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Abstract This paper considers formation control of a group of wheeled mobile
robots with uncertainty. Decentralized cooperative robust controllers are proposed
in two steps. In the first step, cooperative control laws are proposed for multiple
kinematic systems with the aid of results from graph theory such that a group
of robots comes into a desired formation. In the second step, cooperative robust
control laws for multiple uncertain dynamic systems are proposed with the aid of
backstepping techniques and the passivity properties of the dynamic systems such
that multiple robots comes into a desired formation. Since communication delay is
inevitable in cooperative control, its effect on the proposed controllers is analyzed.
Simulation results show the effectiveness of the proposed controllers.
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Decentralized control · Robust control
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1 Introduction

Formation control of wheeled mobile robots has been extensively studied in recent
years. Cooperative control laws have been proposed based on different methods.
For example, in [1–4] leader–follower based cooperative controllers were proposed.
The leaders tracked predefined reference trajectories, and the followers tracked
transformed variables of the states of their nearest neighbors. In [5, 6], behavior-
based cooperative controllers were proposed. In this method, different desired
behaviors were prescribed for each vehicle and the cooperative controllers were
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calculated from a weighting of the relative importance of each behavior. In [7–9],
virtual structure based controllers were proposed. In [10], a distributed smooth time-
varying feedback control law was proposed with the analysis based on the averaging
theory for coordinating the motion of multiple nonholonomic mobile robots to
capture/enclose a target. In [11], formation control of several mobile robots was
considered with the aid of the dynamic feedback linearization technique. In [12],
the authors used decentralized control theory to propose and analyze controllers for
multiple cooperating robotic vehicles. In [13], steering control laws were proposed
for mobile robots to achieve both rectilinear and circular formations with the aid of
Lie group. In [14], decentralized control laws were proposed based on non-smooth
Lyapunov theory and graph theory. In [15], cooperative control laws with collision
avoidance were proposed based on Lyapunov-type analysis. In [16], formation
control of multiple mobile robots was considered. Control laws were proposed with
the aid of backstepping techniques and neural networks. For cooperative control
of multiple general nonholonomic kinematic systems, consensus based control laws
were proposed in [17, 18].

In the literature, most of the existing results in formation control of wheeled
mobile robots are based on the kinematics of the systems. The dynamics of wheeled
mobile robots and possible uncertainty in the dynamics were not considered. In
practice, wheeled mobile robots are dynamic systems. The dynamics usually cannot
be neglected in the control when high performance of the closed system is required.
In addition, the control laws which are of the generalized velocities designed based
on the kinematic models cannot be directly used to control the practical dynamic
systems which require generalized forces as their inputs. Considering the practical
applications of the research on the formation control of wheeled mobile dynamic
systems, paper [19] considered the cooperative control of multiple nonholonomic
chained systems and proposed cooperative adaptive control laws such that the
states of a group of systems converge to a desired trajectory. In this paper, we
consider formation control of multiple wheeled mobile robots with dynamics and
uncertainty and propose cooperative robust control laws such that a group of robots
converge to a desired geometric pattern. To solve the formation control problem,
we propose cooperative controllers in two steps. In the first step, decentralized
cooperative control laws are proposed for multiple kinematic systems with the aid
of results from graph theory. In the second step, cooperative robust control laws
are proposed with the aid of backstepping techniques and passivity properties of
dynamic systems. It is shown that the proposed control laws make a group of robots
converge to a desired formation if the communication graph is connected. Since
communication delays are inevitable between neighboring systems, we analyze the
effects of communication delays on the stability of the closed-loop systems with
the proposed cooperative control laws. It is shown that our proposed cooperative
control laws solve the defined problem if the communication delays are constants.
To verify effectiveness of the proposed cooperative control laws, simulation results
are included. The contributions of this paper are that decentralized robust control
laws are proposed for formation control of multiple wheeled mobile robots with
dynamics and uncertainty and the stability of the closed-loop systems with respect
to communication delays are analyzed.

The rest of the paper is organized as follows. In Section 2, we formally state the
control problem. In Section 3, cooperative control laws are proposed for the defined
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control problem. In Section 4, robustness of the proposed control laws with respect to
the communication delays is analyzed. Section 5 includes simulation results. Section 6
concludes this paper.

2 Problem Statement

Consider a group of m wheeled mobile robots. For robot j (see Fig. 1), its motion is
defined in the following form [20, 21]

Mj(q∗ j)q̈∗ j + C j(q∗ j, q̇∗ j)q̇∗ j + G j(q∗ j) = B j(q∗ j)τ j + [sin θ j,− cos θ j, 0]�λ j, (1)

ẋ j sin θ j − ẏ j cos θ j = 0 (2)

where q∗ j = [q1 j, q2 j, q3 j]� = [x j, y j, θ j]� is the state of robot j, Mj(q∗ j) is a 3 × 3
bounded positive-definite symmetric inertia matrix, C j(q∗ j, q̇∗ j)q̇∗ j presents cen-
tripetal and Coriolis torque, G j(q∗ j) is a gravitational torque vector, B j(q∗ j) is a 3 × 2
input transformation matrix, τ j is a vector of control input. λ j is the constraint force
on robot j, and the superscript � denotes the transpose.

Equation 1 has the following two properties [21, 22].

Property 1 Matrix (Ṁ j − 2C j) is skew-symmetric for a proper definition of C j.

Property 2 For any differentiable vector ξ ∈ R3,

Mj(q∗ j)ξ̇ + C j(q∗ j, q̇∗ j)ξ + G j(q∗ j) = Y j(q∗ j, q̇∗ j, ξ, ξ̇ )a j

where a j is an inertia parameter vector, and the regressor matrix Y j(q∗ j, q̇∗ j, ξ, ξ̇ ) is
a function of q∗ j, q̇∗ j, ξ , and ξ̇ .

Fig. 1 Configuration
of robot j Y

XO j

(xj , yj)

Driving wheel

Driving wheel

Passive wheel
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For each system, we assume that the regressor matrix Y j(q∗ j, q̇∗ j, ξ, ξ̇ ) is a known
function of q∗ j, q̇∗ j, ξ , and ξ̇ . For a j, we assume its estimate is ā j and ‖a j − ā j‖ ≤ ρ j

where ρ j is a known constant.
In the control each robot knows it’s own state and the states of its neighbors by

communication. For simplicity, we assume that the communication between robots
are bidirectional. If each robot is considered as a node, the communication between
robots can be described by a graph G = {V, E}, where V = {1, 2, . . . , m} is a node set,
E is an edge set with element (i, j) which describes the communication from node i
to node j. If the state of robot i is available to robot j, there will be an edge (i, j) in
E . We call robot i a neighbor of robot j if the state of robot i is available to robot
j. Since communication is bidirectional, (i, j) ∈ E implies ( j, i) ∈ E . For robot j, the
indexes of its neighbors form a set which is denoted by N j. Therefore, the available
states to robot j for the control are the state of robot j and the state of robot i for all
i ∈ N j. We call a graph G connected if for any two different nodes i and j in V there
exist a series of nodes l1(= i), l2, . . . , lk(= j) such that (ls, ls+1) ∈ E for 1 ≤ s ≤ k − 1.
For more terminology on graph theory, readers may refer to the references [23–25].

In this paper, we make the following assumption on the communication graph.

Assumption 1 The communication graph G is bidirectional, f ixed, and connected.

Given a desired geometric pattern P described by constant vectors (pjx, pjy) (1 ≤
j ≤ m). The control problem discussed in this article is defined as follows.

Formation Control Problem Design a control law τ j for robot j using its own state
(q∗ j, q̇∗ j) and its neighbor’s state (q∗i, q̇∗i) for i ∈ N j such that the group of robots
comes into formation P and the centroid of the group of robots is stationary, i.e.,
design control laws for system (1–2) such that

lim
t→∞

([
xl − x j

yl − y j

]
−

[
cos ψ sin ψ

− sin ψ cos ψ

] [
plx − pjx

ply − pjy

])
= 0, (3)

lim
t→∞(θl − θ j) = 0, 1 ≤ l 	= j ≤ m (4)

lim
t→∞

m∑
j=1

x j =
m∑

j=1

pjx, lim
t→∞

m∑
j=1

y j =
m∑

j=1

pjy. (5)

where ψ is a free variable.

Remark 1 In the formation control problem, Eq. 3 means that the group of robots
comes into the desired formation. In Eq. 3, ψ denotes the rotation angle of the
desired geometric pattern. Equation 4 means that the group of robots has the same
orientation. Equation 5 means that the centroid of the group of robots converges to
the center of the given geometric pattern. Since the inertia parameter vector a j is
unknown, cooperative robust control laws will be proposed in this paper.

To solve the cooperative control problem, we convert Eqs. 1–2 into a suitable
form. Let the vector fields

g1(q∗ j) = [cos θ j, sin θ j, 0]�, g2 = [0, 0, 1]�,
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then, by Eq. 2, there exists v∗ j = [v1 j, v2 j]� such that

q̇∗ j = g(q∗ j)v∗ j = g1(q∗ j)v1 j + g2v2 j (6)

where g(q∗ j) = [g1(q∗ j), g2] ∈ R3×2. Differentiating both sides of Eq. 6 and substitut-
ing it into Eq. 1 and multiplying both sides of Eq. 1 by g�(q∗ j), we have

M̃ j(q∗ j)v̇∗ j + C̃ j(q∗ j, q̇∗ j)v∗ j + G̃ j(q∗ j) = B̃ j(q∗ j)τ j (7)

where

M̃ j(q∗ j) = g�(q∗ j)Mj(q∗ j)g(q∗ j),

C̃ j(q∗ j, q̇∗ j) = g�(q∗ j)Mj(q∗ j)ġ(q∗ j) + g�(q∗ j)C j(q∗ j, q̇∗ j)g(q∗ j),

G̃ j(q∗ j) = g�(q∗ j)G j(q∗ j),

B̃ j(q∗ j) = g�(q∗ j)B j(q∗ j).

The reduced systems in Eqs. 6–7 describes the motion of the original systems in
Eqs. 1–2. Therefore, the formation control problem can be considered based on the
reduced systems in Eqs. 6–7 instead of the systems in Eqs. 1–2.

3 Cooperative Controller Design

In order to solve the defined problem, we introduce the following variables.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z1 j = −θ j −
∫ t

0 w1(s)ds,

z2 j = (x j − pjx) cos θ j + (y j − pjy) sin θ j + βw1z3 j,

z3 j = −(x j − pjx) sin θ j + (y j − pjy) cos θ j

u1 j = −v2 j

u2 j = v1 j + ζ3 jv2 j

(8)

where constants β > 0, w1 is a design variable and satisfies the following condition.

Assumption 2 w1 is bounded and satisf ies the following condition:

∫ t+T

t
w2

1(s)ds ≥ ε for some T > 0, ε > 0, and for all t ≥ 0.

The definitions in Eq. 8 yield the following dynamic equations,

⎧⎨
⎩

ż1 j = u1 j − w1

ż2 j = u2 j + βw1(−βz3 jw
2
1 + w1z2 j) + βz3 jẇ1 + (u1 j − w1)βw1ζ2 j

ż3 j = −βz3 jw
2
1 + z2 jw1 + (u1 j − w1)ζ2 j

(9)

M̄ j(q∗ j)u̇∗ j + C̄ j(q, q̇∗ j)u∗ j + Ḡ j(q∗ j) = B̄ j(q∗ j)τ j (10)
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where

M̄ j(q∗ j) = ḡ�(q∗ j)Mj(q∗ j)ḡ(q∗ j),

C̄ j(q∗ j, q̇∗ j) = ḡ�(q∗ j)Mj(q∗ j) ˙̄g(q∗ j) + ḡ�(q∗ j)C j(q∗ j, q̇∗ j)ḡ(q∗ j),

Ḡ j(q∗ j) = ḡ�(q∗ j)G j(q∗ j),

B̄ j(q∗ j) = ḡ�(q∗ j)B j(q∗ j)

ḡ(q∗ j) =
⎡
⎣ z3 j cos θ j cos θ j

z3 j sin θ j sin θ j

−1 0

⎤
⎦ . (11)

Based on Properties 1 and 2, the following two properties can be easily proved.

Property 3 Matrix ( ˙̄Mj − 2C̄ j) is skew-symmetric.

Property 4 For any differentiable vector ξ ∈ R2×2

M̄ j(q∗ j)ξ̇ + C̄ j(q∗ j, q̇∗ j)ξ + Ḡ j(q∗ j) = Ȳ j(q∗ j, q̇∗ j, ξ, ξ̇ )a j

where

Ȳ j(q∗ j, q̇∗ j, ξ, ξ̇ ) = ḡ�(q∗ j)Y j

(
q∗ j, q̇∗ j, ḡ(q∗ j)ξ,

d
dt

(ḡ(q∗ j)ξ)

)
.

With the aid of the defined variables, we have the following results whose proof is
omitted.

Lemma 1 Under Assumption 2, if limt→∞(z∗ j − z∗i) = 0 for 1 ≤ i 	= j ≤ m, then
Eqs. 3–4 holds, where z∗ j = [z1 j, z2 j, z3 j]�. Furthermore, if limt→∞ z∗ j = 0 for 1 ≤ j ≤
m, then Eqs. 3–5 hold.

With the aid of the results in Lemma 1, in order to solve the formation control
problem it is sufficient to design cooperative controllers for the systems in Eqs. 9–10
such that limt→∞ zij = 0. Noting the structure of Eq. 9, we have the following results.

Lemma 2 For the systems in Eq. 9, under Assumption 2,

1. if

lim
t→∞(u1 j − w1)ζ2 j = 0, lim

t→∞(z2 j − z2l) = 0, for 1 ≤ l 	= j ≤ m (12)

then limt→∞(z3 j − z3l) = 0.
2. If

lim
t→∞(u1 j − w1)ζ2 j = 0, lim

t→∞ z2 j = 0, for 1 ≤ j ≤ m (13)

then limt→∞ z3 j = 0.
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Proof First, we prove that limt→∞(z3 j − z3l) = 0 if Eq. 12 are satisfied. Let σ = z3l −
z3 j, for 1 ≤ l 	= j ≤ m, we have

σ̇ = −βw2
1σ + (z2l − z2 j)w1 + (u1l − w1)ζ2l − (u1 j − w1)ζ2 j. (14)

Since limt→∞[(z2l − z2 j)w1 + (u1l − w1)ζ2l − (u1 j − w1)ζ2 j] = 0, noting Assumption 2,
limt→∞ σ = 0. If Eq. 13 is satisfied, noting Assumption 2, limt→∞ z3 j = 0. ��

Based on the results in Lemma 2, the formation control problem can be solved
by designing cooperative controllers for the systems in Eqs. 9–10 such that the
requirements in Lemma 2 are satisfied. Noting the interconnection between systems
(9) and (10), we apply backstepping techniques in this paper. We first design the
cooperative controllers for the systems in Eq. 9. Then, we propose the cooperative
controllers for the systems in Eqs. 9–10.

3.1 Cooperative Control Laws for Eq. 9

Assume that u1 j and u2 j are virtual control inputs of system j in Eq. 9, we design
cooperative control laws u1 j and u2 j. Before proposing the controllers, we present
some results on the algebraic graph theory.

Given an m × m symmetric constant matrix B = [bji] with bji > 0, let G be the
communication graph among m systems, the Laplacian matrix L = [L ji] of the graph
G with weight matrix B is defined by

L ji =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−bji, if i 	= j and i ∈ N j

0, if i 	= j and i 	∈ N j∑
l 	= j,l∈N j

bjl, if i = j.

Obviously, L is a symmetric matrix and has real eigenvalues. Without loss of
generality, we assume that its eigenvalues λl(L) (1 ≤ l ≤ m) are ordered as λ1(L) ≤
λ2(L) ≤ · · · ≤ λm(L).

Lemma 3 Given an m × m symmetric constant matrix B = [bji] with bji > 0, under
Assumption 1, the eigenvalues λl(L) (1 ≤ l ≤ m) of the Laplacian matrix L cor-
responding to the graph G with the weight matrix B satisfy λm(L) ≥ λm−1(L) ≥
· · · ≥ λ2(L) > λ1(L) = 0. Furthermore, for any bounded function vector ξ(t) ∈ Rm, if

limt→∞ ξ�(t)Lξ(t) = 0, then limt→∞
[
ξ(t) −

(∑m
l=1

ξl(t)
m

)
1
]

= 0 where 1 = [1, . . . , 1]�
and 0 = [0, . . . , 0]�.

Proof Noting the definition of L, by the Gerschgorin Circle Theorem [26], each
λi(L) is contained in the union of the m Gerschgorin circles |z − L jj| ≤ L jj for 1 ≤
j ≤ m. Therefore, either λ j(L) > 0 or λ j(L) = 0 for 1 ≤ j ≤ m. Since G is connected,
there is only one zero eigenvalue [27]. Therefore, λ1 = 0 and λm ≥ · · · ≥ λ3 ≥ λ2 > 0.
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Since L is symmetric and λ1 = 0, there exists an orthogonal matrix Q = [Qij] with
its first column being 1/

√
m such that Q�LQ = diag[0, λ2, . . . , λm]. So,

lim
t→∞ ξ�Lξ = lim

t→∞(Q�ξ)�diag[0, λ2, . . . , λm](Q�ξ) = 0.

Let � = [�1, �2, . . . , �m]� = Q�ξ , then limt→∞ �i = 0 for 2 ≤ i ≤ m. Noting �1 =
1√
m

∑m
l=1 ξl,

lim
t→∞

(
ξ −

(
m∑

l=1

ξl

m

)
1

)
= lim

t→∞

(
Q� − 1√

m
�11

)

= lim
t→∞

[
m∑

l=2

Q1l�l, . . . ,

m∑
l=2

Qml�l

]�
= 0.

Therefore, the lemma is proved. ��

Noting the special structure of Eq. 9, we have the following result.

Theorem 1 Consider the systems in Eq. 9, under Assumptions 1–2, the controllers

u1 j = η1 j (15)

u2 j = η2 j (16)

for 1 ≤ j ≤ m make Eqs. 3–4 hold, where

η1 j = −
∑
i∈N j

bji
(
z1 j − z1i + � j − �i

) + w1 (17)

η2 j = −
∑
i∈N j

bji
(
z2 j − z2i

) − βw1
(−βz3 jw

2
1 + w1z2 j

) − βz3 jẇ1 (18)

constants bji = bij > 0, and

� j = −z2 jβw1ζ2 j − z3 jζ2 j. (19)

Proof Apply the control laws in Eqs. 15–16 to Eq. 9, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż1 j = u1 j − w1

ż2 j = −
∑
i∈N j

bji
(
z2 j − z2i

) + (u1 j − w1)βw1ζ2 j

ż3 j = −βz3 jw
2
1 + z2 jw1 + (

u1 j − w1
)
ζ2 j

(20)

where

u1 j − w1 = −
∑
i∈N j

bji(z1 j − z1i + � j − �i). (21)
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Let the positive definite Lyapunov function

V = 1
2

m∑
j=1

3∑
i=1

z2
ij. (22)

Differentiating V along the solutions of Eq. 20, we have

V̇ = −
m∑

j=1

βw2
1z2

3 j − z�
2∗Lz2∗ − (z1∗ + �)�L(z1∗ + �) ≤ 0

where z1∗ =[z11, . . . , z1m]�, z2∗ =[z21, . . . , z2m]�, �=[�1, . . . , �m]�. Therefore, V is
bounded. Furthermore, zij are bounded. By Barbalat’s Lemma [28], limt→∞ V̇ =0. So

lim
t→∞ βw2

1z2
3 j = 0, 1 ≤ j ≤ m (23)

lim
t→∞ z�

2∗Lz2∗ = 0, lim
t→∞(z1∗ + �)�L(z1∗ + �) = 0. (24)

By Lemma 3 and Eq. 24, we have limt→∞(z2∗(t) − c2(t)1) = 0 and limt→∞(z1∗(t) +
�(t) − c1(t)1) = 0 where c1 and c2 are bounded and defined as

c2 = 1
m

m∑
l=1

z2l, c1 = 1
m

m∑
l=1

(z1l + �l). (25)

Therefore, limt→∞(z2 j − z2l) = 0 and limt→∞(z1 j + � j − z1l − �l) = 0 for 1 ≤ j 	=
l ≤ m. We see limt→∞(u1 j − w1)ζ2 j = 0 from Eq. 21 for 1 ≤ j ≤ m. By Lemma 2,
limt→∞(z3 j − z3l) = 0 for 1 ≤ l 	= j ≤ m. By the definition of �l , it can be proved that
limt→∞(z1 j − z1l) = 0 for 1 ≤ j 	= l ≤ m. By Lemma 1, Eqs. 3–4 hold. ��

Remark 2 In Eqs. 17–18, the first term is a weighted sum of the relative state
information between system j and its neighbors, and the other terms are used to
cancel the terms induced by the variable transformation. The motion of the systems
is driven by the relative information between neighbors.

Remark 3 In the control laws, the control parameters are bjl , β, and w1. w1 can be
a sine function or a constant. Generally, increasing β will increase the convergence
rate of z3 j. The value of bji and the topology of the communication graph determine
λ2(L). Large λ2(L) means that (z1 j − z1i) and (z2 j − z2i) converge to zero fast. The
rate in which (z∗ j − z∗i) converge to zero is called the cohesion rate. The value λ2(L)

depends on the topology of the graph G and the weights bjl .

Remark 4 The control laws (15–16) are decentralized because for each system the
control laws depend only on its own state and its neighbors’ states.

The controllers in Theorem 1 cannot make Eq. 5 hold. To make Eq. 5 hold, we
introduce damping terms in the controllers and have the following result.
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Theorem 2 Consider the systems in Eq. 9, under Assumptions 1–2, the decentralized
controllers (15–16) make Eqs. 3–5 hold, where

η1 j = −
∑
i∈N j

bji
(
z1 j − z1i + � j − �i

) − μ j(z1 j + � j) + w1 (26)

η2 j = −
∑
i∈N j

bji
(
z2 j − z2i

) − μ jz2 j − βw1(−βz3 jw
2
1 + w1z2 j) − βz3 jẇ1 (27)

constants bji = bij > 0, constants μ j ≥ 0 and
∑m

l=1 μl > 0, and � j is def ined in Eq. 19.

Proof Let the positive definite Lyapunov function V be defined in Eq. 22.
Differentiate V along the solutions of Eq. 9 with the control laws (15–16), we have

V̇ = −
m∑

j=1

βw2
1z2

3 j −
m∑

j=1

μ j[z2
2 j + (z1 j + � j)

2] − z�
2∗Lz2∗ − (z1∗ + �)�L(z1∗ + �) ≤ 0

Therefore, V is bounded. Furthermore, zij are bounded. By Barbalat’s Lemma [28],
limt→∞ V̇ = 0. So, Eqs. 23–24 hold and

lim
t→∞

m∑
j=1

μ jz2
2 j = 0, lim

t→∞

m∑
j=1

μ j(z1 j + � j)
2 = 0 (28)

By Lemma 3, limt→∞(z2∗(t) − c2(t)1) = 0 and limt→∞(z1∗(t) + �(t) − c1(t)1) = 0
where c1 and c2 are defined in Eq. 25. Since at least one of μ j is greater than zero, say
μp > 0, then by Eq. 28 we have limt→∞ z2p = 0 and limt→∞(z1p + �p) = 0. Noting
that z2 j converges to c2, we see c2 = 0. Since (z1 j + � j) converges to c1, we see
c1 = 0. So, limt→∞(u1 j − w1)ζ2 j = 0 for 1 ≤ j ≤ m. By Lemma 2, limt→∞ z3 j = 0 (1 ≤
j ≤ m). Noting the definition of � j, we can prove that limt→∞ z1 j = 0 (1 ≤ j ≤ m).
By Lemma 1, Eqs. 3–5 hold. ��

Remark 5 Terms μ j(z1 j − � j) and μ jz2 j in Eqs. 26–27 are called the damping terms
which are used to make μ j(z1 j − � j) and μ jz2 j converge to zero. Large μ j means that
z1 j and z2 j converge to zero quickly.

Remark 6 If the communication graph G is connected, z1∗ and z2∗ converge to zero
if one of μ j is greater than zero. In fact, if G is not connected, we can make z1∗ and
z2∗ converge to zero by choosing some μ j to be positive. In the worst case, if there is
no communication between any two systems, we can make z1∗ and z2∗ converge to
zero by choosing μ j > 0 for all j.

3.2 Cooperative Control Laws for Dynamics (9–10)

With the aid of the controllers for the systems in Eq. 9, we propose decentralized
cooperative controllers for dynamics (10) using backstepping techniques.

With the aid of the results in Theorem 1, we have the following result.

Theorem 3 For the systems in Eqs. 9–10, under Assumptions 1–2, the control laws

τ j = B̄−1
j

(−K j(u∗ j − η∗ j) + Ȳ j(ζ∗ j, ζ̇∗ j, η∗ j, η̇∗ j)
(
ā j − � j

) − � j
)

(29)
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for 1 ≤ j ≤ m make Eqs. 3–4 hold, where constant matrix K j is symmetric and positive
def inite, η∗ j = [η1 j, η2 j]�, η1 j and η2 j are def ined in Eqs. 17–18, u∗ j = [u1 j, u2 j]�,

� j = [z1 j + � j, z2 j]�, (30)

� j = ρȲ�
j (ζ∗ j, ζ̇∗ j, η∗ j, η̇∗ j)ũ∗ j

‖Ȳ�
j (ζ∗ j, ζ̇∗ j, η∗ j, η̇∗ j)ũ∗ j‖ + e−γ jt

(31)

constants γ j > 0 and the other control parameters are def ined in Theorem 1.

Proof Let ũ∗ j = u∗ j − η∗ j, with the control laws in Eq. 29, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż1 j = u1 j − w1

ż2 j = −
∑
i∈N j

bji(z2 j − z2i) + ũ2 j + (u1 j − w1)βw1ζ2 j

ż3 j = −βz3 jw
2n−4
1 + z2 jw1 + (u1 j − w1)ζ2 j

(32)

M̄ j
˙̃u∗ j + C̄ jũ∗ j = −K jũ j − Ȳ j(ζ∗ j, ζ̇∗ j, η∗ j, η̇∗ j)(a j − ā j + � j) − � j (33)

where u1 j − w1 = −∑
j∈N j

bji(z1 j − z1i + � j − �i) + ũ1 j. Let the Lyapunov function

V = 1
2

m∑
j=1

(
3∑

i=1

z2
ij + u�

∗ jM̄ ju∗ j

)
. (34)

Differentiating V along the solutions of Eqs. 32–33, we have

V̇ =
m∑

j=1

(
−βz2

3 jw
2
1 − ũ�

∗ jK jũ∗ j

)
− (z1∗ + �)�L(z1∗ + �) − z�

2∗Lz2∗

− ũ�
∗ jȲ j(a j − ā j) − ρ‖Ȳ�

j ũ∗ j‖2

‖Ȳ�
j ũ∗ j‖ + e−γ jt

≤
m∑

j=1

(
−βz2

3 jw
2
1 − ũ�

∗ jK jũ∗ j

)
− (z1∗ + �)�L(z1∗ + �) − z�

2∗Lz2∗ + ρe−γ jt

=
m∑

j=1

(
−βz2

3 jw
2
1 − ũ�

∗ jK jũ∗ j

)
− [Q(z1∗ + �)]�[Q(z1∗ + �)]

− (Qz2∗)�(Qz2∗) + ρe−γ jt (35)

where we use the facts that ( ˙̄Mj − 2C̄ j) are skew symmetric and that L = Q� Q where
Q is a symmetric constant matrix. Therefore, V is bounded. Furthermore, zij and u∗ j

are bounded for 1 ≤ i ≤ 3 and 1 ≤ j ≤ m. Also, Q(z1∗ + �) and Qz2∗ are bounded.
By integrating both sides of Eq. 35, we know w1z3 j, ũ∗ j, Q(z1∗ + �), and Qz2∗ are
square integrable. Noting Eqs. 32–33, the derivative of w1z3 j, ũ∗ j, Q(z1∗ + �), and
Qz2∗ are bounded. By Barbalat’s Lemma, w1z3 j, ũ∗ j, Q(z1∗ + �), and Qz2∗ converge
to zero. So, Eqs. 23–24 hold and

lim
t→∞ ũ∗ j = 0 (1 ≤ j ≤ m), (36)
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By Assumptions 1–2, following the proof of Theorem 1, we can prove that
limt→∞(z∗ j − z∗l) = 0 for 1 ≤ 	= j ≤ m. By Lemma 1, Eqs. 3–4 hold. ��

Remark 7 The control law τ j for system j consists of its own state and the relative
state information with its neighbors. Therefore, it is decentralized. Noting the
structure of Eqs. 32–33, the motion of the closed-loop system is driven by the relative
information between neighbors. The control parameters are bji, K j, γ j, β, and w1.
Increasing K j and β will increase the convergence rate of the closed-loop system.

In Theorem 3, Eq. 5 does not hold. To make Eqs. 3–5 hold, we introduce damping
terms in η∗ j. With the aid of the results in Theorem 2, we have the following result.

Theorem 4 For the systems in Eqs. 9–10, under Assumptions 1–2, the control laws in
Eq. 29 make Eqs. 3–5 hold, where constant matrix K j is symmetric positive def inite,
η∗ j = [η1 j, η2 j]�, η1 j and η2 j are def ined in Eqs. 26–27, u∗ j = [u1 j, u2 j]�, � j is def ined
in Eq. 30, and the other control parameters are def ined in Theorem 2.

Proof Let the Lyapunov function V be defined in Eq. 34. Differentiating it along the
solutions of the closed-loop system, we have

V̇ =
m∑

j=1

(
−βz2

3 jw
2
1 − ũ�

∗ jK jũ∗ j − μ jz2
2 j − μ j(z1 j + � j)

2
)

− (z1∗ + �)�L(z1∗ + �)

− z�
2∗Lz2∗ − ũ�

∗ jȲ j(a j − ā j) − ρ‖Ȳ�
j ũ∗ j‖2

‖Ȳ�
j ũ∗ j‖ + e−γ jt

≤
m∑

j=1

(
−βz2

3 jw
2
1 − ũ�

∗ jK jũ∗ j − μ jz2
2 j − μ j(z1 j + � j)

2
)

− (z1∗ + �)�L(z1∗ + �)

− z�
2∗Lz2∗ + ρe−γ jt (37)

where we use the facts that ( ˙̄Mj − 2C̄ j) are skew symmetric and that L is symmetric.
Following the proof of Theorem 3, we can prove that Eqs. 23–24, 28, and 36 hold. By
Assumptions 1–2, following the proof of Theorem 2, we can prove that limt→∞ z3 j =
0 for 1 ≤ j ≤ m. By Lemma 1, Eqs. 3–5 holds. ��

Remark 8 Cooperative controllers (29) are decentralized and make Eqs. 3–5 hold.
The difference between the control laws in Theorems 3 and 4 is that the damping
terms are introduced in the control laws in Theorem 4. For the relationship between
the closed-loop system performance and the control parameters, readers may refer to
the remarks after Theorems 1–3. In this paper, we do not consider collision between
robots. Discussion on this topic is our future work.

4 Closed-loop System Stability With Communication Delays

In the previous controller design, we did not consider communication delays. In
practice, there are always time delays due to communication and other factors. For
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simplicity, in this paper we assume that communication delays only appear in the
neighbor’s states and are constants.

Corresponding to Theorem 2, we have the following result.

Theorem 5 Consider the systems in Eq. 9, under Assumptions 1–2, the controllers
(15–16) make Eqs. 3–5 hold, in Eqs. 15–16

η1 j(t) = −μ j[z1 j(t) + � j(t)]
−

∑
i∈N j

bji
[
z1 j(t) − z1i(t − δi) + � j(t) − �i(t − δi)

] + w1(t) (38)

η2 j(t) = −μ jz2 j(t) −
∑
i∈N j

bji[z2 j(t) − z2i(t − δi)]

−β
[−βz3 j(t)w3

1(t) + w2
1(t)z2 j(t)

] − βz3 j(t)ẇ1(t) (39)

where constants bji = bij > 0, μ j ≥ 0 and
∑m

l=1 μl > 0, � j(t) is def ined in Eq. 19, and
constants δi ≥ 0 (1 ≤ i ≤ m).

Proof Let the nonnegative function

V(t) = 1
2

m∑
j=1

⎛
⎝ 3∑

i=1

z2
ij(t) +

∑
i∈N j

∫ t

t−δi

bji
(
(z1i(s) + �i(s))2 + z2

2i(s)
)

ds

⎞
⎠ . (40)

Differentiate it along the solutions of Eq. 9 with the control laws (15–16), we have

V̇(t) = −
m∑

j=1

βz2
3 j(t)w

2
1(t) −

m∑
j=1

μ j(z1 j(t) + � j(t))2 −
m∑

j=1

μ jz2
2 j(t)

−1
2

m∑
j=1

∑
i∈N j

bji
[
(�̄ j(t) − �̄i(t − δi))

2 + (z2 j(t) − z2i(t − δi))
2] ≤ 0 (41)

where we use the fact that the communication graph G is bidirectional, and

�̄ j(t) = z1 j(t) + � j(t).

Therefore, V is bounded. Furthermore, zij are bounded for 1 ≤ i ≤ 3 and 1 ≤ j ≤ m.
By Barbalat’s Lemma [28], limt→∞ V̇ = 0. So, Eqs. 23 and 28 hold and

lim
t→∞(�̄ j(t) − �̄i(t − δi)) = 0, lim

t→∞(z2 j(t) − z2i(t − δi)) = 0, i ∈ N j, 1 ≤ j ≤ m. (42)

Since at least one of μ j, say μp, is greater than zero, we see from Eq. 28 that
limt→∞ �̄p(t) = 0 and limt→∞ z2p(t) = 0. Since the graph G is connected, from Eq. 42
we can prove that limt→∞ �̄ j(t) = 0 and limt→∞ z2 j(t) = 0 (1 ≤ j ≤ m). Following the
proof of Theorem 2, we can prove that limt→∞ z1 j(t) = 0 and limt→∞ z3 j(t) = 0 for
1 ≤ j ≤ m. By Lemma 1, Eqs. 3–5 hold. ��

Corresponding to Theorem 4, we have the following result.

Theorem 6 For the systems in Eqs. 9–10, under Assumptions 1–2, the control laws
(29) make Eqs. 3–5 hold, where η1 j and η2 j are def ined in Eqs. 38–39, constants
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bji = bij > 0, constants μ j ≥ 0 and
∑m

l=1 μl > 0, the communication delays δi(≥ 0) are
constants, and the other variables and control parameters are def ined in Theorem 4.

Proof Let the nonnegative function

V(t) = 1
2

m∑
j=1

(
3∑

i=1

z2
ij(t) + u�

∗ j(t)M̄ j(t)u∗ j(t)

+
∑
i∈N j

∫ t

t−δi

bji
(
(z1i(s) + �i(s))2 + z2

2i(s)
)

ds

⎞
⎠ , (43)

differentiating V along the closed-loop system, we have

V̇(t) =
m∑

j=1

(
−βz2

3 j(t)w
2n−4
1 (t) − ũ�

∗ j(t)K jũ∗ j(t)
)

−
m∑

j=1

μ j(z1 j(t) + � j(t))2 −
m∑

j=1

μ jz2
2 j(t)

−1
2

m∑
j=1

∑
i∈N j

bji
[
(�̄ j(t) − �̄i(t − δi))

2 + (z2 j(t) − z2i(t − δi))
2]

−ũ�
∗ jȲ j(a j − ā j) − ρ‖Ȳ�

j ũ∗ j‖2

‖Ȳ�
j ũ∗ j‖ + e−γ jt

≤
m∑

j=1

(
−βz2

3 j(t)w
2n−4
1 (t)−ũ�

∗ j(t)K jũ∗ j(t)
)
−

m∑
j=1

μ j(z1 j(t) + � j(t))2−
m∑

j=1

μ jz2
2 j(t)

−1
2

m∑
j=1

∑
i∈N j

bji
[
(�̄ j(t) − �̄i(t − δi))

2 + (z2 j(t) − z2i(t − δi))
2] + ρe−γ jt (44)

where we use the facts that ( ˙̄Mj − 2C̄ j) is skew symmetric and that L is symmetric.
Following the proof of 4, we can prove that Eqs. 23, 28, 42, and 36 hold. Since at least
one of μ j, say μp, is greater than zero, we see from Eq. 28 that limt→∞ �̄p(t) = 0
and limt→∞ z2p(t) = 0. Since the graph G is connected, from Eq. 42 we can prove
that limt→∞ �̄ j(t) = 0 and limt→∞ z2 j(t) = 0 (1 ≤ j ≤ m). Following the proof of
Theorem 4, we can prove that limt→∞ z1 j(t) = 0 and limt→∞ z3 j(t) = 0 for 1 ≤ j ≤ m.
By Lemma 1, Eqs. 3–5 hold. ��

Remark 9 In [16], formation control of multiple robots was also considered. Control
laws were proposed with the aid of the leader–follower approach, backstepping
techniques, and neural networks. In this paper, formation control of multiple robots
was solved with the aid of results from algebraic graph theory and backstepping
techniques. For a group of systems in this paper, there is no leader and the control
input for each system is generated based on its own information and its neighbor’s
information. If one or more systems fail the other systems still can maintain desired
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Fig. 2 Desired geometric
pattern
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distances between the remaining systems if the communication graph of the remain-
ing systems is connected. While for leader–follower based formation control in [16]
if one system fails the remaining systems cannot maintain desired distances between
the remaining system because the followers of the failing system has no information
of its leader. Furthermore, in this paper robustness of the stability of the closed-loop
systems with respect to communication delays is discussed and it is shown that the
proposed control laws in this paper work if the communication delays are constant.
In [16], communication delay was not considered.

Fig. 3 Communication
graph G Robot 1

Robot 2 Robot 5

Robot 3 Robot 4
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Fig. 4 Paths of the five robots
and the final geometric pattern
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5 Simulations

To verify effectiveness of the proposed control laws, we present some simulation
results.

Let m = 5 and the initial conditions of the five robots be (−3.5,−13.8,−2.0),
(18.1, 3.3, 3.0), (13.9,−25.3, 2.0), (−14.5, 18.7, 2.0), and (12.1, 37.0,−2.0). Assume
that the desired formation P is defined by (p1x, p1y) = (1.24, 3.8), (p2x, p2y) =
(−3.24, 2.35), (p3x, p3y) = (−3.24,−2.35), (p4x, p4y) = (1.24,−3.8), and (p5x, p5y) =
(4, 0) (Fig. 2). Assume that the communication graph G is shown in Fig. 3. The

Fig. 5 Responses of θ j
( j = 1, 2, 3, 4, 5)
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Fig. 6 Paths of the five robots
and the final geometric pattern
with communication delay
δ j = 0.2 s
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cooperative controllers can be obtained by Theorem 4. In the simulation, we assume
L j = 0.5m, R j = 0.2m, and the real inertia parameters m j = 1 and I j = 1. We choose
the control parameters bji = 2, β = 10, K j = 10, w1 = 0.5, � j = 0.1, μ1 = 4, μ j = 0
for j 	= 1, and the estimates m̄ j = 2 and Ī j = 2. Figure 4 shows the paths of the five
robots. It can be seen that they come into the desired formation. The geometric
pattern of the formation is stationary. The orientations of the five robots converge
to the same value (see Fig. 5). If there are constant communication delays in the
control, the control laws achieve the same objectives according to Theorem 6. To
simplify the simulation, we assume all the communication delays are the same and

Fig. 7 Responses of θ j
( j = 1, 2, 3, 4, 5) with
communication delay
δ j = 0.2 s
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δ j = 0.1 s. Figure 6 shows the paths of the five robots. It’s shown that the five robots
come into the desired formation. The orientations of the five robots converge to the
same value (see Fig. 7).

6 Conclusion

This paper has considered the formation control of multiple wheeled mobile robots
with uncertainty. Cooperative control laws have been proposed with the aid of results
from graph theory. The robustness of the control laws with respect to communication
delays are also analyzed. Simulation results show effectiveness of the proposed
control laws.
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