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Abstract In this paper, the flight formation con-
trol and trajectory tracking control design of mul-
tiple mini rotorcraft systems are discussed. The
dynamic model of a mini rotorcraft is presented
using the Newton-Euler formalism. Our approach
is based on a leader/follower structure of multiple
robot systems. The centroid of the coordinated
control subsystem is used for trajectory tracking
purposes. A nonlinear controller based on sep-
arated saturations and a multi-agent consensus
algorithm is developed. The analytic results are
supported by simulation tests. Experimental re-
sults include yaw coordination and tracking only.
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1 Introduction

Unmanned Aerial Vehicles (UAVs) have become
a vital platform in a wide variety of applications
because they reduce cost and human life risk. Mul-
tiple aircraft flying in formation has been inten-
sively investigated during the last decades [1–5].
Different approaches for multiple aircraft flying
in formation have been proposed in the literature
for coordination of multiple autonomous robot
systems such as Leader/Follower [1–3] Virtual
Structure [4, 5] and Behavioral Control [6, 7].

The miniature rotorcraft flight formation con-
trol involves the integration of different domains
such as, rotorcraft control, coordination control
among others. The work reported in the litera-
ture is by now quite vast and addresses different
approaches for miniature rotorcraft stabilization
including linear control [8–10], robust control [9,
11, 12], nonlinear control [2, 13, 14] among others.
In [9], the authors propose a robust linear PD
controller considering parametric interval uncer-
tainty. There, the authors present a robust stabil-
ity analysis and compute the robustness margin of
the system with respect to the parameters uncer-
tainty. In [14] a nonlinear control based on nested
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saturations is presented. In this approach, the dy-
namics is decoupled into lateral and longitudinal
dynamical subsystems. Thus, nested saturations
control was used to stabilize each subsystem.

In the last decade, graph theory has been used
in order to model the communication between
agents in a multi-agent system. In a graph theo-
retical approach to flight formation, every node
in the graph is considered as an agent or aerial
vehicle which can have information exchange with
all or several agents. In [5, 15–17], the authors
use algebraic graph theory in order to model the
information exchange between vehicles. By us-
ing this technique, several control strategies have
been developed, e.g. [17–21]. In [17], the authors
present several algorithms for consensus and ob-
stacle avoidance for multiple-agent systems. Ren
[18] presents a consensus algorithm for trajectory
tracking of a time varying reference for a single
integrator multi-agent system. Lee and Li [19] and
Lee and Spong [20] presents a passive decomposi-
tion approach for consensus and formation con-
trol. In [21], the authors present a bilateral tele-
operation control approach for the multi-agent
coordination and trajectory tracking problem.

Recent advances in UAV control, graph the-
ory and the technological revolution of the last
decades have spurred the interest in the UAV
flight formation problem. In [2] a flight formation
control based on a forced consensus algorithm
is presented. Experimental results on cooperative
and coordination control of UAVs have been ob-
tained using the Vicon motion capture system, see
[22, 23] among others. Michael et al. [22] presents
a cooperative control strategy to lift a rigid body
using three quadrotors. From the practical point
of view, we remark that the Vicon system is an
indoor localization system which parameterize the
3D space using a set of infrared cameras. The
main advantage of this system is the accuracy (mil-
limeters) and the processing speed (100–400 Hz).
However, the main disadvantages of this system
are its price which is expensive and the fact that it
cannot be used in real outdoor missions. Another
important disadvantage of the Vicon system is the
centralized nature of the localization system.

We are interested in the problem of multiple
miniature rotorcraft flying in formation, shown in
Fig. 1, using a nonlinear control based on sepa-

Fig. 1 Multiple mini rotorcraft flying in formation [2]

rated saturations and a single integrator coordina-
tion control strategy. The coordination algorithm
assumes that there are n-aerial vehicles which
have some kind of information exchange between
them. In this approach, every mini rotorcraft is
considered as an agent in the multi-agent system.
We propose a decoupled dynamic coordination.
Thus, the lateral, longitudinal, heading and alti-
tude dynamical subsystems of each mini rotorcraft
are considered as agents to be coordinated and
to follow a desired reference. To do this, com-
bined with a nonlinear control, we use an alge-
braic graph theoretical approach to synchronize
the behavior of a miniature rotorcraft platoon.

In order to achieve consensus among the mem-
bers of the platoon, we propose a single integrator
coordination which implies position coordination
only. An important advantage of the approach
adopted here is that a member of the platoon will
not be affected by perturbations in the attitude
of its neighbors. Experimental results have been
implemented using two experimental prototypes
provided of a wireless communication system.
Position experimental results are still under devel-
opment due to the lack of accuracy of the com-
mercial mini-GPS (Global Positioning System)
modules (small-size, small weight) available in the
market.

This paper is organized as follows: in Section 2
some preliminary results on graph theory, sat-
uration function and the dynamical model of a
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minirotorcraft are given. In Section 3, the nonlin-
ear control algorithm is obtained. Simulation and
experimental results are discussed in Section 4.
Finally, the conclusions and future work are pre-
sented in Section 5.

2 Preliminaries

2.1 Graph Theory

A multi-agent dynamic system can be modelled
as a group of dynamical systems which has an
information flow or information exchange topol-
ogy represented by information graphs. A graph
G is a pair G(N , E) consisting of a set of nodes
N = {ni : ni ∈ N , ∀i = 1, ..., n} together with their
interconnections E on N [24]. Each pair (n1, n2) is
called an edge e ∈ E . An undirected graph is one
where nodes i and j can get information from each
other. In a digraph, the ith node can get infor-
mation from the jth node but not necessarily vice
versa. We can think of the information exchange
between agents as an undirected graph but also as
a digraph which implies a more complicated prob-
lem. One important characterization of graphs is
their connectivity. A graph is said to be connected
if for every pair (n1, n2) of distinct nodes there is a
path from n1 to n2. A connected graph allows the
communication between all agents through the
network. A directed graph is said to be strongly
connected if any two nodes can be joined by a
path. A graph is said to be balanced if its in-
degree (number of communication links arriving
at the node) is equal to its out-degree (number of
communication links leaving the node).

2.2 Saturation Function

Definition 1 Given a positive constant M, a func-
tion σ : R → R is said to be a linear saturation
for M if it is continuous, nondecreasing function
satisfying (Fig. 2)

1. sσ(s) > 0 for all s �= 0;
2. σ(s) = s when | s |≤ M;
3. | σ(s) |≤ M for all s ∈ R

−M 0 M

−M

0

M

σ(
s)

s

Saturation Function

Fig. 2 Saturation function

2.3 Dynamic Model

Since the purpose of this work is to develop a
miniquadrotor formation flight control, let us con-
sider the dynamical model introduced in [13]:

ẍ = −FT sin(θ), (1)

ÿ = FT cos(θ) sin(φ), (2)

z̈ = FT cos(θ) cos(φ) − 1, (3)

φ̈ = τφ, (4)

θ̈ = τθ , (5)

ψ̈ = τψ, (6)

where FT is the thrust force vector in the body sys-
tem, (x, y, z), (φ, θ, ψ) and (τφ, τθ , τψ) represent
the quadrotor position, orientation and torque
control respectively.

Remark that, there are other ways to represent
the orientation of rigid bodies, e.g. quaternion;
however for the purpose of this work, Euler angles
represent a simple and practical solution to be
adopted.

3 Control Design

In this section, a nonlinear controller with a co-
ordination control strategy is developed. First, it
will be proved that, the proposed control scheme
stabilizes the quadrotor in hover flight. It will then
be proved that a coordination control algorithm
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combined with the proposed nonlinear control
stabilizes the quadrotor formation flight.

3.1 Vehicle Stabilization

In order to stabilize the altitude and the heading
of the mini rotorcraft, the following control inputs
are proposed

FT � −a1ż − a2(z − zd) + 1

cos(φ) cos(θ)
, (7)

τψ � −a3ψ̇ − a4(ψ − ψd), (8)

where a1, a2, a3 and a4 are positive constant; zd and
ψd are the desired altitude and heading, respec-
tively. Notice that, the control inputs (7) and (8)
stabilize the altitude and heading in closed-loop
system, such that

lim
t→∞

∥
∥z − zd

∥
∥ → 0,

lim
t→∞

∥
∥ψ − ψd

∥
∥ → 0.

Consequently, introducing Eq. 7 into Eq. 2 the
lateral dynamic model is represented by the fol-
lowing set of equations:

ÿ = tan φ,

φ̈ = τφ.

Similarly, the longitudinal dynamic model is
represented by

ẍ = − tan θ

cos φ
, (9)

θ̈ = τθ . (10)

It is assumed that, pitch and roll angle will be
operated in a neighborhood of the origin, i.e.,
|φ| < π/10. Moreover, the proposed control ap-
proach provides an upper bound for the attitude
subsystem such that, tan φ ≈ φ. Then, the lateral
dynamical system can be reduced to

ÿ = φ, (11)

φ̈ = τφ. (12)

Notice that, the previous system represents four
integrators in cascade. In order to introduce the

consensus algorithm let us consider the following
system

χ(4) = u(χ). (13)

Theorem 1 Consider the system in Eq. 13. Then,
the following control law

u(χ) = −σ4(κ4) − σ3(κ3) − σ2(κ2) − σ1(κ1), (14)

with

κ1(χ) = κ2 − χ − 2χ̇ + χ̈ , (15)

κ2(χ) = κ3 + χ̈ − χ̇ , (16)

κ3(χ) = κ4 + χ̈ , (17)

κ4(χ) = χ(3), (18)

makes the closed loop system stable.

Proof To simplify the analysis, a recursive
methodology is proposed. Let us assume that

ζn = σn(κn) + ζn−1,

ζ1 = σ1(κ1),

and

κ̇n = u = −ζn.

Define the following positive definite function

Vn = 1

2
κ2

n .

Differentiating V with respect to time, the
above yields,

V̇n = κnκ̇n = −κnζn,

= −κn (σn(κn) + ζn−1) .

Using Definition 1 and proposing Mn−1 <

0.5Mn, it can be noted that, if |κn| > 0.5Mn, then,
V̇n < 0. This means that, there exist a time Tn,
such that, |κn| ≤ 0.5Mn for ∀t > Tn, which implies
that |κn(χ) + ζn−1| ≤ 0.5Mn + Mn−1 ≤ Mn.

The base case of the recursion occurs when
the V1 function is analyzed and this case will be
treated a little different. Propose

V1 = 1

2
κ2

1 .
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Differentiating the above with respect to time
and using Eqs. 15–18, it is follows that

V̇1 = κ1κ̇1 = −κ1σ1(κ1).

Notice from the above that, V̇1 < 0, then,
this implies that κ1 and ζ1 → 0. Observe that,
∀ i = 2, ..., n, the following set of equations are
obtained,

V̇2 = −κ2(σ2(κ2) + ζ1), (19)

V̇3 = −κ3(σ3(κ3) + ζ2), (20)

V̇4 = −κ4(σ4(κ4) + ζ3), (21)

with

ζ2 = σ2(κ2) + ζ1, (22)

ζ3 = σ3(κ3) + ζ2, (23)

ζ4 = σ4(κ4) + ζ3. (24)

Note that, from Eq. 19, κ2 → 0, and from Eq. 22
implies that ζ2 → 0. In the same way, from Eq. 20,
κ3 → 0 and this implies from Eq. 23 that ζ3 → 0.
Similarly, from Eq. 21, κ4 → 0, and from Eq. 24,
ζ4 → 0. This implies that, from Eq. 18, χ(3) → 0,
which follows that, from Eq. 17, χ̈ → 0, in addi-
tion, from Eq. 16, χ̇ → 0, and finally from Eq. 15,
χ → 0. 	


Therefore, the lateral control law can be stated
like

τφ = −σ4(φ̇) − σ3(φ̇ + φ) − σ2(φ̇ + 2φ + ẏ)

−σ1(φ̇ + 3φ + 3ẏ + y). (25)

Notice from the previous control analysis that,
φ̇, φ, ẏ and y → 0. Then, from Eqs. 9 and 10, the
system is reduced to four integrators in cascade.
Hence, we can propose

τθ = −σ4(θ̇ ) − σ3(θ̇ + θ) − σ2(θ̇ + 2θ − ẋ)

−σ1(θ̇ + 3θ − 3ẋ − x). (26)

Remark 1 The bounded saturations control used
in mini UAVs are classified as either nested

or separated saturations. The difference between
them is the convergence time, as described in [25],
due the fact that the states converge from the
saturated zone to the linear zone quickly in the
case of separated saturations.

3.2 Consensus Agreement

One of the problems of working with multiple
autonomous vehicles is the collision avoidance.
A coordination strategy to ensure the formation
and collision avoidance at the same time is here
proposed. It should be noticed that a multi-agent
approach ensures the flock centering as well as
the collision avoidance among multi-agents. To
develop this approach, we will start by analyzing
the longitudinal kinematic model for the multi-
quadrotor system which is given by

ẋ = −Lx, (27)

where L is the Laplacian matrix of the information
exchange graph having the following properties:

1. L has a single eigenvalue at 0, λ1(L) = 0 with
right eigenvector wT

1 = [

1 1 · · · 1
]

, i.e. Lw1 =
0.

2. The remaining eigenvalues are all positive, i.e.
λi(L) > 0 and Lwi = λiwi for i = 2, ..., n, and
wi ∈ Rn.

We assume that, the information exchange
graph is balanced. Let us assume also that in the
coordinating controller the gains multiplying the
signals in between agents are all equal to 1. For
the i − th row of L, the entries lij = −1 for i �= j
correspond to the gains multiplying the signals
from other agents coming to agent i. For the i − th
column of L, the entries l ji = −1 for i �= j corre-
spond to the gains multiplying the signals going
out of agent i towards the other agents. Then, the
following property is also necessary

3. w1, defined above, is also the left eigenvector
of L corresponding to the eigenvalue 0, i.e.
wT

1 L = 0.
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It is worth to mention that, dynamics (27) can
also be written as

ẋi = ūi, ∀i = 1, ..., n;
with multiple agent consensus achieved using the
following forced consensus algorithm

ūi = −
∑

j∈Ni

(xi − x j),

where Ni is the set of vehicles transmitting their
information to the vehicle i.

Observe that, when using Eqs. 25 and 26 all the
states goes to the origin. And since, the control
objective is to force the consensus of a set of quad-
rotor vehicles to a desired position and heading,
we propose the following change of variables

x �
∑

j∈Ni

(x j − xi), (28)

y �
∑

j∈Ni

(y j − yi), (29)

z �
∑

j∈Ni

(z j − zi), (30)

ψ �
∑

j∈Ni

(ψ j − ψi), (31)

where xi, yi, zi, ψi, x j, y j, z j and ψ j represent the
3D position and heading of the i-th quad-rotor and
the j-th quad-rotor to be coordinated.

Remark 2 On one hand a multiple mini rotorcraft
consensus can be achieved by means of a single
integrator consensus algorithm, then, Eqs. 28 and
29 provide a simple way to solve the coordination
problem. On the other hand, we may think of
the neighbors position of a mini rotorcraft as the
position reference and thus the stability of every
mini rotorcraft is guaranteed using the nonlinear
control based on separated saturations.

From the previous control analysis, we have
that x → 0, y → 0, z → zd and ψ → ψd, and from
Eqs. 28 and 29, this implies that

lim
t→∞

∥
∥x j − xi

∥
∥ = 0, (32)

lim
t→∞

∥
∥y j − yi

∥
∥ = 0. (33)

From Eqs. 7, 8, 30 and 31, we have that

lim
t→∞

∥
∥z j − zi

∥
∥ = zd, (34)

lim
t→∞

∥
∥ψ j − ψi

∥
∥ = ψd. (35)

Therefore, the control laws τθ , τφ , τψ and FT

for the longitudinal, lateral, heading and altitude
subsystems of the ith-minirotorcraft becomes

τθi =−σ4
(

θ̇i
)−σ3

(

θ̇i + θi
)−σ2

(

θ̇i+2θi− ẋi
)

−σ1

⎛

⎝θ̇i+3θi−3ẋi−
⎛

⎝
∑

j∈Ni

(

x j−xi
)

⎞

⎠

⎞

⎠ , (36)

τφi =−σ4
(

φ̇i
)−σ3

(

φ̇i+φi
) − σ2

(

φ̇i+2φi+ ẏi
)

−σ1

⎛

⎝φ̇i+3φi+3ẏi−
⎛

⎝
∑

j∈Ni

(

y j−yi
)

⎞

⎠

⎞

⎠ , (37)

FT =
−a1ż − a2

(
∑

j∈Ni

(

z j−zi
) − zd

)

+ 1

cos(φ) cos(θ)
, (38)

τψ =−a3ψ̇−a4

⎛

⎝
∑

j∈Ni

(

ψ j−ψi
)−ψd

⎞

⎠ . (39)

Note that Eqs. 36–39 enable us to stabilize the
coordination for a group of n minirotorcraft. We
also notice that in practice due to the fact that a
coordination to a fixed position implies that every
mini rotorcraft will converge to the same position
in the 3D space producing the collision of all mini
rotorcrafts. In order to solve this problem, a sim-
ple leader relative position control is developed in
the next section.

3.3 Formation Control

In this section, we propose a leader-relative po-
sition consensus (UAV formation) for the multi
quadrotor system, i.e. the quadrotor vehicles will
converge to a position with respect to the leader
of the group.

Let us define a relative position with respect to
its neighbors as follows

xi − x j = xd
i , (40)

where xd
i is a positive constant.
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Using a relative position reference for the flight
formation of multiple mini rotorcraft, Eqs. 36–39
are rewritten as

τθi =−σ4
(

θ̇i
)−σ3

(

θ̇i+θi
)−σ2

(

θ̇i+2θi− ẋi
)

−σ1

⎛

⎝θ̇i+3θi−3ẋi−
⎛

⎝
∑

j∈Ni

(

x j−xi
)−xd

i

⎞

⎠

⎞

⎠ ,

(41)

τφi =−σ4
(

φ̇i
)−σ3

(

φ̇i+φi
)−σ2

(

φ̇i+2φi+ ẏi
)

−σ1

⎛

⎝φ̇i+3φi+3ẏi−
⎛

⎝
∑

j∈Ni

(

y j−yi
)−yd

i

⎞

⎠

⎞

⎠ ,

(42)

where xd
i , yd

i , zd
i and ψd

i are the desired geomet-
rical 3D position and heading reference with re-
spect to the leader as shown in previous section.
Thus, Eqs. 38, 39, 41 and 42 are such that, the
geometric flight formation of the multiple mini
rotorcraft system is guaranteed.

In order to exemplify the proposed approach,
let us consider the case of three quadrotors with
the following information flow topologies: cyclic
and chain, see Fig. 3.

Definition 2 A chain topology of information ex-
change or cyclic information flow topology is one
in which agent i and agent (i + 1) mutually ex-
change their informations as shown in Fig. 3a.

Definition 3 A cyclic topology of information ex-
change or cyclic information flow topology is one
in which agent i receives information from agent
((i + 1) mod n) as shown in Fig. 3b.

Fig. 3 Cyclic and chain topologies of information
exchange

Triangular Formation A triangular formation
around a circle of radius r for a team of three
quadrotor vehicles is proposed, see Fig. 1. Assum-
ing a cyclic information flow topology, the relative
position is given by

x1 − x2 = r cos(π/6), (43)

x3 − x1 = −r cos(π/6), (44)

x2 − x3 = r cos(π/2), (45)

y1 − y2 = r sin(π/6), (46)

y3 − y1 = −r sin(π/6), (47)

y2 − y3 = 2r sin(π/6). (48)

Assuming a chain information exchange topol-
ogy, the relative position is given by

x1 − x2 = cos(π/6), (49)

x2 − x3 = cos(π/2), (50)

y1 − y2 = sin(π/6), (51)

y2 − y3 = 2 sin(π/6). (52)

Therefore, we can use either Eqs. 43–48 or
Eqs. 49–52 as a relative position reference xd

i and
yd

i with respect to each other. Note that the de-
sired altitude for the platoon is set to a positive
constant zd > 0 and the desired heading can be set
to a constant ψd ∈ [−π , π ].

Line Formation For a team of three quadro-
tor vehicles assuming chain information exchange
topology, the relative position for a line formation
over the y-axis is given by

xi − x j = 0, (53)

yi − y j = dij, (54)

where dij is a fixed distance between any two mini
rotorcraft. Similarly, the relative position for a line
formation over the x-axis is given by

xi − x j = dij, (55)

yi − y j = 0. (56)

Therefore, we can use either Eqs. 53 and 54 or
Eqs. 55 and 56 as a relative position reference xd

i
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and yd
i with respect to each other. Observe that,

for a line formation along any axis, the relative
position of an agent with respect to its neighbors is
the same for any information exchange topology.

Remark 3 It is important to remark that the geo-
metrical formations can be extended to the case of
n agents or minirotorcrafts by defining the proper
neighbor-relative position references or by using
flocking methods as in [15–17].

3.4 X4 Trajectory Tracking Control

Now, we will consider the case of trajectory track-
ing of a multiple vehicle system. It is assumed that,
the leader of the group is always vehicle 1. Then,
Eq. 27 can be rewritten as

ẋ = −Lx + bu1x, (57)

where bT = [ 1 0 . . . 0 ] and u1x is the input given
to the leader. Define,

xCM = 1

N

N
∑

i=1

xi,

where N is the number of agents in the formation.
Let xd

CM be the desired value for xCM. Thus, u1x

can be stated as

u1x = Nk σ(xd
CM − xCM), (58)

where σ(·) represents the saturation function and
k is a positive gain. Note that, xCM may not be
directly measurable for the leader (vehicle 1).
Notice that, for a cyclic topology of information
exchange, the system is observable from the input
and output of the leader. The state can therefore
be observed from the input and output of vehicle
1. Introducing Eq. 58 into Eq. 57, it is follows that

ẋCM = k σ
(

xd
CM − xCM

)

,

vT
i x = −λi(v

T
i x) + vT

i bu1x, ∀ i = 2, ..., N.

All the modes in the above equation are sta-
ble. When u1x = 0, these modes converge to zero
which means that, (xi − x j) → 0 for i �= j. This
property is obtained by using the coordinating
control algorithm that leads the position dynamics

to Eq. 57. These modes are uncontrollable when
vT

i b = 0. In addition, there is a trade-off in the
choice of gain k in Eq. 58. For smaller values of
k, the speed of convergence of xCM is slower, but
the transient in the errors (xi − x j) for i �= j, will
be smaller, see [26].

Then, the trajectory tracking control for the
leader of the group is given by

τθ1 = −σ4
(

θ̇i
) − σ3

(

θ̇i + θi
) − σ2

(

θ̇i + 2θi − ẋi
)

−σ1

⎛

⎝θ̇i + 3θi − 3ẋi

−
⎛

⎝
∑

j∈Ni

(

x j − xi
) − xd

i − u1x

⎞

⎠

⎞

⎠ , (59)

τφ1 = −σ4
(

φ̇i
) − σ3

(

φ̇i + φi
) − σ2

(

φ̇i + 2φi + ẏi
)

−σ1

⎛

⎝φ̇i + 3φi + 3ẏi

−
⎛

⎝
∑

j∈Ni

(

y j − yi
) − yd

i − u1y

⎞

⎠

⎞

⎠ . (60)

Remark 4 Once the geometric formation has
been achieved, the proposed control Eqs. 59
and 60 guarantees the collision avoidance among
quadrotors.

4 Results

4.1 Simulation results

To illustrate the proposed methodology, this sec-
tion presents the simulation results concerning the
multiple miniature quadrotor formation control.
We consider three miniature quadrotors evolving
in the 3D space. Extensive simulations were run
on a platoon of three rotorcrafts considering the
6-DOF nonlinear dynamical model. Cyclic and
chain topologies of information exchange were
considered.

In order to reproduce a realistic scenario, take-
off initial conditions have been considered in sim-
ulations. Then, the initial euler angles, angular
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Fig. 4 Flight formation performance over a cyclic topology
of information exchange (2D view)

velocities and initial velocities are all zero. The
initial conditions for inertial position are:

[x1, y1, z1] = [3, 2, 0]m, (61)

[x2, y2, z2] = [1, 0.5, 0]m, (62)

[x3, y3, z3] = [−1, −2, 0]m. (63)

The simulation results show that the proposed
nonlinear control strategy can be used to achieve
a geometric formation as well as formation flying
of multiple mini rotorcrafts. Thus, using control
inputs 38–42 on the mini rotorcraft acting as fol-
lowers and Eqs. 38, 39, 59 and 60 on the mini ro-
torcraft acting as leader, on the 6-DOF nonlinear
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Fig. 6 Formation over Y-axis

dynamical model in simulation, we get the results
shown in Fig. 4.

In this figure it is clear that the quadrotors
achieve consensus and formation while converg-
ing to the given reference (or navigation point)
for the center of mass (3, 0)m. After 60 s, the
reference (navigation point) for the center of mass
is changed to the 2D-coordinate (10, 0)m. During
the formation flying process we can observe a
slight misalignment of the formation which we
attribute to a delay on the propagation of the new
reference given only to the leader.

Figures 5 and 6 show formation over time
for the longitudinal and lateral subsystems
respectively.
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Fig. 8 Coordination error on lateral and longitudinal
subsystems

The tracking of the center of mass is shown in
Fig. 7. We note that due to the fact that k is small
(k = 1.5), the speed of convergence of the center
of mass to the reference is slow but the transient
in the errors (xi − x j) and (yi − y j), for i �= j, are
small.

Figure 8 shows the coordination error in the
lateral and longitudinal subsystems. From this
figure it is possible to confirm that the individual
transient in errors (xi − x j) and (yi − y j) are small.

Figures 9, 10, 11 and 12 show the control inputs
u1x, u1y, τx and τy. Note that the saturation levels
used for longitudinal and lateral subsystems are
0.75 and 0.5, respectively.
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4.2 Experimental Results

In this section, some experimental results on co-
ordination are described. We validate some of
the results presented in this section using two
quadrotors provided of a IEEE 802.15.4 com-
munication system. The control algorithm has
been implemented on a microcontroller Rabbit
RCM3400. Roll, pitch and yaw angles and angular
rates are obtained using accelerometers, gyros and
a compass. The experimental prototype design
considers adding GPS functionality in future ex-
periments. Actual GPS technologies provide be-
tween 5 and 10 m accuracy on the 3D position
estimation.
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Fig. 11 τx control. Saturation level 0.75
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Fig. 12 τy control. Saturation level 0.5

As shown in previous sections, the proposed
control algorithm stabilizes the formation flying of
a small platoon of quadrotors. For safety reasons,
the distributed algorithm has been implemented
on the yaw subsystem only due to the fact that
a failure either on the onboard control or com-
munication systems will not produce a crashing of
the experimental platforms. We remark that any
failure on roll and pitch subsystems are critical and
the immediate consequence is an experimental
platform crash.

Figure 13 shows the performance of the coordi-
nation control over the yaw subsystem using con-
trol law Eq. 39. During the experiment, the refer-
ence for the yaw angle has been provided to the
quadrotor leader using a R/C radio. The experi-
mental results in Fig. 13 show that the quadrotor-
follower was capable of tracking the heading of
the leader. These experiments were run for about
100 s.
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Fig. 13 Yaw coordination using control law Eq. 39

5 Conclusions and Future Work

A nonlinear dynamical model of the mini rotor-
craft has been presented using the Newton-Euler
formulation. Nonlinear control bounded inputs
and a single integrator consensus control for flight
formation of mini rotorcraft was developed. The
x-position and the y-position of each mini rotor-
craft were considered as dynamical agents with
full information access. Trajectory tracking for the
group of mini rotorcraft was achieved by using
the virtual center of mass of the agents formation.
Extensive simulations were run in order to show
the performance of the developed control scheme.
Heading coordination control approach has been
implemented on two quadrotors using a IEEE
802.15.4 wireless dedicated network. Future work
in this area includes extending the experimental
tests to the case of formation keeping and for-
mation flying using GPS modules on real-time
embedded control systems.
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