifier Number of supported object categories

2 3 4

Rand. Dunn. Rand. Dunn. Rand. Dunn.

SVM 1.91% 0.23% (0%) 5.14% 2.04% (2.4%) 8.01% 6.65% (5.9%)

SVM+Entropy 1.71% 0.45% (0%) 4.84% 2.29% (1.2%) 7.38% 6.28% (2.7%)

SVM+PCA 1.91% 0.67% (0.9%) 3.93% 2.78% (1.2%) 6.73% 5.87% (4%)

AdaBoost 5.34% 5.65% (3.6%) 7.78% 7.50% (9%) 15.1% 13.17% (12.7%)

AdaBoost+PCA 3.62% 2.49% (2.7%) 7.27% 7.59% (7.8%) 10.98% 9.30% (9%)

AdaBoost+PCA+IAFS 4.23% 3.17% (2.7%) 6.66% 6.18% (6%) 10.37% 9.85% (9.5%)

The classification error in the brackets shows the error if an appropriate dictionary size is chosen, i.e. the lowest classification
has been achieved: 2-cat. = 270 words, 3-cat. = 400 words, 4-cat. = 325 words
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No. Classifier comb. Error(All
cat. with the lowest classifiers

classification error combined)

2
SVM, S.+Entropy,

0%(0%)S.+PCA, AdaBoost,
A.+PCA+IAFS

3
S.+Entropy, S.+PCA,

0.6%(1.8%)
AdaBoost

4
SVM, S.+Entropy

2.2%(3.1%)
A.+PCA

Fig. 11 Left Combinations of classifiers which result to
the lowest classification error (test set) with respect to
the number of supported categories. Right Example clas-

sification from the robot perspective: at the right the ex-
tracted object boundaries with the detected features are
displayed; left, the system outcome is shown

shown that combining additional classifiers gen-
erally improves the classification performance.
However, experiments have revealed that a cer-
tain combination of particular classif iers can lead
to the lowest classification error compared to the
error of the most accurate single classifier or if the
entire set of classifiers is combined—as shown in
Fig. 11 (left). The system has been trained with
those combinations (including shape-based clas-
sifier) and integrated to the service robot whose
camera is focused on a table-top. Thereby, the
system is trained for a robot-object distance of
≈30–40 cm. A typical classification from the robot-
camera perspective is depicted in Fig. 11 (right).

From such perspective, Table 9 presents the
classification accuracy of perceived objects related
to four categories: certain misclassification biases
for particular categories are found. Also we in-
vestigated the categorization behavior depending
on the robot-object-distance and object-rotation-
angle—see Fig. 12. Different behaviors are ob-
served due to the presence and absence of descrip-

Table 9 Classification accuracy w.r.t. the four categories
(single objects on a table-top with fixed object perspective)

Actual classified cat.

Cup (%) Cell. (%) Bot. (%) Gla. (%)

Categories
Cup 96.7 1.7 0.8 0.8
Cell. 3.4 95.8 0.8 0
Bot. 8.3 0 91.7 0
Gla. 2.5 7.5 0 90

tive category-related features caused by variation
of robot-object-distance and object-rotation-
angle; also generic properties of the object
categories like object material or size influences
the classification result.

The object detection based on a basic image
segmentation has shown a satisfying trade-off be-
tween computational cost and accuracy of the ex-
tracted objects boundaries. However to enhance
the object detection, i.e. to provide robustness
against object occlusions and cluttered environ-
ments such as in real world situations, approaches
based on normalized cuts or 3D depth information
could improve the process.

To gather more semantical information about
a detected and categorized object, text can be
localized on the object and used as input for text
mining and understanding.

4.2 Text Mining and Understanding

Text constitutes a rich and readily available source
of information with a large potential of applica-
bility in autonomous mobile robots. However, the
importance of text as source of semantic infor-
mation has been neglected and is just starting to
be considered as an alternative (refer to [57] for
recent work). We are interested in using text for
product identif ication. This would help to over-
come the inherent lack of generalization suffered
by appearance based object classification. This
problem arises due to: different products hav-
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Fig. 12 Average
classification error results
of each category
with respect to
object-robot-distance and
object-rotation-angle

ing similar appearance, the same products hav-
ing different appearance across different vendors
and transient appearance, e.g. special Christmas
product wrappings. This could easily render use-
less an appearance based classifier. Text on the
other side, contains regularities that can be used
to identify products, e.g. Ketchup bottles will of-
ten exhibit text such as “Ketchup”, “Tomato”,
“Sauce”, etc. whereas rat poison bottles are un-
likely to have “delicious” written on them. Us-
ing text for product identification poses many
challenges:

– Robust text information extraction (TIE)
from natural scene images is still an open
problem. Particularly due to the large variabil-
ity in terms of font, size, color, layout, symbol
repertoire, language, etc. Specially in product
wrappings, text has a tendency to have non-
standard looks and layouts.

– Common annoyances in computer vision tasks
such as background clutter, noise, perspective
distortion, occlusion, etc. are also present.

– Optical character recognition (OCR) systems
require text images of large contrast, high res-
olution, clean background and standard fonts
and layout.

– Context does matter, e.g. reading “Pepsi®” on
the cover of a magazine is not a strong evi-
dence that the object is a Pepsi®. Assistance
of a object categorization approach as the one
described in Section 4.1 would be a great help.

– Text can be ambiguous and interpreting it
robustly can require probabilistic models and
ontologies of the objects to be recognized and
associated text. The web might be a good
source for model generation and ontological
knowledge.

In the present work, we focus on TIE using a
connected components (CC) based method. The
input image is first segmented using Niblack bi-
narization. Then each of the resulting segments
(i.e. CCs) is classified into text and non-text using
a support vector machine (SVM) [16]; afterwards
a simple heuristic removes isolated CCs under the
assumption that text elements are usually found
close to other text elements. CC classification
using supervised machine learning becomes cum-
bersome because of the need for labeled CCs
to prepare training datasets for CC classification.
We aim at decreasing this effort by using syn-
thetically generated text. Training examples for
the text class are created by a python script that
renders random strings with random font, size and
rotation. The text images are created in two ver-
sions (see Fig. 13), i.e. a binary image represent-
ing an ideally segmented text image and a color
version using random colors for background and
foreground. For the non-text class, we use the
ICDAR robust reading and text locating dataset
images.5 After binarizing the images and splitting

5Available at http://algoval.essex.ac.uk/icdar/Datasets.html.

http://algoval.essex.ac.uk/icdar/Datasets.html
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(a) (b) (c) (d)

Fig. 13 Examples of the images from which training examples are extracted. a and b are synthetically generated text images
for the same random string. a is an ideally binarized version and b a color version. c and d non-text class examples

them into planes, we use the available groundtruth
(word bounding rectangles) and remove all the
CCs overlapping the words, unless they com-
pletely contain the word. Features are extracted
from the segments information (e.g. width and
height), two binary images (one with and one
without filling segment’s holes), in which the only
element rendered is the CC being evaluated. The
color version of the synthetic images are used
to extract the contrast at the segments’ borders
(during on-line operation, this information is ex-
tracted from the input image). Afterwards, we
train an SVM with Gaussian kernel using a cross-
validation procedure. Refer to [61] for a detailed
description of the features. We limit to mention
that we also use Hu moments [36], Zernike- and
Pseudo-Zernike invariants [68].

We performed our experiments on the ICDAR
test dataset and a custom groundtruth6 containing
the bounding boxes of text CCs in the test images.
The results are given in terms of precision and
recall as defined by [48] and [73].7 We trained four
SVMs all using a set of seven features plus: (H7)
Using Hu moments, (Z10) Using Zernike invari-
ants, (P10) Using Pseudo-Zernike invariants, and
(Z10-P10) using Zernike- and Pseudo-Zernike in-
variants. Z10, P10 and Z10-P10 use moments up
to the 10th order. The classifiers trained using
Zernike and Pseudo-Zernike invariants produce
very similar results and outperform H7 as shown
in Table 10.

Our results show that it is possible to generalize
from the synthetic text instances to real images. In

6Available at http://home.inf.h-brs.de/~jalvar2s/
7http://liris.cnrs.fr/christian.wolf/software/deteval/index.html

general, the classifiers using Zernike and Pseudo-
Zernike invariants performed better; however,
this comes with a high performance penalty since
running the evaluation with H7 takes just some
minutes, whereas the other classifiers take hours.
Using a staged classification scheme might solve
this problem, by focusing more complex features
on more promising CCs while rejecting the rest.
In real robotic applications, TIE’s problems start
with the robot acquiring “good” input images and
we believe that sensor fusion and active vision are
necessary to do this.

4.3 Navigation—Online SLAM

A fundamental prerequisite for the application of
autonomous mobile service robots is safe navi-
gation in domestic environments which tend to
be cluttered and highly dynamic. Common ap-
proaches to mobile robot navigation address this
problem in different stages. First a static map of
the environment is built, e.g., by joysticking the

Table 10 Classification performance showing the preci-
sion (p) describing the number of correct estimates divided
by the total number of estimates, recall (r) describing the
number of correct estimates divided by the total number of
ground-truth targets and f , the harmonic mean of p and r

Classifier ICDAR Wolf

p r f p r f

H7 0.57 0.55 0.56 0.53 0.51 0.52
Z10 0.68 0.56 0.62 0.63 0.52 0.57
P10 0.76 0.52 0.61 0.70 0.48 0.57
Z10-P10 0.77 0.51 0.61 0.71 0.48 0.57

Our results are given for two variants of these metrics,
which define precisely, for example, what a “correct esti-
mate” is. Please refer to [48] and [73] for details

http://home.inf.h-brs.de/~jalvar2s/
http://liris.cnrs.fr/christian.wolf/software/deteval/index.html
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robot around and processing the acquired sensory
information offline to build a map. In the appli-
cation phase, the robot localizes itself and plans
paths to goal location in this static map. Since
the map does not get adapted to changes in the
environment, latest sensory information is taken
into account by local path planners and reactive
collision avoidance behaviors when actually trav-
eling to the goal location.

In contrast to that, our primary goals when
designing the navigation component was to not
decouple generation and application of the map.
That is, we want to consider mapping and local-
ization jointly as in standard Simultaneous Lo-
calization and Mapping (SLAM) approaches in
order to continuously adapt the map to changes in
the environment. This has the advantage that per-
manent changes to the robot’s workspace (such
as re-arranging furniture) are represented in the
robot’s map are taken into account when initially
planning paths. In addition, it also allows for
autonomously exploring the environment, i.e., to
let the robot build a map of its environment on
its own by, respectively, sensing previously unex-
plored regions and to fill holes in the so far built
(and initially empty) map. However, it also re-
quires for a fast (real-time applicable) and robust
approach to SLAM. The latter thereby refers to
not inducing unrecoverable errors in the map that
may hinder the robot from accomplishing assigned
tasks.

Over the last two decades, different algo-
rithms for addressing the SLAM problem have
been proposed. In recent years, there is a trend
to probabilistic SLAM algorithms using, for ex-
ample, Extended Kalman Filters (EKFs) [46],
Unscented Kalman Filters (UKFs) [14], Sparse
Extended Information Filters (SEIFs) [69] or
Rao-Blackwellized Particle Filters (RBPFs) [26].
The latter one is going to be used to evaluate
the performance (and robustness) of our SLAM
approach. The approaches mentioned above ex-
plicitly handle uncertainties about the conducted
estimates and the processed sensory informa-
tion by estimating a probability distribution over
the possible solutions. While they achieve ro-
bust and accurate results, the involved compu-
tational effort often prevents their application

to large problem instances and hinders real-time
applicability.

The fundamental idea of our approach is to ad-
dress SLAM by means of incremental registration
using the Iterative Closest Point (ICP) algorithm
[6, 15, 75]. It operates on points clouds and can
thus be used with any kind of range sensing device,
such as 2D laser ranger finders. For simplicity, we
build two-dimensional maps, but can account for
the clutterness of the environment by using 3D
sensors and the concepts from [34] that allow for
efficient 2D navigation using 3D data.

The idea of incremental registration is to, re-
spectively, build a point map of the environment
and a meta point cloud M. The first acquired
point cloud D0 makes up the initial model M0,
i.e., M0 = D0 with the map’s origin coinciding
with the robot’s pose where the first point has
been acquired. To account for new information,
subsequently acquired point clouds Di are regis-
tered against the so far built model Mi−1 in order
to estimate the robot’s pose where Di has been
acquired and, finally, to add Di in order to obtain
the update point map

Mi = Mi−1 ∪ {Tidi | di ∈ Di} , (1)

where Ti is the transformation that correctly maps
all points di into the common coordinate frame of
Mi and D0.

Estimating Ti by registering Di and Mi−1 is
thereby done using the ICP algorithm. It itera-
tively estimates correspondences between Di and
Mi−1 in the form of (di, m j, eij) where m j ∈ Mi−1 is
the closest point to di, and eij the distance between
m j and di. Ti (being composed of a rotation Ri and
a translation ti) then results from aligning Di with
Mi−1 by minimizing the distances eij between all k
point correspondences:

Ti = arg min
(Ri,ti)

∑

k

‖m̌k −
(

Riďk + ti

)
‖ 2. (2)

There are different closed form solutions for this
optimization problem. We follow the SVD-based
method in [35].
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The approach as described has several short-
comings:

1. False correspondences can cause the registra-
tion to converge to incorrect local minima. In
order to detect false correspondences and ne-
glect them in the optimization, we (1) remove
all correspondences with a distance eij larger
than some threshold emax (exponentially de-
caying in the course of registration), (2) only
consider points in Mi−1 that are visible in Di

[49], and (3) we reject correspondences that
contain the same map point m j and only keep
the pair with smalled eij [77].

2. Map size: by updating Mi according to Eq. 1,
we may store duplicates of points causing an
unnecessary large size of the point map. In
order to minimize the amount of memory for
the map and to avoid the duplicate storage of
points, we only add those points to Mi, that
did not have a corresponding point in Mi−1

within a distance of emax:

Mi = Mi−1 ∪ {
ďi, j | �mi−1,k ∈ Mi−1 :

‖ďi, j − mi−1,k‖ < emax
}
. (3)

3. Changes in the environment: The so far de-
scribed approach only adds points to Mi, but
never removes them. For an object moved
from one location to another points modeling
the object are added at the new location, but
not removed from the old one. Similarly, new
objects in the environment are accounted for,
whereas objects being removed from the en-
vironment are not. To account for all possible
types of changes, we additionally construct a
grid map where each cell c models the prob-
ability pref that the respective region in the
environment reflects laser beams. Points in Mi

falling into regions with low reflection proba-
bility (< pmin) are removed from the map:

M̌i = Mi \ {
mi, j | pref

(
c[mi, j]) < pmin

}
. (4)

A detailed description of the overall approach as
well as additional extensions to ICP-based reg-
istration and experimental results can be found
in [31]. These results show that the presented

approach can (1) produce accurate and consis-
tent maps of domestic environments while (2) be-
ing computationally efficient to process 2D laser
range scans in real-time (75 Hz with the used
SICK laser range finders). How the SLAM ap-
proach is integrated into the navigation compo-
nent is described in detail in [32]. In addition
to moving to desired goal locations in the en-
vironment, the navigation component allows for
showing the robot around in order to learn an
initial environment model with semantically la-
beled places (human-guided exploration) as well
as for exploring the robot’s workspace in a fully
autonomous fashion (see [33]).

5 Results and Lessons Learned

In this article we have described an autonomous
service robot Johnny Jackanapes. We focused on
the component based software framework that is
used to implement a deliberative robot control
architecture based on the introduced Hybrid De-
liberative Layer. Related to its application in the
RoboCup@Home competition we explained the
algorithms for robust and multi-modal human ma-
chine interaction like gesture, speech and emotion
detection as well as sound localization. As another
major part of the robot system we have shown our
implementations on semantic scene understand-
ing namely object categorization and text mining
as well as the robots navigation capabilities focus-
ing on online SLAM. The implementations have
been evaluated under various conditions while
the integration and overall system performance
has been proven in the participation at various
RoboCup@Home competitions.

5.1 Lessons Learned

The RobCup@Home competition is held under
very extreme environmental conditions. The en-
vironment itself is a typical household scenario
with e.g. a living room and a kitchen. Most of the
time the RoboCup is combined with an exhibition
where the arenas are set up and even if the arena
can not be entered by visitors they are open in
a way that the visitors can watch the robots and
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Table 11 Performance of Johnny in the last three
RoboCup@Home competitions

Year Ranking GO Ranking WC

2008 #2 #2
2009 #1 #1
2010 #1 #3

Ranking GO lists the ranking of Johnny on the RoboCup
GermanOpen. Ranking WC lists the ranking on the
RoboCup WorldCup

vice versa. Further, the more people are attend-
ing, the higher is the noise level due to talking
people oder moderators that explain the tests.
Those conditions are very hard to reproduce in
the laboratories where the robot software is devel-
oped. This environmental conditions lead to high
requirements on the robustness of the individual
robot components and overall system which is a
key aspect for successful participation in those
competitions. Beside the environmental condi-
tions, those competitions afford a very well or-
ganized development structure because the times
between different tests are usually only a couple of
hours. During this breaks the arenas are blocked
since the tests of different teams are carried out
sequentially which allows no in place testing with
the real hardware for the upcoming test. In this
extreme situations a well designed debugging in-
terface and simulation framework improve the
ease of development by an order of a magnitude.
Those lessons have a main reason for our quite
successful participation in the RoboCup@Home
competition as is shown in Table 11.

5.2 Future Work

Beside the work on the robots software, new
hardware components are tested to keep track
with the state of the art. This is in particular a
different set of range sensors like 3D time of
flight cameras or 3D laser range finders. with
such hardware available also multiple components
need coordinated access to the same hardware
device like for example the gesture recognition
and the object categorization. Further, such hard-
ware creates the need of sensor fusion to cope
with uncertainty in the sensed environment. Such
solutions would also improve the reliability and
safety of the system and enable e.g. 3D path plan-

ning and grasp planning for the manipulation and
navigation components.
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