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Abstract Autonomous mobile robot path plan-
ning is a common topic for robotics and compu-
tational geometry. Many important results have
been found, but a lot of issues are still veiled. This
paper first describes new problem of symmetri-
cally aligned robot-obstacle-goal (SAROG) when
using potential field methods for mobile robot
path planning. In addition, we consider constant
robot speed for practical use. The SAROG and
the constant speed involve two potential risks:
robot-obstacle collision and local minima trap.
For dealing with the two potential risks, we ana-
lyze the conditions of the collision and the local
minima trap, and propose new potential functions
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and random force based algorithms. For the al-
gorithm verification, we use WiRobot X80 with
three ultrasonic range sensor modules.
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SAROG · Obstacle avoidance

1 Introduction

Autonomous navigation of a robot relies on the
ability of the robot to achieve its goal with ob-
stacle avoidance. In some cases, a robot has a
complete knowledge of its environment, and plans
its movement based on it. However, in general,
the robot only has an idea about the goal, and
should reach it using its sensors to gather informa-
tion about the environment. Hierarchical systems
decompose the control process by functions, and
low-level processes provide simple functions that
are grouped together by higher-level processes
in order to provide overall vehicle control [1].
Thus, high level processing is a planning level, and
low level processing is a reactive control. This is
called local path planning. The local path planning
should be performed with the local information
only near a robot in real time, and it takes priority
over the high level plans. Therefore, it is some-
times called real time obstacle avoidance. One of
the local path planning methods is the potential
field method.
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The potential field method has been widely
studied for autonomous mobile robot path plan-
ning, whose purpose is that a robot reaches a
goal with obstacle avoidance by potential levels
[2, 3]. The principle of the potential field method
is that an obstacle exerts a repulsive force onto a
robot while a goal applies an attractive force to a
robot [4]. One of the reasons for the popularity
of the method is its simplicity and mathematical
elegance. In addition, the method is applicable
when a robot does not have a-priori model of an
obstacle. However, the method has some inherent
limitations such as local minima trap. The trap
situations occur when a robot runs into a dead
end, and a robot never reaches a goal [5]. Many
attempts for the local minima escape or avoidance
have been made in a variety of ways [6–9].

In the previous studies, [10] used harmonic
functions with Laplace’s equation for eliminating
the local minima. The method effectively obviates
the local minima problem, but the solution for the
Laplace equation should be provided. Rimon and
Koditscheck [11] eliminated the local minima by
filling up the entire local minima region. However,
the method should search the local minima and
update the new potential field in real time. Hence,
it is not appropriate for real time motion planning.
Such new potential functions have been actively
proposed [3, 5, 12, 13]. Together with the new
potential functions, multi-potential functions were
also considered [14]. In the method, when a local
minima is found in one potential field, another

potential map with different resolution ignores the
local minima. However, the method has limitation
which a robot may move back to a previously
visited region with local minima.

Together with the new potential functions, ran-
dom path planner approaches have been proposed
[15, 16]. In the approaches, potential field meth-
ods drive the search for a path in configuration
space with the help of a suitable heuristic function;
they combine gradient-based and goal-oriented
motions with random movements to escape local
minima. However, the approach was reported
that a robot may move back to previously ex-
plored region [17]. In addition, the approach is
affected by attraction force; and thus, the number
of steps required to escape from a local minima is
unknown.

In this paper, we restrict two conditions. One
condition is that a robot has a constant speed and
determines its direction every sampling time. As
a robot moves with constant speed with every
sampling time, the computational complexity is
reduced. In addition, it is more practical to adopt
a constant speed with sampling time. The other
condition is that a robot, an obstacle and a goal are
symmetrically aligned. Such order placement is
one of the most challenging issues of local minima
trap. Recently, the method using virtual obstacle
[6, 18, 19] has been widely used for local minima
escape. However, in the method, the positions and
shapes of a robot and an obstacle are non-aligned
and/or asymmetric. For instance, [6] presented the

Fig. 1 The virtual
obstacle concept for the
minimal local trap escape obstacle
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Fig. 2 Illustration of symmetrically aligned robot-obstacle-
goal (SAROG): the virtual obstacles symmetrically exert
the repulsive forces on a robot

virtual obstacle concept for the minimal local trap
escape as illustrated in Fig. 1. The escape from
the minimal local trap is valid when the virtual
obstacles are asymmetrically formed with respect
to a robot. On the other hand, when the virtual
obstacles symmetrically exert the repulsive forces
on a robot, and a goal is positioned aligned with
the obstacle and the robot as illustrated in Fig. 2,
the robot moves back and forth only by endlessly
falling into the local minima trap. We refer to the
problem of symmetrically aligned robot-obstacle-
goal as SAROG. In a previous study, the sym-
metrically aligned robot-obstacle-goal (SAROG)
was addressed and solved by implementing ER1
robot [20]. However, it has an assumption that the
robot has limited possible moving direction with

the predefined grids. Since the robot moves to
only one of eight neighbor positions, the method
does not fully take an advantage of potential
field.

Throughout this paper, we address problems
and solutions on the restricted two conditions of
SAROG and robot constant speed. Figure 3 illus-
trates two problems based on SAROG and con-
stant speed: local minima trap and robot-obstacle
collision. For simplicity, the problems are depicted
by representing a robot, an obstacle and a goal
with a point mass in two-dimension coordinates.
In case of the local minima trap, a robot moves
back and forth between the two positions A
and B. In the position A, the attractive force is
stronger than the repulsive force. On the other
hand, in the position B, the repulsive force is
stronger than the attractive force. In case of the
robot-obstacle collision, the attractive and repul-
sive force inequality of A′ and B′ is same as that
of A and B, but the distance between A′ and the
obstacle is shorter than the robot movement.

For dealing with the problems of local minima
trap and the robot-obstacle collision on the con-
ditions of SAROG and robot constant speed, we
propose new potential functions and random force
based algorithms. The new potential functions aim
at avoiding the robot-obstacle collision. The ran-
dom force based algorithm aims at escaping the
local minima trap.

The remainder of this paper has five sec-
tions. Section 2 briefly explains the potential field
method and describes problems corresponding to
SAROG and constant speed. In Section 3, we
propose new potential functions and random force
algorithms for collision avoidance and local minim

Fig. 3 Illustration of the
two problems based on
SAROG and constant
speed: local minima trap
and robot-obstacle
collision
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trap escape. Section 4 verifies the proposed algo-
rithm using WiRobot X80. Finally, our contribu-
tion is summarized in Section 5.

2 Potential Field Method and SAROG Problem

2.1 Potential Field Methods

A robot, an obstacle and a goal are represented
by a point mass in two-dimension coordinates.
Given a space with size Xs × Ys, each position is
denoted by

p = [x y]T , (1)

where 0 ≤ x ≤ Xs and 0 ≤ y ≤ Ys. Each position
of a robot, an obstacle and a goal are denoted by

pr = [xr yr]T , po = [xo yo]T and pg = [xg yg]T .

(2)

In the potential field method, an attractive po-
tential is defined as a function of the relative dis-
tance between a robot and a goal while a repulsive
potential is defined as a function of the relative
distance between a robot and an obstacle. The
two potential functions are commonly expressed
as [4, 7, 21, 22]

Uatt(p) = catt · (
ρ(p, pg)

)m
, (3)

and

Urep(p)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

crep ·
(

1

ρ(p, po)
− 1

ρ0

)n

, if 0<ρ(p, po)≤ρ0

0, if ρ(p, po)>ρ0

H, if ρ(p, po)=0

,

(4)

where catt and crep are constant values for an
attractive potential and a repulsive potential,
H denotes the highest value that micropro-
cessor possesses. ρ(p, pg) = ||p, pg|| is the shortest
distance between two positions, p and pg. Simi-
larly, ρ(p, po) = ||p, po|| is the shortest distance
between two positions, p and po. ρ0 is a positive
constant denoting the distance influence of an
obstacle. m and n are positive integer constants.
For m = n = 1, each potential is conic in shape,

and for m = n = 2, each potential is parabolic in
shape.

The corresponding attractive force and repul-
sive force are then given by the negative gradient
of each attractive potential and repulsive poten-
tial as

Fatt(p) = −∇Uatt(p)

= −m · catt ·
(
ρ(p, pg)

)m−1 · ∇ρ
(
p, pg

)
, (5)

and

Frep(p)

= −∇Urep(p)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n · crep ·
(

1

ρ(p, po)
− 1

ρ0

)n−1

·
(

1

ρ(p, po)

)2

·∇ρ(p, po), if 0<ρ(p, po)≤ρ0

0, if ρ(p, po) > ρ0

or ρ(p, po) = 0

,

(6)

where 0 denotes two dimensional zero vector,
∇ρ(p, po) and ∇ρ(p, pg) are two unit vectors
pointing from po to p and from pg to p, re-
spectively. That is, the two unit vectors are ex-
pressed as

∇ρ(p, po)

=

⎧
⎪⎨

⎪⎩

0, if x=xo and y= yo

(x−xo)ux+(y−yo)uy√
(x−xo)2+(y−yo)2

, otherwise
,

(7)

∇ρ(p, pg)

=

⎧
⎪⎨

⎪⎩

0, if x=xg and y= yg

(x−xg)ux+(y−yg)uy√
(x−xg)2+(y−yg)2

, otherwise
,

(8)

where ux and uy are unit vectors in x and y direc-
tion, respectively.
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The total force applied to each position p is the
sum of the attractive force and the repulsive force
as

Ftot(p) = Fatt(p) + Frep(p), (9)

which determines the robot direction and speed
for reaching a goal with obstacle avoidance. The
robot direction is the summed vector of ∇ρ(p, pg)

and ∇ρ(p, po). As mentioned in the previous sec-
tion, we consider that a robot moves with constant
speed. Thus, the total force Ftot(p) can be re-
formulated as

Fc
tot(p)

= Ftot(p)

|Ftot(p)|

=
⎧
⎨

⎩

0, if Fatt(p)=Frep(p)=0
Fatt(p)+Frep(p)

|Fatt(p)+Frep(p)| , otherwise ,

(10)

where Fc
tot is the total force in the condition of

constant robot speed. Then, given the speed sr

(m/s) and sampling time Ts (s), a robot moves
sr · Ts with the direction of Fc

tot(p) or (Fatt(p) +
Frep(p))/(|Fatt(p) + Frep(p)|) every Ts. Figure 4
illustrates the forces Ftot(pr) and Fc

tot(pr) onto a
robot by addition of the attractive force Fatt(pr)

and the repulsive force Frep(pr). Throughout this
paper, we call Fc

tot a unit total force. Similarly, we

Frep(pr)

Fatt(pr)

Ftot(pr)

goal

obstacle

robot

pg

pr

p

ρ

o

o

Fctot(pr)

Fig. 4 Illustration of the forces Ftot(pr) and Fc
tot(pr) onto

a robot by addition of the attractive force Fatt(pr) and the
repulsive force Frep(pr) using the potential field method.
On the condition of constant speed, we use unit forces of
Fc

tot, Fc
att and Fc

rep

call Fc
att and Fc

rep a unit attractive force and a unit
repulsive force.

2.2 Problem Description

On the two conditions of constant robot speed and
SAROG, the potential field method causes two
problems: collision and local minima trap.

As illustrated in Fig. 5, if |Fatt(pr)| > |Frep(pr)|
and ρ(pr, po) ≤ sr · Ts, the robot collides with an
obstacle at the next sampling time. Then the colli-
sion problem condition is summarized as

|Fatt(pr)| > |Frep(pr)|, (11)

ρ(pr, po) ≤ sr · Ts, (12)

∇ρ(pr, po) = ∇ρ(pr, pg). (13)

On the other hand, if |Fatt(pr)| < |Frep(pr)|, a
robot moves away from a goal and an obstacle
until |Fatt(pr)| > |Frep(pr)|. Then the robot moves
back toward an obstacle and a goal, and finally
oscillates between two positions. The local min-
ima problem condition is summarized as

|Fatt(pr)| > |Frep(pr)|, (14)

ρ(pr, po) > sr · Ts, (15)

∇ρ(pr, po) = ∇ρ(pr, pg). (16)

To illustrate the local minima problem, a simple
simulation example is provided. Consider a robot
moves with sr = √

2 and Ts = 1; a robot moves√
2 every sampling time in the condition of po =

[8 8]T and pg = [6 6]T . Both a robot and a goal

Frep(pr)

Fatt(pr)

pg

po

pr

F>0

F<0

s r•T
s

Fig. 5 The distance between a robot and an obstacle is less
than sr Ṫs
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are within the distance of influence of an obstacle
with ρo=10. The attractive potential and repulsive
potential are specifically given by [8]

Uatt(p) = 1

2

(
ρ(p, pg)

)2
, (17)

Urep(p) = 5

(
1

ρ(p, po)
− 1

10

)2

.

(18)

Note that m = 2, n = 2, catt = 0.5 and crep = 5 are
used in a general form of Eqs. 3 and 4. Their
corresponding attractive force and repulsive force
are obtained as

Fatt(p) = −ρ(p, pg) · ∇ρ(p, pg), (19)

Frep(p) = 10

(
1

ρ(p, po)
− 1

10

)
·
(

1

ρ(p, po)

)2

· ∇ρ(p, po). (20)

Figure 6 shows the attractive force, the repul-
sive force and the total force in a diagonal line
from (2, 2) to (14, 14). In this example, for better
understanding, each force direction away from
an origin is denoted as positive, and each force
direction toward an origin is denoted as negative.
From the goal position (6, 6), the attractive force
is symmetrically exerted as shown in Fig. 6a. From

the obstacle position (8, 8), the repulsive force is
symmetrically exerted as shown in Fig. 6b. Note
that the attractive force is a function of a goal
position and a robot position while the repulsive
force is a function of an obstacle position and
a robot position. By addition of the attractive
and repulsive forces, the total force is shown in
Fig. 6c, where the total forces from (14, 14) to
(8.9, 8.9) are negative, which causes a robot to
move toward an obstacle. Suppose that a robot
is initially positioned as pr = [12 12]T , where
the attractive and repulsive forces are −8.485
and +0.024, respectively. Then, the robot moves
toward an origin (toward to the goal and the
obstacle), and arrives at (11, 11). Again, at the
position (11, 11), the attractive and repulsive
forces are −7.071 and +0.075, respectively, and
the robot moves toward an origin (toward to the
goal and the obstacle). In this way, the robot
keeps moving to (8, 8), which means the robot
collides with the obstacle positioned at (8, 8).
For another case, suppose that a robot is initially
positioned as pr = [11.5 11.5]T . At the position
(11.5, 11.5), the attractive and repulsive forces are
−7.778 and +0.042, respectively. Then, the robot
moves toward an origin (toward to the goal and

Fig. 6 The attractive
force, the repulsive force
and the total force in a
diagonal line from (2, 2)
to (14, 14)
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the obstacle) and arrives at (10.5, 10.5). In this
way, the robot keeps moving to (8.5, 8.5). At the
position (8.5, 8.5), the attractive and repulsive
forces are −3.536 and +26.284, respectively, and
the robot moves away from an origin (away from
the goal and the obstacle). Once the robot arrives
at (9.5, 9.5), the robot is exerted by negative force
(toward to the goal and the obstacle), and moves
to (8.5, 8.5). Again, the robot is exerted by positive
force (away from the goal and the obstacle) at

goal

(a) Time-instant 0: arobotis positioned at (1.0,1.0),  
an obstacle is positioned at (5.0,5.0) and a goal 
is positioned at (5.4,4.6).

A

B

(b) From time-instant 13, a robot is oscillating 
between the points A and B (local minima trap).

NOT INITIALLY Aligned

obstacle

robot

Fig. 7 The SAROG based local minima occurs even when
a robot, an obstacle and a goal are not initially aligned

(8.5, 8.5), and moves back to (9.5, 9.5). Finally,
the robot oscillates the two positions between
(9.5, 9.5) and (8.5, 8.5), which means the robot is
trapped in local minima.

The collision and local minima problems on the
condition of constant robot speed and SAROG
have not been addressed yet, and it should be
taken into account to prevent a robot from
damage by collision and the local minima trap
(oscillation).

A question arises that the condition of SAROG
can be negligible if a robot is not initially
aligned with an obstacle and a goal. However, the
SAROG occurs even when a robot, an obstacle
and a goal are not initially aligned. As illustrated
in Fig. 7, consider that a robot is initially posi-
tioned at (1.0 m, 1.0 m), an obstacle is positioned
at (5.0 m, 5.0 m), and a goal is positioned at
(5.4 m, 4.6 m). A robot speed sr is

√
2 m/s, and

sampling time Ts is 1 s. In addition, we set up
m = 2, n = 2, ρ = 1, catt = 0.5 and crep = 5.
Throughout this paper, unless otherwise noted,
the parameters sr, Ts, m, n, ρ, catt and crep are fixed
as above.

As shown in Fig. 7a, at the sampling time 0,
a robot, an obstacle and a goal are not initially
aligned. However, when a robot moves closer
to a goal, a robot finally oscillates between two
points A and B by not reaching a goal as illus-
trated in Fig. 7b. That is, a robot, an obstacle
and a goal become symmetrically aligned. Thus,
the SAROG may occur when an obstacle and
a goal closely positioned even though the initial
positions of a robot, an obstacle and a goal are not
aligned.

3 Collision Avoidance and Local Minim Escape
on SAROG and Constant Speed

3.1 New Potential Functions For Collision
Avoidance

For the robot collision avoidance, new potential
functions should be considered. It should be de-
rived to reflect the fact the collision arises based
on the conditions of Eqs. 11–13. Then, the colli-
sion is avoided by imposing a unit force with an
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opposite direction onto a robot when the collision
conditions are satisfied. It motivates us to consider
a new total force as

Ftot(p)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇ρ(pr, po), if |Fatt(pr)| > |Frep(pr)|,
& ρ(pr, po) ≤ sr · Ts

& ∇ρ(pr, po) = ∇ρ(pr, pg)

Fatt(p) + Frep(p), elsewhere,

(21)

and the corresponding unit total force is expressed
as

Fc
tot(p)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ρ(pr, po), if |Fatt(pr)| > |Frep(pr)|,
& ρ(pr, po) ≤ sr · Ts

& ∇ρ(pr, po)

= ∇ρ(pr, pg)

0, if Fatt(pr) = Fatt(pr) = 0
Fatt(p) + Frep(p)

|Fatt(p) + Frep(p)| , elsewhere.

(22)

In comparison with Eq. 9, the new total force
and the corresponding new unit total force ensure
that a robot moves away from an obstacle before
it is collided with an obstacle. In the previously

-6

-4

-2
0

2
4
6

F
to

t(
p

)

-8
-10

-12

(2,2) (4,4) (6,6) (8,8) (10,10) (12,12) (14,14)
p

sr•Ts= 2

(9,9)

Fig. 8 The new total force based on Eq. 21 imposes a unit
force with an opposite direction onto a robot in order that
a robot moves away from an obstacle before it is collided
with an obstacle

shown example, the new total force replaces an
original one by a unit vector pointing away from
an obstacle as shown in Fig. 8. By using Eq. 22,
when a robot moves from the position (10, 10) to
the position (9, 9), it moves back to the position
(10, 10), and the collision is avoided.

As the new total force in Eq. 21 is considered,
each size of robot and an obstacle becomes an
important parameter. We assume that a robot and
an obstacle are circles in shape with radius rr

and ro, respectively. Then, the distance sr · Ts for
obstacle avoidance is extended to sr · Ts + rr + ro.
Then, the new total force and unit total force are
revised as

Ftot(p)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇ρ(pr, po), if |Fatt(pr)| > |Frep(pr)|,
& |pr−p0|≤sr ·Ts+rr+ro

& ∇ρ(pr, po) = ∇ρ(pr, pg)

Fatt(p) + Frep(p), elsewhere,

(23)

and

Fc
tot(p)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ρ(pr, po), if |Fatt(pr)| > |Frep(pr)|,
& |pr − p0|

≤ sr · Ts + rr + ro

& ∇ρ(pr, po)

= ∇ρ(pr, pg)

0, if Fatt(pr) = Fatt(pr) = 0
Fatt(p) + Frep(p)

|Fatt(p) + Frep(p)| , elsewhere.

(24)

Note that the new potential functions are only
for robot collision, and the local minima problem
still remains. In the next subsection, we propose
the algorithm for local minima escape.

3.2 Random Force Algorithm for Local
Minima Escape

3.2.1 Recognition of Local Minima Trap

On the conditions of constant speed and SAROG,
the local minima problem is categorized into two
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cases. Figure 9 illustrates the two cases of local
minima trap. One case is that a robot is trapped
in local minima before arriving a goal (i.e. os-
cillating across non-goal area). The other case is
that a robot is trapped after arriving a goal (i.e.
oscillating across a goal). Thus, in order to deal
with the local minima trap, a robot should first
recognize whether it is trapped across a goal or
non-goal area. As illustrated in Fig. 9a when a
robot is trapped across a non-goal area, the at-
tractive forces of positions A and B are formed
with same direction, but the total forces of the two
positions are formed with opposite direction. On
the other hand, as illustrated in Fig. 9b when a
robot is trapped across a goal, both the attractive
forces and the total forces of positions A and B
are formed with opposite direction. Thus, a robot
is trapped across a non-goal when the conditions
are formed as

Fc
tot(A) = −Fc

tot(B) and Fc
att(A) = Fc

att(B), (25)

and a robot is trapped across a goal when condi-
tions are formed as

Fc
tot(A) = −Fc

tot(B) and Fc
att(A) = −Fc

att(B). (26)

On the local minima condition of Eq. 26, a
robot should find the path to reach the exact goal.
For a solution, [8] proposed new potential func-
tions for the problem named goals nonreachable
with obstacles nearby (GNRON). In this paper,
once a robot moves near a goal, we manually
declare that a robot reaches a goal, and focus on
the local minima across non-goal.

obstacle goal

A

B

robot

(a) A robot is trapped before arriving
a goal.

obstacle

goal

A

B

robot

(b) A robot is trapped
after arriving a goal.

Fig. 9 Illustration: two cases of local minima trap on
SAROG and constant robot speed

3.2.2 Random Force Algorithm for Local Minima
Across Non-Goal

On the condition of Eq. 25, a robot should find the
path to escape the local minima. For the path, we
use a random unit total force (RUTF). The RUTF
determines the robot direction and the robot es-
capes the local minima. After the RUTF based
robot movement, the original potential force is
continuously used until the condition of Eq. 25
arises. Thus, the random force algorithm alter-
nates potential based motions with the random
motion.

However, the RUTF may cause a robot to be
collided with an obstacle if the random force is
generated within the direction between +θu and
-θu as illustrated in Fig. 10a. Thus, the RUTF

obstacle

destination

robot

ro

rθ
ru

collision free area

(a) The RUTF isgenerated within the
direction between +θ θu and - u .

ro rr

du

rr

obstacle
robot

u

(b) The RUTF angle θ u is formulated as
(29) with du , rr and ro

θ

Fig. 10 Illustration of RUTF angle formulation
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should be generated in the collision free area as

θu < θ(Fc
att) < π or − π < θ(Fc

att) < −θu. (27)

Given the obstacle and robot sizes, the angle θu is
formulated with du, rr and ro as

rr + ro

sin θu
= du, (28)

θu = csc

(
rr + ro

du

)
. (29)

Thus, the RUTF for collision avoidance should
be generated as

csc

(
rr + ro

du

)
< θ(Fc

att) < π or

−π < θ(Fc
att) < − csc

(
rr + ro

du

)
. (30)

Figure 11 shows the effect of the RUTF based
algorithm. A robot starts to move from (1.0 m,
1.0 m) with an obstacle positioned at (3.0 m,
3.0 m) and a goal positioned at (4.0 m, 4.0 m).
The robot moves toward the goal of point
(4.0 m, 4.0 m) with sr = 0.4 m/s and Ts = 1 s.
When the forces to exerting the robot are satisfied
with Eq. 25, a robot recognizes the local minima
across non-goal. Then, we exert a random unit
total force (RUTF) onto a robot as shown in
Fig. 11a. The RUTF helps a robot escape from the
oscillation. After escaping from the oscillation, the
robot continuously moves toward the goal of point
(4.0 m, 4.0 m) by potential based forces as shown
in Fig. 11b.

However, the RUTF based local minima escape
is not applicable when a robot is positioned closer
to a goal than an obstacle: the placement order
is robot-goal-obstacle. To illustrate the case, con-
sider that a robot is positioned at (1.0 m, 1.0 m),
an obstacle is positioned at (3.4 m, 3.4 m) and a
goal is positioned at (3.0 m, 3.0 m) as shown in
Fig. 12a. From the time-instants 0–6, a robot
moves close to a goal. At time-instant 6, the local
minima across non-goal is satisfied with Eq. 25,
and the RUTF with Eq. 30 exerts onto a robot
resulting in the movement as shown in Fig. 12b.
After the robot escapes from the local minima,
the robot continuously moves by potential based
forces as shown in Fig. 12b–d, where the robot
moves back to the local minima. That is, the
RUTF based local minima escape is applicable

starting point

obstacle

destination

robot

(a) The robot moves from (1.0m, 1.0m) to 
(4.0m, 4.0m) with sr = 0.4m/ s and Ts = 1s.When 
the forces to exerting the robot are satisfied with 
(25), we exert RUTF onto a robot.

(b)The RUTF helps arobot escape the local 
minima, and the robot continuously moves 
toward the goal (4.0m, 4.0m) by potential 
based forces.

Fig. 11 Local minima escape using RUTF

only when ρ(pr, pg) > ρ(pr, po). Otherwise, a ro-
bot moves back to previous local minima as shown
in Fig. 12d.

Thus, in the case of ρ(pr, pg) < ρ(pr, po), we
use a potential function with repulsion removal as

Fc
tot(p) =

⎧
⎨

⎩

0, if Fc
att(p) = 0

Fc
att(p)

|Fc
att(p)| , otherwise,

(31)

That is, once the potential forces and the dis-
tance conditions are both satisfied with Eq. 25 and
ρ(pr, pg) < ρ(pr, po), the RUTF changes robot
direction and the potential force of Eq. 31 exerts
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Fig. 12 RUTF algorithm
limitation: Even though
the RUTF exerts onto a
robot, the robot
eventually moves back to
the local minima of
SAROG

starting point

obstacle
destination

(a) time-instant 0 to 7 (b) time-instant 0 to10

(c) time-instant 0 to 12 (d) time-instant 0 to 20

onto a robot. The RUTF and the potential func-
tion with removal (RUTF-RR) algorithm derives
a robot to reach a goal by removing a repulsion
force since the movement back to previous local
minima after RUTF is from the repulsive force
existence. The attractive force exertion of Eq. 31
continues until a robot arrives at a goal.

When the RUTF-RR is used, the robot colli-
sion issue should be considered as well. Since the
robot moves with only attractive force, it is possi-
ble for the robot to collide with an obstacle. The
collision occurs more frequently when the size
of a robot and/or an obstacle increases, and the
distance between a goal and an obstacle becomes
shorter. In order to investigate the anti-collision
condition, Fig. 13a illustrates the placement and
the size of a robot, a goal and an obstacle. Given
the robot position Pr, the RUTF should be gen-
erated in the collision free area. Then, after the
RUTF exertion to the collision free area, the

collision is prevented even with the attraction
force only. Figure 13a is re-illustrated in Fig. 13b
to find the anti-collision condition. The angles θ1

and θ2 are formulated with rr, ro and dv as

rr + ro

sin θ1
= rr + ro

sin θ2
= dv, (32)

θ1 = θ2 = csc

(
rr + ro

dv

)
. (33)

Then, the shortest distance dw between a robot
and the shaded region boundary is

dw

sin θ1
= du, (34)

dw = du · sin θ1. (35)

In addition, the RUTF angle θ
(
Fc

tot

)
is

θ
(
Fc

tot

) = π − θ1. (36)
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ro

obstacle

goal

rr

rr

rr

rr

rr

Pr

robot

collision free area

(a) Illustration of the placement and the size of a robot, 
a goal and an obstacle

Pr

1

2
du dv Po

rr+ro

rr+ro

(Fθ c
tot)

original robot 
orientation

collision free area

dw

(b) Geometry for dw and (Fc
tot)θ

θ

θ

Fig. 13 Illustration of the anti-collision condition

In order to move inside the shaded region with
speed sr, the robot should keep moving with
the force direction ±(π − θ1) for τ time-instants,
where

τ =
⌈

dw

sr

⌉
. (37)

The sign ± of the force direction is randomly
assigned. After τ time-instants, a robot keeps
moving by the attraction only.

Figure 14 shows the one realization based on
same simulation condition of Fig. 12. In Fig. 14a,
the forces exerting onto a robot and the dis-
tance condition are both satisfied with Eq. 25 and
ρ(pr, pg) < ρ(pr, po) at time-instant 6. At time-
instant 7, the RUTF is exerting onto a robot to
the collision free area. In Fig. 14b, at time-instant
8, the attractive force only in Eq. 31 is exerting
onto a robot, and the robot finally reaches the goal
without the movement back to the local minima.

(a) At time-instant 7

(b) At time-instant 8

Fig. 14 Random unit total force with repulsion removal
(RUTF-RR)

3.3 Algorithm Summary and Finite State
Representation

To summarize, we represent the whole algorithms
with a finite state data flow as illustrated in Fig. 15.
It shows that a robot moves based on six different
states: potential function based navigation with
Eq. 24, GNRON navigation [8], RUTF based
navigation with Eq. 30, RUTF-RR preparation
navigation with Eq. 36, RUTF-RR navigation
with Eq. 31 and goal (stop).

As an initial stage, a robot continuously
moves with potential function based navigation of
Eq. 24 until Fc

tot(n) = −Fc
tot(n − 1). At time n, if

the condition of Fc
att(n) = −Fc

att(n − 1) is satisfied,
a robot recognizes its situation as either local
minima or GNRON. Simultaneously, if the con-
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Fig. 15 Finite state
representation which
classifies the robot
movement into six states

potential 
function (24)

GNRON

RUTF (30)

goal (stop)

RUTF-RR 
preparation 

(36)

Fc
tot(n) = - Fc

tot(n-1)

Fc
tot(n) = - Fc

tot(n-1) 
Fc

att(n) = - Fc
att(n-1)

&
(pr,pg)   (pr,po)   >

Ftot(n) = 0
Ftot(n) = 0

RUTF-RR (31)

dw
sr

 =

dw
sr

 =

Fc
tot(n) = - Fc

tot(n-1) 
&

Fc
att(n) = - Fc

att(n-1)

Fc
tot(n) = - Fc

tot(n-1)

Fc
tot(n) = - Fc

tot(n-1) 
Fc

att(n) = - Fc
att(n-1)

&
(pr,pg)   (pr,po)   <

Fc
tot(n) = - Fc

tot(n-1)

ρ ρ

ρ ρ
τ

τ

dition of ρ(pr, pg) > ρ(pr, po) is satisfied, a robot
is trapped in local minima, and the RUTF based
navigation of Eq. 30 determines the robot direc-
tion. Once a robot escapes the local minima, the
navigation state goes back to potential function
based navigation. On the other hand, if the con-
ditions of Fc

att(n) = −Fc
att(n − 1) and ρ(pr, pg) <

ρ(pr, po) are simultaneously satisfied, the RUTF-
RR preparation navigation of Eq. 36 exerts on

a robot during the time-instants
⌈

dw

sr

⌉
. After the

time-instants
⌈

dw

sr

⌉
, the RUTF-RR navigation of

Eq. 31 exerts on a robot until Fc
tot(n) = −Fc

tot(n −
1). The condition of Fc

tot(n) = −Fc
tot(n − 1) rep-

resents GNRON, where a robot reaches a goal
nearby and moves across a goal. The GNRON
navigation is also enabled with the condition
Fc

tot(n) = −Fc
tot(n − 1) from the state of potential

function based navigation. At last, a robot stops
when Ftot(n) = 0.

4 Algorithm Verification and Analysis

4.1 Simulation Setup

For the algorithm verification, we used the
WiRobot X80 as shown in Fig. 16. The X80

underlies technology evolved from Dr Robot
Distributed Computation Robotic Architecture,
originally developed for Dr Robot Humanoid
Robot. It is developed for fast and strong mo-

ultrasonic range sensor modules 
(DUR5200)

Fig. 16 WiRobot X80 evolved from Dr Robot Distributed
Computation Robotic Architecture, originally developed
for Dr Robot Humanoid Robot: For the estimating the
distance between a robot and an obstacle, three ultra-
sonic range sensor modules of DUR5200 are attached to
the robot
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Fig. 17 The range sensor modules DUR5200 searches its
surrounded environment

tion, while itself remaining lightweight and nim-
ble. The wheel-based platform is with two 12V
DC motors each supply 22 kg·cm of torque to
the 18-cm wheels, yielding a top speed in excess
of 1 m/s. Two high-resolution with 1,200 counts
per wheel cycle quadrature encoders mounted on
each wheel provide high-precision measurement
and control of wheel movement.

For estimating the distance between a robot
and an obstacle, we equipped the robot with three
ultrasonic range sensor modules of DUR5200.
The range sensor detects an obstacle within 3.4 m

as shown in Fig. 17. The distance data is precisely
presented by the time interval between the time-
instant when the measurement is enabled and the
time-instant when the echo signal is received. By
using the ultrasonic range sensor modules, the
robot recognizes its near obstacle position up to
3.4 m. For the proposed algorithm verification on
the restricted two conditions of SAROG and ro-
bot constant speed, we set up the robot, obstacles
and the goal as in Figs. 18 and 19.

In the first test, we verify our proposed algo-
rithm of the finite state navigation with multi-
ple states by showing three different goals. For
each goal, the robot selects different navigation
states. For goal 1, four states of potential func-
tion, RUTF, GNRON and goal were switched.
For goal 2, three states of potential function,
GNRON and goal were switched. For goal 3, six
states of potential function, RUTF, RUTF-RR
preparation, RITF-RR, GNRON and goal were
switched. Through the three goals, we show that
the robot automatically switched the different
navigation states according to the positions of a
robot, an obstacle and a goal. Initially, goal 1
is enabled while goal 2 and goal 3 are disabled.

Fig. 18 WiRobot X80
traveled from Start to
goal 1, goal 2 and goal 3
in order. During the
navigation, RUTF and
RUTF-RR algorithms are
used for local minima
escape

goal 1

goal 2

goal 3

start

obstacle

obstacle

obstacle

x (m)

y (m)

RUTF

RUTF-RR
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Fig. 19 Two WiRobot
X80s traveled to the same
goal. During the
navigation, each robot is
aided by RUTF, but the
average navigation speeds
are different due to
RUTF direction

x (m)

y (m)

obstacle

obstacle

goal

start start

robot1
robot2

After the robot reaches goal 1, goal 2 only is
enabled. Finally, after the robot reaches goal 2,
goal 3 only is enabled. For the navigation to goal 1,
the robot has the problem on SAROG; and thus,
will be trapped on local minima by using potential
field method only. In the local minima trap, we
will show the RUTF will solve the problem. For
the navigation to goal 3, the robot also has the
problem on SAROG; and thus will be trapped
on local minima again. However, in the case, the
RUTF cannot solve the problem; the robot moves
back to original local minima after RUTF. In the
local minima trap, we will show the RUTF-RR
will solve the problem. The selection of RUTF,
RUTF-RR and potential field method is deter-
mined by our proposed algorithm in Fig. 15 and
Section 3.3.

In the second test, two robots simultaneously
start for the navigation to goal. During the nav-
igation, the two robots have the problem on
SAROG; and thus, will be trapped on local min-
ima by using potential field method only. In each
local minima trap, we will show the RUTF will
solve the problem. Especially, in this test, we will
evaluate the navigation time and investigate the
effect of RUTF direction.

4.2 Results and Discussion

As depicted in Fig. 18, in the first test, X80 trav-
eled from Start to three goals; goal 1 positioned
at (2.5 m, 4.0 m), goal 2 positioned at (5.5 m,
7.0 m) and goal 3 positioned at (8.5 m, 8.0 m).
Each obstacle is positioned at (4.0 m, 2.5 m),
(3.5 m, 6.0 m) and (8.0 m, 8.5 m) with ro = 0.4375
m and ρo = 1.2 m. The robot starts from the po-
sition (5.5 m, 1.0 m) with rr = 0.25 m, Ts = 1 s
and sr = 0.5 m/s. With goal 1 only enabled, the
robot first moved toward goal 1 with potential
functions and kept moving until the condition of
Eq. 25 is satisfied at time 2 (s). At time 2 (s),
the robot compared the distance condition, which
was ρ(pr, pg) > ρ(pr, po), and RUTF instead of
the potential functions determined robot direction
for the local minima escape. From 3 (s) to 13 (s),
the robot moved toward goal 1 by using the po-
tential field, and finally arrived at goal 1. Once the
robot arrived at goal 1, goal 1 was disabled and
only goal 2 was enabled. We set the starting time
from goal 1 to zero. From goal 1 to goal 2, any
local minima problem did not occur. Note until
time 2 (s), the robot has the potential function
involved with attraction force only. From time
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2 (s) to 6 (s), the potential function involved both
the attraction force and the repulsion force since
the robot positioned within the obstacle influence.
From 6 (s) to 9 (s), the potential function involved
with attraction force only and the robot finally
arrived at goal 2. Similarly, once the robot arrived
at goal 2, goal 2 was disabled and only goal 3 was
enabled. We also set the starting time from goal
2 to zero. From goal 2 the robot moved toward
goal 3 with potential functions and kept moving
until the condition of Eq. 25 is satisfied at time 15
(s). At time 15 (s), the robot compared the dis-
tance condition, which was ρ(pr, pg) < ρ(pr, po),
and RUTF-RR instead of the potential functions
determined robot direction for the local minima
escape, and finally let the robot arrived at goal 3
with τ = 1.

Through the random force based algorithms
of RUTF and RUTF-RR, we showed that the
robot escaped the local minima trap and avoided
robot-obstacle collision on the SAROG and ro-
bot constant speed. In addition, each algorithm
such as RUTF, RUTF-RR and potential functions
was adaptively selected based on the conditions
of Eq. 25, ρ(pr, pg) < ρ(pr, po) and ρ(pr, pg) >

ρ(pr, po), and its whole algorithm was summarized
in Fig. 15 and Section 3.3.

As depicted in Fig. 19, in the second test, two
X80s traveled from different positions at (1.0 m,
1.0 m) and (8.0 m, 2.0 m) to the goal positioned
at (8.0 m, 8.0 m). All other conditions such as rr,
Ts and sr are same as ones in the first test. The
robot 1 first moved toward goal with potential
functions and kept moving until the condition
(25) is satisfied at time 4 (s). At time 4 (s), the
robot compared the distance condition, which was
ρ(pr, pg) > ρ(pr, po), and RUTF instead of the
potential functions determined robot direction for
the local minima escape. From 5 (s) to 27 (s), the
robot moved toward the goal by using the poten-
tial field, and finally arrived at goal. Similarly, the
robot 2 first moved toward goal using potential
functions, and RUTF determined robot direction
for the local minima escape at 4 (s). From 5 (s)
to 22 (s), the robot moved toward the goal by
using the potential field, and finally arrived at
goal. Note that the robot 1 moves 9.9 m for 27
(s) while robot 2 moves 6.0 m for 22 (s) (i.e. 0.367
m/s with robot 1 and 0.273 m/s with robot 2). The

average navigation speed is affected by RUTF di-
rection, θ(Fc

att). Thus, the optimal θ(Fc
att) should be

considered for the fast navigation. Furthermore,
SAROG problem in the dynamic conditions such
as moving obstacles are worthy for consideration
as in the future work.

5 Conclusion

We have described new problem of symmetri-
cally aligned robot-obstacle-goal (SAROG) with
constant robot speed when using potential field
methods for mobile robot path planning. For deal-
ing with the corresponding two potential risks
of robot-obstacle collision and local minima trap,
new potential functions and random force based
algorithms have been proposed. In addition, for
a complete navigation on SAROG and constant
speed, we have shown the finite state representa-
tion with six navigation states. Finally, the algo-
rithm has been verified using WiRobot X80 with
three ultrasonic range sensor modules.
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