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Abstract The paper presents an Unmanned Air-
craft System (UAS), consisting of several aerial
vehicles and a central station, for forest fire moni-
toring. Fire monitoring is defined as the computa-
tion in real-time of the evolution of the fire front
shape and potentially other parameters related
to the fire propagation, and is very important for
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forest fire fighting. The paper shows how an
UAS can automatically obtain this information
by means of on-board infrared or visual cam-
eras. Moreover, it is shown how multiple aerial
vehicles can collaborate in this application, al-
lowing to cover bigger areas or to obtain com-
plementary views of a fire. The paper presents
results obtained in experiments considering actual
controlled forest fires in quasi-operational con-
ditions, involving a fleet of three vehicles, two
autonomous helicopters and one blimp.

Keywords Forest fire fighting · UAS ·
Cooperative perception

1 Introduction

Hundreds of thousands of hectares are devastated
by wildfires each year. Forest fires lead to the
destruction of forest and the wildlife that inhab-
its them, and have a disastrous social, economic
and environmental impact. Forest fire fighting in-
volves extensive human resources, and is a very
dangerous activity, which originates many casual-
ties every year. In many cases, the lack of infor-
mation about the dynamic evolution of fire plays
an important role in these accidents. Figure 1
shows the state of a experimental controlled fire at
several time instants. Among the most important
parameters for fire fighting management are: the
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Fig. 1 Different stages in
the evolution of a fire

shape and position of the fire front, its rate of
spread (how this front evolves with time) and the
maximum height of the flames [37]. If available,
this information, integrated within a Geographical
Information System (GIS), can be used by the
fire brigades for fire fighting planning, for in-
stance by predicting the potential evolution of the
fire, determining the optimal location of fighting
means, etc. Fire monitoring can be defined as the
estimation in real-time of the evolution of these
parameters.

Forest-fire fighting is commonly based on esti-
mations made by fire fighting experts from visual
observations. These estimations are subject to a
great number of errors due to smoke occluding
the flames, human inaccuracy in the visual esti-
mation and errors in the localization of the fire.
Recently, new technologies have been applied to
fire fighting. However, many of these technologies
still have different practical problems for their use
in operational conditions, such as low reliability,
high costs and others.

Unmanned Aircraft Systems (UAS) can play
an important role for forest fire response. They
have been already successfully demonstrated for
fire detection, localization and observation (as
in [2, 25, 26, 28]). In this paper, an UAS for
automatic real-time forest fire monitoring and

measurement is presented. The extension of a
forest fire can be very large, so the system can
integrate information from several aerial vehicles,
that can collaborate to cover the fire from com-
plementary points of view. The system is able to
provide, in real-time, the current position of the
fire front in geographical coordinates.

The paper begins with a description of some
current automatic approaches for forest fire
fighting that can be found in the literature. Then,
it presents the UAS for fire monitoring, the
vehicles and modules involved; then, it focuses on
the data fusion and image processing techniques
employed. Results from experiments involving
controlled forest fires are described at the end of
the paper, before the conclusions.

1.1 Related Work

Traditionally, information extraction for fire
fighting support has been done by experts, di-
rectly on the terrain or analyzing data provided by
towers, satellites or other means. However, some
systems have been developed in order to auto-
matically extract the relevant information from
several sources of information.

Most automatic systems for fire detection are
based on cameras placed on ground as, for ex-



J Intell Robot Syst (2012) 65:533–548 535

ample, the BOSQUE system, which relies on in-
frared cameras and automatic image processing
techniques for fire detection, including false alarm
rejection [3]. Colour ground cameras are also used
for autonomous detection of forest fires [7, 9].
Some systems are based on smoke plume detec-
tion algorithms [8, 12]. Other sensors have been
also employed for automatic forest fire detection,
like LIDAR [36], due to its interesting charac-
teristics for smoke plume detection in situations
where visual cameras cannot operate (as, for in-
stance, during night). These systems have some
drawbacks, such as the coverage and the lack of
reliability of the automatic detection in changing
environmental conditions.

The use of satellites for fire detection has
been also considered [18, 35]. Besides, manned
airborne-based systems have been also used,
like in the Airborne Wildfire Intelligence Sys-
tem (AWIS), in Canada [4]. The use of Un-
manned Aerial Vehicles (UAVs) for automatic
forest fire detection has been considered by the
authors [28]. Also, the design of a infrared vision
system for UAS in fire missions is considered
in [19].

Fire monitoring is usually performed by ex-
perts, that estimate, visually or from images gath-
ered by cameras, the rate of spread and height of
the flames. More recently, airborne systems are
used in order to have a broad overview of the
fire evolution, but still the monitoring activities
are carried out by people. Satellite-based systems
have been also proposed for forest fire monitoring
[6, 13, 35]. The temporal and spatial resolutions
of these systems are still very low for the re-
quirements of forest-fire fighting in many cases.
There are some fire analysis techniques based on
computer vision for fires carried out in laborato-
ries, as [22, 32]. However, the application of the
same techniques in outdoor environments close
to real forest fire conditions is not considered in
those papers.

This paper presents the application of aerial
robots for the fire monitoring. As mentioned,
manned helicopters or airplanes are often used,
but they are expensive and there is a high risk
for humans involved in the operation. The use of
UAVs can help to reduce the risk associated to
manned aircrafts close to fire.

The use of UAVs in forest-fire fighting scenar-
ios has been analyzed in the FiRE project in the
United States. The ALTUS UAV, an evolution
of the Predator UAV, has been demonstrated in
fire experiments in the FiRE project [1]. The data
received at the ground station are geo-referenced
imagery about the fire, sent through satellite up-
link/downlink channels.

While the FiRE project considers a single and
complex UAV with complex sensors on these
tasks, the COMETS European project addressed
the use of a team of simpler UAVs that cooperate
in fire detection and monitoring tasks [31]. Very
few work has been identified considering multiple
UAVs in the task of fire perception. One of them
is the work presented in [5], where the feasibility
of the application of a team of small (low-altitude,
short endurance) aerial systems to cooperatively
monitor and track the propagation of large forest
fires is explored. The paper deals with path plan-
ning activities, and provides simulations using a six
degree of freedom dynamic model for the vehicles
and a numerical propagation model for the forest
fire. However, results in actual fire fighting activ-
ities of these methods are not presented. Also, in
[42], the authors present a method for orthorec-
tification of images gathered from an UAV, for
their application in fire monitoring activities. They
discuss specific problems that have to be solved
in the case of forest areas, and present very pre-
liminary results on aerial images gathered from
a conventional aircraft. However, no actual fire
monitoring results are presented.

2 An Unmanned Aircraft System
for Fire Monitoring

The UAS described in this paper is composed of a
team of aerial vehicles and a central station. This
section summarizes the requirements and princi-
pal software modules at the level of the whole
system (see Fig. 2).

2.1 Vehicles and Sensors

The system developed is able to coordinate het-
erogeneous unmanned vehicles for fire monitor-
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Fig. 2 The system
consists of several
vehicles and two main
components: the
decisional system and
the perception system

ing. The only requirements on these UAVs are the
following:

Operational Autonomy: the UAVs should be
able to fly waypoints and to hover (or pseudo-
hover in the case of planes) at given places
autonomously.

Localization: they should be able to localize
themselves on the same reference frame.

Perception Payload: they should carry infra-
red and/or visual cameras for environment
perception.

The system has been tested with a fleet of two
helicopters and one blimp. In this case, the vehi-
cles are equipped with differential GPS receivers
and Inertial Measurement Units (IMUs) which
allow them to localize themselves in a common
world reference frame.

Besides, for environment perception purposes
the vehicles carry infrared and visual cameras
and, some of them, pan and tilt units. Figure 3
shows some examples. As it can be seen, one of
the UAVs carry a low-cost non-thermal OEM in-
frared micro-camera in the far infrared band (7–14
microns), besides a visual camera. All the cameras
in the system are calibrated before the flights by
using artificial patterns. All the images gathered
are tagged locally with the composed pose and
orientation of the vehicle and the pan and tilt unit,
timestamps and calibration information.

Moreover, the UAVs carry on board commu-
nication devices to be able to receive commands
from the ground station, and to send information
back to it.

2.2 Decision-Making System

The system presented in this paper integrates ve-
hicles that are able to autonomously navigate be-

Fig. 3 The vehicles carry mainly IMUs and GPS for navigation. Also, visual and infrared cameras on pan and tilt units for
environment perception have been used (see right photograph)
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tween waypoints. The fire monitoring missions are
high-level tasks that require a decisional system
for the coordination and control of the fleet of aer-
ial autonomous vehicles. This decisional system
implements four main different mechanisms:

Task Allocation arises in a multi-Unmanned
Aerial System, where each of the UAS is able to
perform tasks in response to the tasks requests.
The issue is to decide which system should be en-
dowed with each given task to be performed (for
instance, which UAS should go to the different
viewpoints to observe the fire). This requires the
capability to assess the interest of assigning a
certain system to a given task. This operation is
especially difficult when the decision has to be
done taking into account the current individual
plans of the UAS as well as the tasks left to be
assigned [21, 39, 40].

Task Planning It aims at building a sequence of
basic tasks to perform, in order to achieve a given
high level mission, for instance a fire monitoring
mission.

Coordination is a process that arises within a
system if given resources (either internal or exter-
nal) are simultaneously required by several com-
ponents of this system. In the case of a multi-
UAV system, a classic coordination issue to deal
with is the sharing of space between the different
vehicles, to ensure that each vehicle will be able to
perform its plan safely and coherently regarding
the plans of the other systems. For instance, as
a fire detection mission involves complete cov-
erage of a given area, the region should be di-
vided among the available systems accordingly

Algorithm 1 { fk,t, qk,t} ← Filter({ fk,t−1, qk,t−1}, zt)
1: for all k do
2: f̄k,t = (1 − qk,t−1)

( fk,t−1 + 1
|R(k)|

∑
j∈R(k) ω j f j,t−1)

3: q̄k,t = qk,t−1 + (1 − qk,t−1)(β fk,t−1)

4: fk,t = f̄k,t p(zt |Fk,t=1)

f̄k,t p(zt|Fk,t=1)+(1− f̄k,t)p(zt|Fk,t=0)

5: qk,t = q̄k,t p(zt |Qk,t=1)

q̄k,t p(zt |Qk,t=1)+(1−q̄k,t)p(zt |Qk,t=0)

6: end for

with their relative capabilities (such as maximum
speed, autonomy, field of view of the cameras,
etc.).

Another example can be found in the context of
fire monitoring: several synchronized perceptions
of the event are required with convenient loca-
tions and orientations of the involved cameras.

Supervision deals with the management (con-
trol) of the tasks execution, in several ways:

– A first concern is simply to keep the system
aware of the tasks processing evolution during
their executions ;

– A second concern is to detect the possible
tasks failures and (if possible) to react to such
events in a way that will prevent the system
to fail.

The decisional system employed in our UAS is
described in detail in [11, 20], and is able to cope
with the previous issues. In Section 6 an example
of the capabilities of this system will be shown.

3 Perception System Description

The system considers all the information gathered
by the different UAVs in our system to estimate
the evolution of the fire applying data fusion tech-
niques. The general picture is given by Fig. 4. Each
vehicle locally processes its images and provide
features related to the fire front evolution. All
this information is received at the central station,
in which the estimation takes place, taking into
account all the data from the fleet.

The first issue is to devise a convenient repre-
sentation of the information related to the fire.
The fire is a dynamic object that propagates,
changing in size and shape. The representation
chosen here for autonomous perception consists
of an evidence grid. The area is divided into a
rectangular grid, in which the state of each cell
k is defined by two binary values: Fk,t ∈ {0, 1},
indicating if there is fire in the cell, and Qk,t ∈
{0, 1}, indicating if the fuel in the cell is completely
exhausted.

The system cannot be certain about these val-
ues, and therefore, two probability values { fk, qk}
are stored for each cell. These two values corre-
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Fig. 4 The system estimates two probability grids (fire
presence and fuel at each cell). The state of the grids
is estimated incorporating data obtained from the fleet
of UAVs. The prediction step incorporates the increase
in uncertainty due to the motion of the fire

spond to the probabilities fk = p(Fk,t = 1) (there
is fire at a given cell ), and qk = p(Qk,t = 1) (the
fuel in that cell is completely exhausted). Each cell
also has an associated 3-D position pk, given by a
digital elevation map that is previously loaded in
the system (and that can be the result of a previous
mapping mission [16]). The system should obtain
online an estimation of these values for all the
cells of the grid by using all the data gathered by
the system up to time t, zt.

The integration of new information provided
by the UAS is done by using a discrete Bayes
Filter for each cell of the grid, as summarized in
Algorithm 1. The steps involved in the estimation
are summarized in Fig. 4. Next sections will de-
scribe the different blocks depicted in the figure.

3.1 Prediction Model

As shown in Fig. 4, the system allows consider-
ing a prediction step in the estimation, so that

fire propagation models could be included. There
are many aspects that influence the propagation
of fire, like the slope of the terrain, the mois-
ture content of the vegetation, the meteorologi-
cal conditions—wind, air humidity, etc.—[37]. It
is not the objective of this paper to deal with
these aspects. The prediction model depicted here
is very simple, and considers a temporal rela-
tion and a spatial relation among cells. Its main
objective is, in one hand, to incorporate a kind
of memory in the estimation process, so that
the fire does not propagate “backwards” through
zones previously visited (this is the role of Q).
Also, a spatial prediction is performed in order
to smooth the estimated evolution of the fire
fronts.

Although there is a separated filter for each
variable, both are not independent, and there-
fore the dependence should be marginalized out
during the prediction phase. The temporal tran-
sition probability for each cell can be decom-
posed as:

p(Fk,t|Fk,t−1)

=
∑

Qk,t−1

p(Fk,t|Fk,t−1, Qk,t−1)p(Qk,t−1) (1)

p(Qk,t|Qk,t−1)

=
∑

Fk,t−1

p(Qk,t|Fk,t−1, Qk,t−1)p(Fk,t−1) (2)

The different terms are characterized by one
main parameter, β, which is the probability that
a cell is completely exhausted if there was fire in
the previous time instant:

p(Qk,t = 1|Fk,t−1, Qk,t−1)

=

⎧
⎪⎨

⎪⎩

1 if Qk,t−1 = 1

0 if Qk,t−1 = 0 and Fk,t−1 = 0

β if Qk,t−1 = 0 and Fk,t−1 = 1

(3)
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On the other hand, the temporal evolution of
the fire probability is given by:

p(Fk,t = 1|Fk,t−1, Qk,t−1)

=

⎧
⎪⎨

⎪⎩

0 if Qk,t−1 = 1, ∀Fk,t−1

0 if Fk,t−1 = 0 ∀Qk,t−1

1 if Qk,t−1 = 0 and Fk,t−1 = 1

(4)

That is, as long as there is fuel, a cell keeps burning
if there was fire the previous time instant.

The spatial relation should encode the effect
of fire propagation. In the simple model consid-
ered here, the fire can propagate from one cell
to its neighbors and, therefore, the state of its
neighbor cells R(k) affects the current state of
each cell k. This relation is modeled mainly by
parameter ω j (whose value can depend on wind
information if available). Equation 5 defines the
model.

p(Fk,t = 1|Qk,t−1, F j,t−1)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if j �∈ R(k)

ω j if F j,t−1 = 1 and

j ∈ R(k)1 and Qk,t−1 = 0

0 if F j,t−1 = 0 or Qk,t−1 = 1

(5)

Of course, fire propagation follows more com-
plex laws (it can be transported by wind, if there
are trees then it can spread as crown fires, etc.).
This model is similar to the EMBYR model [14]
employed in [5]. Again, it should be stressed that
the main motivation of the motion model is to
take into account in the estimation process the un-
certainties in the fire front position due to the mo-
tion of the fire. It is not the objective to model this
propagation. Nevertheless, more complex models
of fire propagation could be included within the
system.

Combining the previous equations lead to the
prediction lines 2 and 3 of Algorithm 1:

f̄k,t = (1 − qk,t−1)( fk,t−1
︸ ︷︷ ︸

Temporal

+ 1

|R(k)|
∑

j∈R(k)

ω j f j,t−1

︸ ︷︷ ︸
Spatial

)

(6)

q̄k,t = qk,t−1 + (1 − qk,t−1)(β fk,t−1) (7)

where |R(k)| is the number of neighbor cells con-
sidered. That is, the fire probability at a given cell
depends on the previous probability and that of
the neighbor cells (if the cell is not exhausted).
The value qk is increased if there is fire in the cell.

3.2 Updating Equations

Whenever new data are received from any ve-
hicle of the fleet, the predicted probabilities are
updated according to the Bayes rule. The impor-
tant issue is to determine the likelihood functions
p(zt|Fk,t) and p(zt|Qk,t), which indicate the prob-
ability of gathering the measurements obtained
given the current status of the cells. The measure-
ments and likelihood functions will be described
in the following sections of the paper.

3.3 Prior Belief State and Fire Front Shape
Computation

The grid is usually initiated after a fire detection
mission [28], setting the Bernouilli probabilities
{qk} to zero for all cells of the grid, and the fk

value to one for the cells corresponding to the ini-
tial estimated position of the fire. It is straightfor-
ward to include additional prior knowledge into
the grid for estimation. For instance, knowledge
about firewalls can be included into the qk values
of the grid, setting these values to one for places
that cannot be crossed by the fire.

On the other hand, it is important to obtain the
estimated position of the fire front in geolocated
coordinates given the current estimated probabil-
ities from the grid (for instance, to communicate
it to the fire brigades). The fire front should be
on the boundaries of the burnt zone. Also, the
position of the fire front {pt(s)} should be coherent
with cells that maximize the posterior probability
of fire at a given moment. Therefore, the proce-
dure determines the boundaries of the burnt zone
as the contour of regions of cells with probabilities
qk,t over a given threshold (see Fig. 5). From
these positions, the final fire front is obtained by
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Fig. 5 The fire front shape can be obtained from the
boundaries of the burnt zone. The figure shows the evo-
lution of the burnt zone during one experiment

considering connected cells on the boundary with
high fire probability fk,t.

4 Fire Information Extraction from On-Board
Cameras

4.1 Fire Contours Extraction

The information about the fire front position is
encoded in the images gathered by the UAS as
the contour of fire regions on the image plane.
Each vehicle in the team processes its local images
to obtain this information, which is employed to
update the probabilities of the grid cells, as in-
dicated above. The main step for obtaining the
fire contours is a fire segmentation algorithm,
that is applied over the images gathered by the
cameras.

The infrared camera carried by the vehicles is
a low-cost OEM non-thermal camera. It does not
provide temperature measures but estimations
of the radiation intensity throughout the scene.
Thresholding is then proposed for fire segmenta-
tion. For robust fire segmentation, the threshold-
ing technique should consider the particularities
of the application. The solution adopted was to
use the training-based thresholding method de-
scribed in [24]. The training stage requires a set
of training images and their corresponding desired
threshold values given by an experienced user.
The training stage identifies the conditions under
which pixels should be considered to belong to
the object of interest. These particularities are
introduced in a system via ANFIS training method
[24]. The technique used for colour images is

also a training-based algorithm, similar to [33]. In
the training stage, a look-up table for the RGB
color space is built. The look-up table contains a
Boolean value indicating whether the color repre-
sents fire or background, and is used in the appli-
cation stage to classify the pixels. Both algorithms
are thoroughly described in [23].

After this step, the contour of the segmented
regions is obtained. However, this contour is fur-
ther characterized in order to distinguish the pix-
els of the contour related to the fire front and
the pixels related to the top of the flames, there-
fore obtaining the height of the flames in pixel
coordinates. The dynamic properties of the fire
base and the flames are used for this characteri-
zation. The position of the fire-base pixels on the
image plane generally change more slowly than
the position of the flame pixels (as the flames
flicker). The application of a temporal low-pass
filter over a sequence of consecutive segmented
images is therefore used to filter out the flame
pixels.

As a result of the feature extraction algorithms,
the measurements z j,t provided by each camera j
on board the different UAVs are the Mj,t pixels
corresponding to the fire front z j,t = {z j,t(s), s =
1, . . . , Mj,t}.

z j,t(s) =
(

u j,t(s)
v j,t(s)

)

= m j,t(s), s = 1, . . . , Mj,t (8)

4.2 Eliminating Image Vibrations

Considering an UAS with hovering capabilities,
unavoidable control errors, turbulence and vi-
brations produce changes in the camera position
which leads to image motion. This motion can
affect to the prevoiusly described algorithms and
therefore, it is necessary to cancel it. Electro-
mechanic systems can be used to cancel vibrations,
but these systems are usually heavy, expensive and
have a residual vibration.

Image processing procedures can be used for
software-based image motion estimation and can-
celation. This can be achieved if the apparent
motion between consecutive images is computed.
In this system, a sparse image motion field is
computed by a feature matching algorithm. Then,
this sparse motion field is used to estimate a model
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of the motion of the complete image. Finally, the
model is applied to all pixels to warp the current
image to a common frame, therefore eliminating
the background motion between the current im-
age and the previous one.

4.2.1 Description of the Feature Matching
Algorithm

The sparse motion field is computed by obtaining
matches between persistent features on the im-
age plane. Here, the method presented by Ferruz
and Ollero [10] is used. The features selected are
small image patches around interest points (Fig. 6,
top). These features are then tracked along the
sequence of images, using as a similarity measure
such as the Sum of Squared Differences or Nor-
malized Correlation over the pixels values of the
image patch. Moreover, clusters of points are also
used as persistent features to be tracked (Fig. 6,
bottom). In this way, the features present invari-
ant properties under certain transformations, im-
proving the robustness of the matching between
them [27].

As a result of the matching procedure, for
any given pair of images, a set of matches
{m[k]

t−1, m[k]
t }, k = 1, . . . , N is obtained.

4.2.2 Image Motion Model

Assuming that an UAS with hovering capabilities
is used, the camera vibrations can be assimilated
as small pure rotations. Considering a coordinate
frame centered on the camera position at time
t − 1, following the pin-hole model [15], the ho-
mogeneous pixel coordinates mt−1 corresponding
to a 3D point p are:

ηmt−1 = A
(
I 0

)
(

p
1

)

= Ap (9)

with A the camera calibration matrix, I the iden-
tity and η a scale factor. If the camera only rotates,
at time t the same point is imaged at pixel mt, with
coordinates:

η′mt = A
(
Rt 0

)
(

p
1

)

= ARtp (10)

with Rt the corresponding rotation matrix. The
calibration matrix A is invertible, so from Eq. 9
p can be expressed as p = ηA−1mt−1. Therefore,

η′′mt = ARtA−1mt−1 = H∞mt−1 (11)

The 3 × 3 matrix H∞ = ARtA−1 is the inf inity
homography [15]. This homography is used as a

Fig. 6 Left: interest
points extracted and
tracked in two
consecutive images to
obtain a sparse image
motion field. Right:
clusters of points are
used as persistent
features, which allows
a certain degree of
invariance under
rotations
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model for the image motion under vibration. As
the homography is defined up to an scale factor,
it has only 8 degrees of freedom. The feature
matching algorithm provide a set matches that will
be used to estimate the most likely homography
between two consecutive images.

4.2.3 Homography Computation

From the sparse motion field given by the set of
matches obtained, the objective is to infer the ho-
mographic motion model for the full image. From
Eq. 11, each match {m[k]

t−1, m[k]
t } adds a restriction

on the homography:

η[k]m[k]
t = H∞m[k]

t−1 (12)

Since H has only eight degrees of freedom, four
matches are needed to determine H∞ linearly.
In practice, more than four correspondences are
available, and the resulting overdetermination is
used to improve accuracy. A linear algorithm for
the computation is provided in [15].

There are additional issues that should be con-
sidered when obtaining the model. The model
derived in Eq. 11 is only valid if the points p[k]
corresponding to the matches {m[k]

t−1, m[k]
t } do not

move. That is, it is only valid for an static scene.
However, in the case of aerial images of a forest
fire, smoke and even the fire itself are moving
objects that can occupy wide areas of the image
(see Fig. 7). In order to compute an accurate
model, these objects with independent motion in
the scene should be detected and not considered
when computing H∞. These objects are treated
as outliers, detected and eliminated using Least
Median of Squares (LMedS) [41]. A M-Estimator
is then used to obtain the final homography [30].

4.2.4 Image Warping

The homography computed is used as a model
for the full image motion. This model allows to
relate the position of any pixel mt of image It

to its corresponding position m̂t−1 = H−1∞ mt in
the previous image It−1. Combining consecutive
transformations is possible to warp all the images
to a common frame, compensating the camera

Fig. 7 Typical aerial close-range image of a fire and fea-
tures selected. It can be seen how some interest points
correspond to moving objects (smoke)

motion. A method based on pixel similarity is
employed. The method tries to minimize the RGB
differences with respect to the previous image.
This helps to increase the alignment between se-
quenced images, even correcting little errors in the
homography computation.1

5 Fire Front Position Updating

The fire fronts obtained with the cameras of the
different UAVs are received at the ground station
and used to update the probabilities of each cell
of the grid. This requires the determination of
the measurement models or likelihood functions
p(zt|Fk,t), p(zt|Qk,t).

As infrared images are not affected by smoke
(which is transparent at these wavelengths), it
is possible to employ negative information from
the contours (that is, if nothing is obtained on
the image plane it is very likely that there is no
fire), which is not the case of visual images (see
Fig. 8). The capabilities of the sensors for fire
front contour detection are modeled by the values

1See the video at http://www.upo.es/isa/lmercab/video/
stabiliz.mpg for a complete example on image stabilization
and fire segmentation.

http://www.upo.es/isa/lmercab/video/stabiliz.mpg
http://www.upo.es/isa/lmercab/video/stabiliz.mpg
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Fig. 8 A visual (left) and
an infrared (right) images
of the same fire at
approximately the same
time instant. Infrared
images are not affected
by smoke, and therefore
they also provide
negative information

PD (probability of detection, that is, the chance
that the algorithm segment fire in the image when
there is fire) and PF (probability of false positive
detection).

Furthermore, the uncertainties due to errors on
the vehicle and camera pose must be accounted
for as well. Each cell k has an associated 3D
position pk that corresponds to pixel mkj,t on the
image plane of camera of UAS j, and that can
be obtained for a calibrated and localized camera
using the pin-hole model:

α

(
mkj,t

1

)

= A j
(
R j,t −R j,tt j,t

)
(

pk

1

)

(13)

The estimated position on the image plane of
point pk will be affected by the errors on the ro-
tation R j,t and translation t j,t of the cameras, com-
puted by using the navigation sensors of the UAS.
These errors on the estimated position mkj,t are
approximated by a Gaussian distribution of zero
mean and a certain covariance matrix �kj,t. As the
measurement function is non-linear, these errors
are estimated by using the Unscented Transfor-
mation [17] from the errors on R j,t and t j,t (see
Fig. 9). These errors define a region �(mkj) on the
image plane given by the pixels within a certain
Mahalanobis distance:

�(mkj) = m j | [m j − mkj,t]T�−1
kj,t[m j − mkj,t] < th

(14)

If the estimated fire front contour on the image
plane m j,t(s) passes within this region, the proba-

bilities for cell k are updated using lines 4 and 5 of
Algorithm 1 and the values:

p(z j,t|Fk = 1)

=
{

PD if m j,t(s) ∈ �(mkj) for some s

PF if m j,t(s) �∈ �(mkj) for any s
(15)

and

p(z j,t|Fk = 0)

=
{

1 − PD if m j,t(s) ∈ �(mkj) for some s

1 − PF if m j,t(s) �∈ �(mkj) for any s
(16)

In the same way, the probability qk,t is de-
creased for the cells corresponding to the fire
front.

Fig. 9 The errors on the pose of the vehicles makes that
each cell corresponds to an uncertainty region on the image
plane
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Fig. 10 Left: the three
UAVs that participated in
the experiments in a
coordinated flight. Right:
during the demonstration,
small controlled fires
were performed

Infrared images provide information about
places where there is no fire, as they are not
occluded by smoke. For the case of visual images,
however, as the fire front can be occluded by the
flames, no negative information is used. This is
done by setting p(z j,t|Fk) = 0.5 in the previous
equations, wherever a pixel is not classified as fire
(for both cases, Fk = 1 and Fk = 0).

6 Description of the Experiments
and Experimental Results

6.1 Fire Monitoring Results using an UAS
with Multiple Vehicles

The system described in the paper was tested with
a team of small-size aerial vehicles. These fire
monitoring activities were included in a more gen-
eral fire fighting mission, designed to demonstrate

the feasibility of an UAS in this kind of scenario.
In the mission, three aerial vehicles participated:
the autonomous helicopter Marvin [34], Heliv [29]
and the blimp Karma [16] (see Fig. 10, left).

In the general mission, summarized in [28],
firstly one of the UAS (Marvin) is sent over a zone
for surveillance. Marvin patrols the zone using a
simple fire detector, looking for fire spots. After
Marvin detects a potential fire (see Fig. 10, right),
Heliv is sent to the same place for confirmation
purposes (by using sensors of different modalities,
see [28]) and to localize precisely the fire. After
the fire is confirmed, a fire monitoring mission is
generated for Marvin, Heliv and Karma, involving
synchronization tasks to take and process pictures
of the event from the correct viewpoints at the
same time. The decisional layers of the vehicles
[11] manage the task planning, allocation and the
synchronization signals between UAVs in a de-
centralized manner, and also the generation of

Fig. 11 Top: left,
image from Heliv,
after stabilization and
feature extraction;
middle, image from
Marvin after stabilization
and feature extraction;
right: image from Karma.
Bottom: details of the
extracted contours.
Green: fire front.
Red: top of the flames
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Fig. 12 An aerial view of some of the plots employed
during the fire experiments at Gestosa, Portugal. The plot
side in this case is around 75 m

the adequate viewpoints for monitoring the fire,
covering the detected alarm from several direc-
tions (the vehicles are situated surrounding the
fire with a relative orientation of 120 degrees).
When the synchronization is correctly achieved,
Marvin and Heliv begin to obtain pictures of the
fire simultaneously and for a given time. Also,
Karma is commanded to take images of all the
area from a high vantage point.

The pictures from the vehicles are processed
by a using the techniques described in this paper.
Each UAV, locally, stabilizes the images captured
by its cameras (Section 4.2) and processes the
results obtaining an estimation of the position
of the fire front in pixel coordinates. The data
from all the systems are sent to the central sta-
tion, where all the information is fused for the
estimation of the evolution of the fire. Figure 11
shows the images of the same fire from the three
vehicles, and how the fire contours are correctly
extracted.

After the time for taking pictures has expired,
Marvin and Heliv are commanded to return to
home and to land. At the same time, a mapping
mission is generated for Karma. Afterwards, the
mission is terminated.

The full mission, involving fire detection, lo-
calization and monitoring is performed with not
intervention of the operator, except for the initial

plan of the mission. The experiment demonstrates
the cooperation in an UAS of 3 vehicles for fire
fighting, involving fire detection and monitoring.2

6.2 Gestosa Results

In the previous experiments, the controlled fires
performed are of small scale, and it is difficult
to appreciate an evolution on the fire front, al-
though Fig. 11 shows how the shape of the fire
is correctly estimated. The techniques described
above have been also validated in many controlled
medium-scale forest fire experiments carried out
in Serra da Gestosa (Portugal). In these field ex-
periments, square plots of up to 150 by 100 m
were burned under controlled safety conditions.
Figure 12 shows an aerial image of the Gestosa
experimental site. The rectangular plots burned in
the experiments can be observed in the images.
The experiments mobilized significant resources
including 80 firemen and 5 fire-fighters trucks. A
more detailed description of this kind of experi-
ments can be found in [38].

Figures 13 and 14 shows results of one of these
experiments. In it, a plot of approximately 10,000
square meters was burnt. In this case, a helicopter
is commanded to gather aerial images.

Figure 13 shows several frames gathered from
the helicopter, after the application of the image
stabilization and feature extraction algorithms.
It can be seen how the stabilization algorithm
effectively removes the motion induced by the
helicopter. It can be also seen how the fire front
shape is adequately extracted from the images.3

The fire probability grid evolves as these fea-
tures are gradually considered. Figure 14 shows
the estimation of the fire front shape each 20 s,
compared to a manual estimation based also on
the images (in order to validate the automatic
algorithms).

2See the video at http://www.upo.es/isa/lmercab/video/
demo.mpg for a summary of the complete scenario.
3See the video at http://www.upo.es/isa/lmercab/video/
monit.mpg for a video of the complete sequence.

http://www.upo.es/isa/lmercab/video/demo.mpg
http://www.upo.es/isa/lmercab/video/demo.mpg
http://www.upo.es/isa/lmercab/video/monit.mpg
http://www.upo.es/isa/lmercab/video/monit.mpg
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Fig. 13 Frames 3, 44, 77, 144 and 219 of the aerial sequence gathered during the fire experiment 520, after automatic
stabilization. The extracted fire front contour is also shown
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Fig. 14 Evolution of the fire front (in georeferenced coor-
dinates) for plot 520 estimated from the images gathered
by the helicopter (solid) and compared with the front
obtained with an static camera (dashed) the time stamps
of the fire fronts are also shown

These experiments show the applicability of the
techniques to fires of an scale close to operational
conditions.

7 Conclusions

This paper has presented a perception system for
forest fire monitoring using an UAS. The system
integrates the information from the fleet of sev-
eral vehicles to obtain an estimation in real time
of the evolution of the forest fire. The system
has been tested in actual experiments involving
controlled fires. In these experiments, a fleet of
three aerial systems is considered.

One of the main conclusions of the paper is
that it is feasible to develop UAS for forest
fire perception. The experiments show that air-
craft systems can be very helpful for fire fighting

activities like fire monitoring, as they can cover
the gap between the spatial scales given by sys-
tems based on satellites and those based on cam-
eras on towers. The UAS can adapt its deploy-
ment to avoid the inconveniences of other ap-
proaches, like the presence of smoke, or to cover
the more convenient places.

Some issues should be discussed. One of them
is the scalability of the proposed approaches. The
experiments shown in the previous sections can
be considered close to the operational conditions,
although on a lower scale. In order to apply the
techniques in real situations, vehicles with higher
endurance are required. Nowadays there are ve-
hicles, mainly developed for defense and security
applications, that have the required endurance,
and therefore the extension of the techniques
for their use by environment management agen-
cies seems affordable. For instance, in the FiRE
project [1] a Predator is used as a platform for
forest fire surveillance. Some work is also required
to develop robust controllers under strong wind
gusts, which are usually present in the most dan-
gerous forest fires.

Another potential question is if the use of sev-
eral UAVs offers advantages against the use of
one single complex UAS. For the case of fire
monitoring, employing several systems allows ob-
taining different and complementary views, and in
many cases the fire is too big to be covered by
just one vehicle. Moreover, small UAVs could be
employed by fire brigades to, at least, obtain views
of areas difficult to be accessed. Also, several
cheap UAVs can carry a bench of sensors that,
on the other hand, would require an usually more
expensive system with a higher payload.

An additional question is whether autonomy is
required at all for this kind of tasks. The answer is
that it depends. Teleoperated vehicles can be very
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helpful for certain tasks, for instance for helping
fire brigades to obtain close views. In any case,
autonomous perception functions are required if
no communication links or not enough bandwidth
is available. Also, out-of-sight flights require au-
tonomous navigation capabilities, as well as night
navigation. If the UAS has to cover wide areas,
then at least operational autonomy is required.
The importance of higher degrees of autonomy is
more evident when considering fleets with a high
number of aerial vehicles. Controlling the fleet
would require quite complex control centers or
quite an amount of people if the vehicles are not
endowed with decisional capabilities.
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