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Abstract This paper deals with the problem of mobile-robot localization in struc-
tured environments. The extended Kalman filter (EKF) is used to localize the four-
wheeled mobile robot equipped with encoders for the wheels and a laser-range-
finder (LRF) sensor. The LRF is used to scan the environment, which is described
with line segments. A prediction step is performed by simulating the kinematic
model of the robot. In the input noise covariance matrix of the EKF the standard
deviation of each robot-wheel’s angular speed is estimated as being proportional
to the wheel’s angular speed. A correction step is performed by minimizing the
difference between the matched line segments from the local and global maps. If the
overlapping rate between the most similar local and global line segments is below
the threshold, the line segments are paired. The line parameters’ covariances,
which arise from the LRF’s distance-measurement error, comprise the output noise
covariance matrix of the EKF. The covariances are estimated with the method of
classic least squares (LSQ). The performance of this method is tested within the
localization experiment in an indoor structured environment. The good localization
results prove the applicability of the method resulting from the classic LSQ for the
purpose of an EKF-based localization of a mobile robot.

Keywords Mobile robot · Localization · Extended Kalman Filter ·
Covariance matrix · Line feature

1 Introduction

Localization is a fundamental problem to be solved in mobile robotics. If the
robot knows its own pose in the environment, it is truly autonomous in executing
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given tasks. However, localizing a mobile robot using only odometry is inaccurate,
since the error arising from the uncertainties of the odometric model and the
measurement noise of the odometric sensor is accumulating. The robot can improve
the information about its own pose by comparing the local map, obtained from the
current environment scan, with the already-built global environment map. A robot
can simultaneously build a global environment map and then use this map to localize
itself in the environment, which is known as a SLAM (simultaneous localization and
mapping) algorithm [12]. SLAM is a computationally very complex algorithm, and
as shown in [3], various approaches have been developed to reduce this complexity.
In the literature, many approaches and algorithms involved in solving the SLAM,
localization and mapping problem have been proposed [4, 10, 11, 18, 22, 26]. The
occupancy grids divide the environment into grids, where each cell of the grid is
either occupied or free [25]. However, occupancy grids require a huge amount
of computer memory and are therefore not appropriate when modelling a large
environment [27]. Line segments, which are often applied for a representation of
the environment [2, 8, 9, 28], are also chosen in this paper to model the environment
because they require a smaller amount of computer memory. The drawback of the
line-based environment description is that it is only suited [14, 15, 17, 19, 20, 29]
to structured environments, which are mainly composed of straight-edged objects or
walls. Usually, these are indoor environments. In [19] a comparison of line-extraction
algorithms using a 2D laser rangefinder is reported. Based on this comparison a split-
and-merge algorithm was chosen, because of its speed and correctness. In [7] the
split-and-merge fuzzy line extraction algorithm is introduced. It uses a prototype-
based fuzzy-clustering approach in a split-and-merge framework. This structure
allows the use of the fuzzy-clustering algorithm without any previous knowledge
of the number of prototypes. In [30] a robust regression model is proposed for
segment extraction in the static and dynamic environments, considering the noise
of the sensor data and the outliers that correspond to dynamic objects, such as the
people in motion. In order to navigate a mobile robot in unknown environments a
path planning algorithm must be designed. Here, the computational efficiency of the
used algorithms is also of great importance. In [21] a method for obstacle avoiding
trajectories using a minimum computation concept is proposed.

The extended Kalman filter is very often applied to solve the localization problem.
Similarly to parameter estimation schemes [5, 6] the convergence properties of
the EKF significantly depend on estimating the input- and output-noise covariance
matrices of the process, which have to be appropriately set. In an environment
represented by line segments, the line parameters’ covariances comprise the output-
noise covariance matrix of the EKF. A method for estimating the covariances of
the line-equation parameters resulting from the classic LSQ was proposed in our
previous work [24]. However, in the presented paper the focus is given to the
experimental results of an EKF-based localization of a mobile robot, where the line
parameters’ covariances are estimated with the method resulting from classic LSQ.
The prediction step of the EKF is performed by simulating the kinematic model of
the robot. The standard deviation of each robot-wheel’s angular speed is estimated as
being proportional to the wheel’s angular speed in the input-noise covariance matrix.
To perform the correction step of the EKF the line segments from the local and
global maps, which correspond to the same environment line segments (e.g., a wall),
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must be found. A matching procedure, where the most similar local and global line
segments are paired if the overlapping rate between them is below the threshold,
is presented. To handle the problem of visibility, only the consecutive scan points,
at which the distance between the neighboring points is below some threshold, are
taken for the line-segment points.

This paper is organized as follows. In Section 2 the prediction step and the
correction step of the EKF are described. Section 3 presents how the lines and
their covariances are extracted from the LRF’s reflection points. In Section 4 are
the results of localizing the robot in an indoor structured environment. The paper is
concluded in Section 5.

2 Localization Algorithm

The extended-Kalman-filter approach is adopted here for the purpose of localization.
The EKF consists of a prediction and a correction step. The Pioneer 3-AT mobile
robot, which has four wheels (Fig. 1), is used to test the localization algorithm. When
the robot is rotating about its own axis, the left-hand wheels are rotating in the
opposite direction to the right-hand wheels, which is why the wheels are slipping.
In the localization algorithm described in this paper a line-based environment
description is adopted. As already mentioned, the algorithm can therefore be used
[14, 15, 17, 19, 20, 29] indoors and also in outdoor structured environments, which
are mainly composed of straight-edged objects or walls.

Fig. 1 Robot’s pose according
to the global coordinates yG
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2.1 Prediction Step of the EKF

The robot’s pose is predicted by simulating the discrete kinematic model of the robot

xp(k + 1) = f(xp(k), u(k)) :

xr(k + 1) = xr(k) + T
R
2

(ωR(k) + ωL(k)) cos(ϕr(k)),

yr(k + 1) = yr(k) + T
R
2

(ωR(k) + ωL(k)) sin(ϕr(k)),

ϕr(k + 1) = ϕr(k) + T
R
L

(ωR(k) − ωL(k)), (1)

where the state xp(k) = [xr(k), yr(k), ϕr(k)]T denotes the robot’s pose with respect
to the global coordinates (Fig. 1), T is the sampling time, R denotes the radius
of both robot wheels, and L denotes the distance between the wheels. u(k) =
[ωR(k), ωL(k)]T is the input vector, where ωL(k) and ωR(k) are measurements of
the rotational speed of the left- and right-hand wheels with the encoders at the time
kT, respectively. Let ωRc(k) and ωLc(k) be the rotational speeds of the left- and right-
hand wheels, which yields a correct estimation of the robot’s pose xp(k + 1) (Eq. 1).
The error for the rotational speeds of the corresponding wheels ωRn(k) and ωLn(k)

can then be defined as

ωL(k) = ωLc(k) + ωLn(k), ωR(k) = ωRc(k) + ωRn(k),

n(k) = [ωRn(k), ωLn(k)]T . (2)

The error vector n(k) above captures the uncertainties of the odometry model and is
assumed to be zero mean and Gaussian noise. The covariance matrix of this vector is
the input-noise covariance matrix Q(k) for the EKF, which is defined in what follows.

The prediction step of the EKF

x̃p(k) = f(x̂p(k − 1), u(k − 1)),

P̃(k) = A(k)P̂(k − 1)AT(k) + W(k)Q(k − 1)WT(k), (3)

Aij(k) = ∂fi

∂ x̂p j(k − 1)
|(x̂p(k−1),u(k−1)), Wij(k) = ∂fi

∂n j(k − 1)
|(x̂p(k−1),u(k−1)) . (4)

x̂p(k − 1) above denotes the state estimate at time instant k − 1 based on all the
measurements collected up to that time, whereas P̂(k − 1) is the covariance matrix
of the corresponding estimation error. Q(k − 1) is the input-noise covariance matrix.
x̃p(k) denotes the state prediction and P̃(k) denotes the covariance matrix of the
state-prediction error.

When driving the robot with some tangential and rotational speed, the error relat-
ing to the robot’s pose, estimated only by the kinematic (Eq. 1) model (odometry), is
accumulating. This is due to the error arising from the inaccurate odometry model 1
and the measurement error of the wheels’ encoders. Both errors are treated as the
noises of the rotational speeds of the left- and right-hand wheels ωRn(k) and ωLn(k)

(Eq. 2). The standard deviation of the noise of the right-hand wheel’s rotational
speed std(ωRn(k)) is modelled as being proportional to the rotational speed of the
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right-hand wheel ωR(k). This results in the variance var(ωRn(k)) = δω2
R(k), where δ is

a constant. Analogously, the variance of the noise of the left-hand wheel’s rotational
speed is modelled as var(ωLn(k)) = δω2

L(k). The input-noise covariance matrix Q(k)

for the EKF is then defined as

Q(k) =
[

δω2
R(k) 0
0 δω2

L(k)

]
. (5)

The parameter δ in the covariance matrix above was estimated experimentally, as
shown in Section 4.

2.2 Correction Step of the EKF

The robot’s pose is corrected by minimizing the difference between the line para-
meters of the local environment map and the line parameters of the global map,
transformed into the robot’s coordinates. The global environment map composed
of line segments is a-priori known to the robot. After that, the robot builds a local
environment map based on the current LRF scan. The local environment map is also
composed of line segments.

The global environment map is composed of a set of line segments, described with
the edge points and line parameters α j and pj ( j = 1, ..., nG) of the line equation
in normal form that is based on the global coordinates: xG cos α j + yG sin α j = pj.
The line segments of the current environment scan are merged in a local map, and
are described with the edge points and the parameters ψi and ri (Fig. 2) of the line
equation in normal form, according to the robot’s coordinates,

xR cos ψi + yR sin ψi = ri. (6)

The line segments of the global map, which correspond to the same environment
line segments (e.g., a wall) as the line segments of the local map, must be found, as
shown in the next section. The matching line parameters ψi and ri from the current
local map are collected in the vector z(k) (Eq. 7), which is used as the input for the
correction step of the EKF to update the vehicle’s state

z(k) = [r1, ψ1, ..., rN, ψN]T . (7)

Fig. 2 The line parameters
(p j, α j) according to the global
coordinates, and the line
parameters (ri, ψi) according
to the robot coordinates
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The parameters pj and α j of the matched line segment from the global map
(according to the global coordinates) are transformed into the parameters r̂i and ψ̂i

(according to the coordinates of the robot) by

C j = pj − x̃r(k) cos α j − ỹr(k)sinα j,[
r̂i

ψ̂i

]
= μi(x̃p(k), pj, α j) =

[ |C j|
α j − (ϕ̃r − π

2 ) + (−0.5 · sign(C j) + 0.5)π

]
, (8)

where x̃p(k) (Eq. 3) denotes the prediction of the robot’s pose and the operator |.|
denotes the absolute value. The observation model can then be defined by the vector

μ(xp(k)) = [
μ1(xp(k), p1, α1)

T , ..., μN(xp(k), pN, αN)T
]T

. (9)

The correction step of the EKF

x̂p(k) = x̃p(k) + K(k)(z(k) − μ(x̃p(k))), (10)

K(k) = P̃(k)HT(k)(H(k)P̃(k)HT(k) + R(k))−1,

P̂(k) = P̃(k) − K(k)H(k)P̃(k), Hij(k) = ∂μi

∂ x̃p j(k)
|x̃p j(k) . (11)

x̂p(k) above denotes the state correction and P̂(k) denotes the covariance matrix of
the state-correction error.

When applying the EKF, the noise arising from the LRF’s distance and angle
measurements affects the line parameters z(k) = [r1, ψ1, ..., rN, ψN]T of the local
map. The covariance matrix of the vector z(k) is the output-noise covariance matrix
R(k) (Eq. 11) of the EKF and has, as in [14], a block-diagonal structure, where the
i − th block

Ri(k) =
[

var(ri) cov(ri, ψi)

cov(ψi , ri) var(ψi)

]
, (12)

represents the covariance matrix of the line parameters (ri, ψi). In the following the
formulas to define this covariance matrix are presented.

2.3 Matching the Line Segments from the Local and Global Maps

To perform the correction step of the EKF, the line segments of the global map and
the line segments of the local map, which correspond to the same environment line
segments (e.g., a wall), must be found. Some matching approaches can be found in
[1, 14, 20], while here the matched line segments are found as follows. Each line
segment of the local map is compared to all of the line segments of the global map
transformed into the robot’s coordinates according to the prediction of the robot’s
pose x̃p(k) (Eq. 3). The line segment L of the local map has the parameters (r, ψ)
and the line segments G j ( j = 1, ..., nG) of the global map, which are transformed
into the robot’s coordinates, have the parameters (r̂ j, ψ̂ j). The global line segment
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O j(a j, b j) = | a j + b j – G j|

O j(c j, d j) = | c j + d j – G j|

Fig. 3 Defining the overlapping rate O j(a j, b j) and O j(c j, d j) between the local line segment L and
the global line segment transformed into the robot’s coordinates G j, where G j is the length of a line
segment G j

GS ( j = S), which is the most similar to the local line segment L, satisfies the
following criteria

((r − r̂S)
2 < (r − r̂ j)

2) and ((ψ − ψ̂S)
2 < (ψ − ψ̂ j)

2) and

(OS(aS, b S) < O j(a j, b j)) and (OS(cS, dS) < O j(c j, d j)),

j = 1, ..., S − 1, S + 1, ..., nG, (13)

where and is the Boolean operator. O j(a j, b j) and O j(c j, d j) together represent the
overlapping rate between the local line segment L and the transformed, global line
segments G j. a j, b j, c j and d j (Fig. 3) are Euclidean distances between the edge points
of the line segments L and G j and the overlapping function O j(., .) is defined as

O j(a j, b j) = |a j + b j − G j|, j = 1, ..., nG, (14)

where G j denotes the length of a line segment G j. If the overlapping rate between
the local line segment L and the most similar global line segment GS is below the
threshold values

((r − r̂S)
2 < Tr) and ((ψ − ψ̂S)

2 < Tψ) and

(OS(aS, b S) < T) and (OS(cS, dS) < T), (15)

the line segments are paired. Tr,Tψ and T above are the thresholds.

3 Identification of the Line Parameters

The line segments are extracted from the reflection points of the laser rangefinder.
The LRF in each environment scan (Fig. 4) gives the set of distances ds =
[ds0◦ , ..., ds180◦ ] to the obstacles (e.g., a wall) at the angles θs = [0◦, ..., 180◦]. Figure
4 outlines the problem of visibility. The distances between the consecutive reflection
points (DA in Fig. 4), for which the laser beams are close to being perpendicular to
the observed environment line segment, are very small (few centimeters). In contrast,
the distances between the consecutive reflection points (DB in Fig. 4) are very large
(a few meters and more), if the corresponding laser beams are close to being parallel
to the observed environment line segment. Since the reflection points lying on the
same environment line are far away from their neighboring points, there is a large
part of unobserved environment between them. There could, for example, be the
beginning of a wide corridor (Fig. 4). Therefore, only the consecutive points for which
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Fig. 4 Reflection points between the laser-beam lines and the environment line segment (wall). The
distances between the consecutive reflection points (DB) can be very large, if the corresponding
laser beams are close to being parallel to the observed environment line segment (the problem of
visibility)

the distance between the neighboring points is small enough are taken for the line-
segment points, as shown in what follows. All the consecutive points

xscan(m) = ds(m) cos θs(m), yscan(m) = ds(m) sin θs(m), m = 1, ..., Np, (16)

for which the reflections have occurred (e.g., ds(m) ≤ RLRF) are clustered; the other
points (ds(m) > RLRF) are ignored, where RLRF denotes the range of a LRF. Each
cluster is then split into more clusters if the distance between two consecutive points
is greater than the threshold TS. This threshold is, in a particular environment, set
with regard to the expected smallest distance required to distinguish between two
different consecutive line segments. The problem of visibility described above is
also taken into account here, since each of the consecutive points that lie on the
same environment line with the distance to its neighboring point being greater than
the threshold TS forms a single cluster. Clusters with only one reflection point are
eliminated in the following step. If there are fewer than Nmin points in a cluster, the
cluster is ignored, where Nmin is the minimum number of reflection points required to
define a line segment. Due to the LRF’s noise, more than 2 points must be taken into
consideration to reliably model the environment line segment with the calculated
line segment. Each cluster is then split with the split-and-merge algorithm [19] in
the consecutive sets of reflection points, where each set of points (x, y) corresponds
to some environment line segment. If a certain set of line-segment points (x, y) is
composed of fewer than Nmin points, the set is again discarded. The split-and-merge
algorithm is, as shown in [19], fast and has good correctness. In addition to the line
parameters it also gives the edge points of the line segments. The line parameters
are very often computed using the Hough transform [13, 16, 20, 23]. However, this
algorithm is computationally more expensive and the result of the Hough transform
does not include the edge points of the line segments, which is important information
for localization and map building.
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The classic LSQ method is used for the line fitting. If the set of points (x, y)
belongs to a vertical line segment, the line parameters cannot be computed in the
least-square sense directly. The reason is that the result of the least-squares method
is the parameters of an explicit line equation. In this form the vertical line causes
the estimated slope-parameter to go to infinity. To obtain the best fit of the classic-
LSQ-estimated line parameters to the given set of data (x, y), the slope of the line is
estimated first. If the absolute value of the slope estimated from the edge points of
the set (x, y) is greater than 1, all the points are rotated by an angle of −π

2 to have a
well-conditioned LSQ estimation problem. This is done by exchanging the vector x
with the vector y, and the vector y with the vector −x. The set of line-segment points
(x, y) is then reduced to the parameters r and ψ of the line equation in normal form
according to the robot’s coordinates (Eq. 6) as follows

θ̂ = [k̂l, ĉl]T = (UTU)−1UTy, U =
[

x(1) ... x(n)

1 ... 1

]T

, y = [y(1), ..., y(n)]T , (17)

r(k̂l, ĉl) = ĉl√
k̂2

l + 1
sign(ĉl), ψ(k̂l) = arctan2

⎛
⎝ sign(ĉl)√

k̂2
l + 1

,
−k̂l√
k̂2

l + 1
sign(ĉl)

⎞
⎠, (18)

where n denotes the number of line-segment points. k̂l and ĉl are parameters of
the explicit line equation yR = kl · xR + cl , which are estimated with the classic
LSQ method. Both parameters are converted into the parameters r(k̂l, ĉl) and ψ(k̂l)

(Eq. 18) of the line equation in normal form, where the function arctan2 is a four-
quadrant arctan function. If the line-segment points (x, y) are rotated by −π

2 , the
angle π

2 must be added to the calculated angle ψ (Eq. 18) to get the right line
parameter. The line parameter r (Fig. 2) is invariant to the rotation of the line-
segment points and therefore remains unchanged.

In the literature the normal-line-equation parameters r and ψ (Eq. 6) are very
often computed using the orthogonal least-squares method [14]

[
r∗
ψ∗

]
=

⎡
⎢⎣

x̄cos(ψ∗) + ȳsin(ψ∗)
1
2

arctan(
−2Sxy

Sy2 − Sx2
)

⎤
⎥⎦ �

[
f1(x(1), y(1), ..., x(n), y(n))

f2(x(1), y(1), ..., x(n), y(n))

]
. (19)

x̄ =
∑n

j=1 x( j)

n
, ȳ =

∑n
j=1 y( j)

n
, Sx2 =

∑n

j=1
(x( j) − x̄)2,

Sy2 =
∑n

j=1
(y( j) − ȳ)2, Sxy =

∑n

j=1
(x( j) − x̄)(y( j) − ȳ). (20)

3.1 Estimation of Line Parameters’ Covariances

The variances of the line parameters ri and ψi (Eq. 18) and the covariances between
them, which comprise the covariance matrix Ri (Eq. 12) of vector [ri, ψi] must also
be computed in order to perform the correction step of the EKF. The variances and
covariances must be taken into account, since the noise of the LRF’s readings ds(m)

and θs(m) affects both of the extracted line parameters. A method for estimating the
line parameters’ covariances resulting from the classic LSQ, which is proposed in our
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previous work [24], is briefly outlined here. According to the least-squares theory the
covariance matrix of the line parameters’ vector [k̂l, k̂l] (17) is calculated first by

Ce = var(y( j))(UTU)−1 =
[

var(k̂l) cov(k̂l, ĉl)

cov(ĉl, k̂l) var(ĉl)

]
, (21)

var(y( j)) =
∑n

j=1(y( j) − ŷ( j))2

n − 1
, ŷ( j) = k̂l · x( j) + ĉl, (22)

where var(y( j)) is the vertical-error variance of the line-segment points (x( j), y( j))
( j = 1, ..., n) according to the estimated line with the parameters k̂l and ĉl . Knowing
the variances and covariances between the parameters k̂l and ĉl the variances and
covariances between the parameters r and ψ are calculated as follows

var(ψ) = K2
ψkvar(k̂l),

var(r) = K2
rkvar(k̂l) + K2

rcvar(ĉl) + 2Krk Krc · cov(k̂l, ĉl),

cov(r, ψ) = Krk Kψkvar(k̂l) + Krc Kψk · cov(k̂l, ĉl),

cov(ψ, r) = cov(r, ψ), (23)

Krk = −ĉl k̂l√
k̂2

l + 1(k̂2
l + 1)

sign(ĉl), Krc = sign(ĉl)√
k̂2

l + 1
, Kψk = 1

k̂2
l + 1

. (24)

If the line-segment points (x, y) are rotated by −π
2 , the line-parameter r (Fig. 2)

remains unchanged. Consequently, the variance of parameter r (Eq. 18) also remains
unchanged and is equal to the already-calculated var(r) in Eq. 23. The variance of
the true angle var(ψ + π

2 ) and the covariance covar(r, ψ + π
2 ) are also equal to the

already calculated variance var(ψ) and covariance covar(r, ψ) (Eq. 23), respectively.
If the normal-line-equation parameters r and ψ (Eq. 6) are computed by the

orthogonal LSQ method (Eqs. 19 and 20), then the covariance matrix Ri (Eq. 12)
of the vector [ri, ψi] can be, according to reference [14], calculated as follows

C∗ =
n∑

j=1

(A jB j)Cm j(A jB j)
′, A j =

⎡
⎢⎢⎣

∂ f1

∂x( j)
∂ f1

∂y( j)
∂ f2

∂x( j)
∂ f2

∂y( j)

⎤
⎥⎥⎦ , (25)

B j =
[

cos θs( j) −ds( j) sin θs( j)
sin θs( j) ds( j) cos θs( j)

]
, Cm j =

[
σ 2

d j
σd j θ j

σθ j d j σ 2
θ j

]
. (26)

Cm j ( j = 1, ..., n) above is the covariance matrix of a line-segment point in the polar
coordinates [ds( j), θs( j)], which is a raw LRF-sensor measurement. A j is the Jacobian
matrix of f = [ f1, f2] (Eq. 19) according to the cartesian coordinates, of which the
partial derivatives are shown in [14].
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In Section 4 the experimental results of the localization algorithm, where the line
parameters’ covariances are estimated with the method resulting from the classic
LSQ (Eq. 23), are presented.

3.2 Estimation of the Computational Complexity

Localization is a real-time process. Therefore, the computational efficiency of the
algorithms involved in solving the localization problem is of great importance.
In the localization algorithm described in this paper the vectors of the two line
parameters [ri, ψi]T (Fig. 2) and their covariance matrices must be calculated in
each environment scan made with a LRF sensor for all the observed line segments.
The method for estimating the covariances of the observed line parameters resulting
from the classic LSQ method [24] and the method resulting from the orthogonal
LSQ [14] were briefly outlined in the previous subsection. In our previous work [24]
the computational complexities of both methods were compared with each other.
It is demonstrated that the use of the classic LSQ instead of the orthogonal LSQ
reduces the number of computations in the process of estimating the two normal
line-equation parameters and their covariance matrix.

The computational complexity of both methods is analyzed by counting up all the
elementary mathematical operations involved in the calculation of the line parame-
ters r and ψ (Eq. 6) and their covariance matrix Ri (Eq. 12). The computational
costs of the method resulting from the orthogonal LSQ in the noise cases with
the nonzero and zero LRF’s angular variance σ 2

θ j
(Eq. 26) are Cols1(n) = 69n + 36

and Cols2(n) = 58n + 36, respectively. The computational complexity depends on the
number of line-segment points n. The computational costs of the method resulting
from the classic LSQ are Cls(n) = 12n + 52. The computational complexities of both
methods are compared relative to each other by

Cr1(n) = Cols1(n)

Cls(n)
= 69n + 36

12n + 52
, Cr2(n) = Cols2(n)

Cls(n)
= 58n + 36

12n + 52
, (27)

Fig. 5 The relative
computational complexities
Cr1(n) = Cols1(n)

Cls(n)
and

Cr2(n) = Cols2(n)
Cls(n)

as a function
of the number of line-segment
points n ≥ 6
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where the relative computational complexities Cr1(n) and Cr2(n) refer to the noise
cases with the nonzero and zero LRF’s angular variance σ 2

θ j
(Eq. 26), respectively.

Figure 5 shows the relative computational complexities Cr1(n) and Cr2(n) as a
function of the number of line-segment points n ≥ 6. If the line parameters and their
covariance matrix are calculated from 8 to 200 points, the method resulting from the
classic LSQ has, in the noise case with the nonzero or zero LRF’s angular variance,
about 4 to 5.6 or 3.4 to 4.7 times fewer operations than the method resulting from the
orthogonal LSQ, respectively.

4 Experimental Results

In order to perform the correction step of the EKF the covariances of the line
parameters must be estimated in each environment scan made with a LRF sensor

Fig. 6 a Robot’s position
(x̂r(k), ŷr(k)) estimated with
the EKF compared to the
position estimated with the
original Pioneer 3-AT
localization algorithm. The
line segments represent the
global map of a room.
b Robot’s orientation ϕ̂r(k)

estimated with the EKF
compared to the orientation
estimated with the original
Pioneer 3-AT localization
algorithm
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for all the observed line segments. In this section the method (Eqs. 18 and 23) for
calculating the normal-line-equation parameters [ri, ψi] (Eq. 6) and their covariance
matrices Ri (Eq. 12), which results from the classic LSQ, is tested within the EKF-
based localization of a real mobile robot. A Pioneer 3-AT mobile robot, which is
equipped with encoders for the wheels, a Sick LMS200 laser rangefinder and a laptop
computer, was used for the experiments. The localization algorithm is implemented
in the C++ environment.

The parameters needed to perform the prediction step of the EKF are defined
as follows. The sampling time in the prediction step of the EKF (Eqs. 1 and 3) is
T = 100 ms. The parameters R and L (Fig. 1) from the kinematic model 1 were
experimentally identified as the values R = 10.9 cm and L = 58.7 cm. The parameter

Fig. 7 a Standard deviation of
the predicted and corrected
robot’s pose in the direction
of the xG axis std(x̃r(k))

and std(x̂r(k)), respectively.
b Standard deviation of the
predicted and corrected
robot’s pose in the direction
of the yG axis std(ỹr(k)) and
std(ŷr(k)), respectively
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Fig. 8 a Standard deviation of
the predicted and corrected
robot’s orientation std(ϕ̃r(k))

and std(ϕ̂r(k)), respectively.
b The number of matched line
segments from the local and
global maps Nm(k) during the
experiment

δ in the input-noise covariance matrix Q(k) (Eq. 5) of the EKF was also estimated
experimentally as follows. The differences between the true robot position and
the position estimated by the kinematic model 1 when driving the robot straight
forwards several times (from the minimum to the maximum tangential speed of the
robot) were observed. The differences between the true robot orientation and the
orientation estimated by the kinematic model when rotating the robot around its
own axis several times (from the minimum to the maximum angular speed of the
robot) were also observed. According to the error in the position and the orientation
from the experiments, the parameter δ was calculated and set to the value 0.01.
The parameters needed to perform the correction step of the EKF are defined as
follows. The thresholds (Eq. 15) for finding the corresponding line segments from
the local and global maps according to the overlapping rate were heuristically set to
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the values Tr = 20 cm, Tψ = π
6 and T = 40 cm. The range of the used LRF sensor is

RLRF = 80 m. The threshold for splitting the clusters of the LRF’s reflection points
is heuristically set to the value TS = 15 cm. A minimum number of reflection points
required to define a line segment is set to the value Nmin = 5.

The localization algorithm is tested in an indoor structured environment (room),
which is mainly composed of walls and other straight-edged objects. The global
environment map, which is represented with line segments, is shown in Fig. 6a.
During the experiment the robot was driven with a tangential speed of approximately
0.64m/s. When the robot was turning its angular speed was approximately 48◦/s,
and when rotating around its own axis the angular speed was approximately 87◦/s.
Figures 6a, b show robot’s pose x̂p(k) = [x̂r(k), ŷr(k), ϕ̂r(k)]T (Eq. 10), estimated
with the EKF. This pose is compared to the pose estimated with the original Pioneer
3-AT localization algorithm, and both poses are very close to each other. Figures 7a,
b and 8a show, for each time instant k, the standard deviations of the robot’s
pose prediction error std(x̃r(k)), std(x̃r(k)) and std(ϕ̃r(k)), which are obtained from
the corresponding covariance matrix P̃(k) (Eq. 3). Figures 7a, b and 8a show also
the standard deviations of the robot’s pose correction error std(x̂r(k)), std(x̂r(k))

and std(ϕ̂r(k)), which are obtained from the corresponding covariance matrix P̂(k)

(Eq. 11). Figure 8b shows that the number of matched line segments from the local
and the global maps Nm(k) was quite large during the experiment, which is important
to achieve good convergence properties of the EKF. On average, a value of around
Nm(k) = 8 was achieved. The minimum value Nm(k) = 1 was only achieved three
times. The maximum value was Nm(k) = 15.

5 Conclusion

In this paper an EKF-based localization of a four-wheeled mobile robot equipped
with encoders for the wheels and a LRF sensor is presented. The prediction step of
the EKF is performed by simulating the kinematic model of the robot. The standard
deviation of each robot-wheel’s angular speed is, in the input-noise covariance
matrix, estimated as being proportional to the wheel’s angular speed. In order
to perform the correction step of the EKF the covariances for all the observed
environment lines must be estimated in each environment scan made with a LRF
sensor. A method for estimating the line parameters’ covariances resulting from the
classic LSQ was tested within the localization experiment in an indoor structured
environment. The good localization results prove the applicability of this method for
the purposes of the EKF-based localization of a mobile robot. The line segments
from the local and global maps are paired if the overlapping rate between the most
similar line segments is below the threshold. The number of matched line segments is
quite large, which is important to achieve good convergence properties of the EKF.
The robot’s pose, estimated by the EKF, was compared to the pose estimated by the
original Pioneer-3AT localization algorithm, and both poses are very close to each
other. The paper was focused on solving the problem of mobile-robot localization
and in the experimental results a good convergence of the EKF was achieved. In
future work the localization algorithm will be extended into the SLAM algorithm.



202 J Intell Robot Syst (2011) 62:187–203

References

1. Anousaki, G.C., Kyriakopoulos, K.J.: Simultaneous localization and map building of skid-steered
robots. IEEE Robot. Autom. Mag. 14(1), 79–89 (2007)

2. Arras, K.O., Siegwart, R.Y.: Feature extraction and scene interpretation for map-based naviga-
tion and map building. In: Proceedings of SPIE, Mobile Robotics XII, vol. 3210, pp. 42–53 (1997)

3. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): part II. IEEE
Robot. Autom. Mag. 13(3), 108–117 (2006)

4. Baltzakis, H., Trahanias, P.: Hybrid mobile robot localization using switching state-space models.
In: IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA ’02,
pp. 366–373 (2002)
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