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Abstract A fundamental aspect of autonomous vehicle guidance is planning tra-
jectories. Historically, two fields have contributed to trajectory or motion planning
methods: robotics and dynamics and control. The former typically have a stronger
focus on computational issues and real-time robot control, while the latter em-
phasize the dynamic behavior and more specific aspects of trajectory performance.
Guidance for Unmanned Aerial Vehicles (UAVs), including fixed- and rotary-wing
aircraft, involves significant differences from most traditionally defined mobile and
manipulator robots. Qualities characteristic to UAVs include non-trivial dynamics,
three-dimensional environments, disturbed operating conditions, and high levels of
uncertainty in state knowledge. Otherwise, UAV guidance shares qualities with
typical robotic motion planning problems, including partial knowledge of the envi-
ronment and tasks that can range from basic goal interception, which can be precisely
specified, to more general tasks like surveillance and reconnaissance, which are
harder to specify. These basic planning problems involve continual interaction with
the environment. The purpose of this paper is to provide an overview of existing
motion planning algorithms while adding perspectives and practical examples from
UAV guidance approaches.
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1 Introduction

In the last decade, significant changes have occurred in the field of vehicle motion
planning, and for UAVs in particular. UAV motion planning is especially difficult
due to several complexities not considered by earlier planning strategies: the in-
creased importance of differential constraints, atmospheric turbulence which makes
it impossible to follow a pre-computed plan precisely, uncertainty in the vehicle state,
and limited knowledge about the environment due to limited sensor capabilities.
These differences have motivated the increased use of feedback and other control
engineering techniques for motion planning. The lack of exact algorithms for these
problems and difficulty inherent in characterizing approximation algorithms makes
it impractical to determine algorithm time complexity, completeness, and even
soundness. This gap has not yet been addressed by statistical characterization of
experimental performance of algorithms and benchmarking. Because of this overall
lack of knowledge, it is difficult to design a guidance system, let alone choose the
algorithm.

Throughout this paper we keep in mind some of the general characteristics
and requirements pertaining to UAVs. A UAV is typically modeled as having
velocity and acceleration constraints (and potentially the higher-order differential
constraints associated with the equations of motion), and the objective is to guide
the vehicle towards a goal through an obstacle field. A UAV guidance problem is
typically characterized by a three-dimensional problem space, limited information
about the environment, on-board sensors with limited range, speed and acceleration
constraints, and uncertainty in vehicle state and sensor data.

In order to be able to compare algorithms on a rigorous basis it is necessary to
establish their degree of soundness, completeness, optimality, precision, and compu-
tational complexity. Once accomplished, this work will help in choosing an algorithm
based on the requirements called for by a particular application. This brings up the
dual of the problem of understanding the algorithm, which is that of understanding
the requirements of a particular application. In the end, these are two sides of one
larger problem. Before understanding the larger problem of UAV guidance we start
with a comprehensive perspective of the field and a general understanding of the
UAV guidance problem. This review covers recent developments in the robotics and
aerospace guidance and control fields. It summarizes as comprehensibly as possible
what has been claimed or proven regarding these algorithms. It does not attempt to
fill in characteristics for algorithms that have not been published. There is a great
deal of work remaining to be done in order to characterize existing algorithms, in
particular those capable of handling differential constraints.

The paper is organized as follows. The next section gives an overview of the
fundamental issues in vehicle motion planning, including key terminology, definitions
and concepts, problem types, problem metrics, and algorithm performance criteria.
Section 3 provides a survey of recent work focusing on path planning without
differential constraints. These include: roadmap methods, exact cell decomposition,
approximate cell decomposition, potential field methods, probabilistic approaches,
and weighted region problems. Section 4 provides a survey of trajectory planning
with differential constraints. These include: state-space sampling methods, minimum
distance discrete path followed by trajectory forming, mathematical programming,
potential field methods, and solutions given uncertainty. We conclude the paper with
a brief discussion based on the broad perspective offered by the survey.
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2 Background and Overview

The main focus of this article is to survey algorithms that solve the problem of
trajectory planning of a dynamics-constrained vehicle through an environment with
obstacles. For many UAV applications, a point vehicle representation usually suffices
as a slightly conservative assumption that vastly simplifies the problem. In addition,
the problem of finding a trajectory that minimizes some cost functional is of interest.
Given that an exact solution of trajectory planning in an obstacle field is a variational
calculus problem with analytic solutions that are computable only for some of the
simplest cases, all the algorithms used to solve this problem in three-dimensional
space are approximation algorithms. Many of the algorithms designed to solve the
dynamics-constrained problem rely on a decomposition approach, first solving a
path planning problem, applying smoothing constraints, forming a trajectory that
conforms to the path, and using a control loop to follow this trajectory [70]. Since any
of the traditional dynamics-unconstrained algorithms found in the field of robotics
may be used for the path planning stage in this approach, these are covered briefly in
this review.

2.1 Overall Problem Description

Vehicle motion planning is a special case of the general motion planning problem,
which in general is very difficult to solve, especially as the number of degrees of
freedom increases. In a typical UAV application, the vehicle operates in three-
dimensional space, has two to four degrees of freedom, and has differential con-
straints, including limited speed and maximum acceleration. The resulting problem
space has at least five to 12 dimensions, associated with the equations of motion and
involving constraints on states and input variables. There does not exist an algorithm
that provides an exact analytic solution to such a problem. Indeed, even state-of-
the-art approximation algorithms operating on a three-dimensional subspace of this
problem space are difficult to compute in real time. Furthermore, several simplifi-
cations and sub-cases of the general problem have been proven to be unsolvable in
polynomial time [18]. Approximation algorithms are possible, and often rely on exact
solutions to simplified sub-problems.

2.2 Previous Surveys

There are several important works covering the field of motion planning, most of
them in the form of textbooks. The book Complexity of Robot Motion Planning
[18] proves bounds on several motion planning problems that are still relevant. The
book by Schwartz and Yap [98] contains another review. The classic textbook Robot
Motion Planning [66] gives detailed explanations of the algorithms used until 1990,
and remains one of the best sources of information on algorithms for solving path
planning problems on polygonal obstacle field representations. Another textbook,
[39] titled Motion Planning in Dynamic Environments, systematically covers the
dynamic environment problem and describes computational bounds for several
problems. Hwang and Ahuja [48] is a comprehensive survey of the field of motion
planning from the same year.
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More recently, Barto et al. [4] includes a comprehensive overview of optimal con-
trol type approaches, especially dynamic programming, in its first 10 pages. Tarabanis
[64] discusses closely related problems of sensor based planning, and [109] reviews
probabilistic approaches. The most significant recent work is [70], a textbook titled
Planning Algorithms. Although not designed to be a comprehensive survey, this book
provides broad coverage of the field of motion planning algorithms, and has a strong
focus on vehicle motion planning. Chapters 8 and 14 of this book are of particular
interest to problems covered here, since they present material not found in the above-
mentioned survey works. Chapter 8: Feedback Motion Planning, covers practical
planning algorithms that provide feedback for all possible configurations of the
vehicle, generally using navigation functions. Chapter 14: Sampling-Based Planning
Under Differential Constraints, discusses approximate solutions for vehicles where
differential constraints are important. Another important recent work is [33], which
covers the heuristic-based algorithms (such as A* and D*) with a focus on dynamic
problems, and contain concise summaries of the algorithms and many important
references.

The following does not attempt to duplicate the efforts in these previous surveys,
but rather to provide a summary of developments in the field since 1992, with a
focus on the problem of trajectory planning for the point vehicle with differential
constraints. As a result, there are many references below to the more important of
these previous surveys. Especially in the review of path planning literature, for many
algorithms a reference to one of these surveys is given as an only source.

2.3 Definitions and Terminology

One difficulty when reviewing and studying motion planning or trajectory planning
comes from the varied background of the work. We start with an introduction of the
key definitions and concepts. These will then be used consistently throughout this
paper. Some terms are defined anew here but most are consistent with terminology
used in Steven LaValle [70] and Hwang and Ahuja [48].

2.3.1 Problem Space

A vehicle is an object that is capable of motion. Generally, vehicles are represented
by a position vector in two- or three-dimensional space and an orientation vector,
along with a geometric model of the vehicle. A vehicle is defined in a similar way
to Hwang’s robot, but is simpler in that it does not contain a manipulator. A world
space (Fig. 1) is the physical space in which a vehicle exists. For example, a helicopter
may exist in three-dimensional Euclidean space, while a ground vehicle may be
thought to exist on a two-dimensional surface embedded in three-dimensional space.
A configuration is a vector of parameters that define the shape of the vehicle—most
vehicles can be considered to be rigid bodies in three-dimensional space, and thus
defined uniquely by six numbers: three position coordinates and three orientation
coordinates. A robot with a manipulator will generally have a much larger number
of parameters, because each degree of freedom of the manipulator adds a parameter
to the configuration space. The set of all possible configurations of a vehicle is called
the configuration space or C-space. It is often necessary, especially in the case of
aircraft, to include a state, which consists of the configuration coupled with rates
of change of the configuration. In our aircraft example, the state is given by three
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World space

Free space

Area vehicle representation Point vehicle representation 

Obstacle space

Fig. 1 Illustration of terms. Two representations of a simple two-dimensional example case are
shown in order to illustrate terms. On the left the vehicle is represented by a disk, and on the
right the vehicle is represented by a point in the expanded terrain representation: the vehicle is a
UAV, initial state is marked by a square, and goal state is marked by a diamond; in both cases
the configuration space reduces to the world space; the state space is not shown, but velocity and
acceleration constraints are implied. Only the path is shown as a partial representation of the
trajectory, without timing information

positions coordinates, three velocity coordinates, three orientation angles, and three
orientation rate angles, for a total of 12 variables. The set of all possible states is
known as the state space. The dynamic characteristics of the vehicle determine the
dimension of the system, and many systems may use a reduced set of variables that
adequately describe the physical state of the vehicle. It is common to consider smaller
state spaces with coupled states, or to extend the state space to include higher-
order derivatives. The number of coordinates needed to uniquely represent each
configuration or state is known as the number of degrees of freedom, and is equivalent
to the dimension of the configuration or state space. The world, configuration, or
state space is divided into free space and obstacle space; these are disjoint subsets
of the space. Free space is the subset of points in which the vehicle can move
without contacting obstacles, and obstacle space is the subset of points representing
a collision (in the case of state space, this includes the region of inevitable collision)
between the vehicle and an obstacle. A path is a curve traced by the vehicle in the
configuration space, and a trajectory is a path that includes the time along the path.
A trajectory is typically associated with an equation of motion since the differential
equation describes the coupling between the spatial and temporal evolution of the
system states. Motion planning refers to either path or trajectory planning, and
produces a path or trajectory from an initial state or configuration to a goal state
or configuration. More generally, this can be considered as set of paths from a set of
initial states to a set of goal states.
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2.3.2 Motion Planning Terminology

A motion planning algorithm is considered to be complete if and only if it finds a path
when one exists, and returns a variable stating no path exists when none exists. It is
considered to be optimal when it returns the optimal path with respect to some crite-
rion. Note that any optimal planner is also complete. Two weaker forms of complete-
ness and optimality are also commonly used: resolution completeness/optimality and
probabilistic completeness/optimality. Resolution completeness/optimality is related
to the discretization of the solution space, and means that as the resolution of the
discretization increases, an exact solution is achieved as the discretization approaches
the continuum limit. Probabilistic completeness/optimality means that as computing
time approaches infinity, the probability of finding an exact solution approaches one.
Anthony Lazanas [3] discusses motion planning with uncertainty, and makes use of
additional definitions. A sound planner is one that always guarantees the vehicle will
enter the goal region and stop there without hitting any obstacle despite uncertainty
in sensing and control. This definition implies that the uncertainties are bounded.
Soundness is perhaps the most crucial property for UAVs, because the results of a
collision are so catastrophic.

2.4 Algorithm Characteristics

2.4.1 Algorithmic Complexity

Standard algorithmic asymptotic complexity analysis methods are used in this pa-
per. The variable N (or n) denotes the complexities of describing the obstacle
space (i.e. the number of obstacles), and represent the number of bits needed to
define this space. Whenever a continuous space is approximated by a finite set of
variables, M denotes the number of variables used to approximate this space, or
the level of discretization. In robotics literature, M (or m) is sometimes used to
denote complexity of describing the robot shape—however, in this article M is used
exclusively for the level of discretization. The number of dimensions of the config-
uration or state-space is denoted by D. Asymptotic notation is used for complexity
analysis whenever possible: O () means the algorithm is bounded from above (within
a constant factor), � () denotes an algorithm bounded from below, and � () denotes
an algorithm bounded both above and below. Unless otherwise stated, complexity
is based on time rather then on memory. Additionally, the standard notation of P,
NP, PSPACE, EXPTIME, and EXPSPACE are used to characterize algorithms. The
relation:

P ⊆ N P ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE

holds (with the condition that it is an open problem whether these spaces are
proper or improper subsets of each other). Practically speaking, only algorithms in
P are solvable in real time. However, approximation algorithms often exist for more
difficult problems which admit an approximate solution with lower complexity then
the exact solution.
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2.4.2 Performance of Approximation Algorithms

Standard notation is also used for approximation bounds. A relative performance
guarantee is denoted by the quantity ρ: a ρ-approximation algorithm is accurate
within a factor ρ of the true solution. An absolute performance guarantee is denoted
by the quantity ε, and means the approximation algorithm is accurate within a
constant value ε of the true solution.

2.5 Problem Types

There are a variety of problem types defined in the literature. A problem is
considered static if there is perfect knowledge of the environment, and dynamic if
knowledge of the environment is imperfect or changes as the task unfolds. When
the obstacles are fixed in space, the problem is called time-invariant, and when they
are allowed to move, the problem is called time-variant. The term differentially con-
strained (or kinodynamic) means that vehicle’s equations of motion act as constraints
on the path, i.e., the path must be a trajectory of the dynamic system (for differentially
unconstrained problems, the vehicle may use infinite accelerations to achieve a path).

It is possible to further categorize problems based on the assumed vehicle shape,
environment type and behavior. The common problem types used in literature are
described below.

2.5.1 Point Vehicle (Point Robot)

In this problem, the vehicle is modeled as point within the world space. Thus the
configuration space is the same as the world space. Often, a vehicle is modeled by
fitting it inside a bounding ball (in two-dimensional Euclidean space this is a circle
and in three-dimensional Euclidean space a sphere), and the configuration space is
simply the world space with the obstacles expanded by the radius of the vehicle’s
bounding ball. Thus the ball-shaped-vehicle problem is the same as the point vehicle
problem. This is a conservative approximation to and simplification of the mover’s
problem (described below).

This is perhaps the simplest problem, and optimality is defined in terms of the
distance between initial and goal points, i.e., the minimum-length path is the optimal
path.

2.5.2 Point Vehicle with Differential Constraints

In problems with differential constraints, time and states have to satisfy the equations
of motion of the vehicle (associated with Newton’s second law). Typically the states
are constrained by hard limits on velocity and acceleration, and sometimes also on
higher-order derivatives of position. For many UAVs, this more realistic model is
needed for stable control of the vehicle. In the limit of a vehicle constrained only
by velocity bounds (a vehicle capable of infinite acceleration), this problem becomes
simplified to a point vehicle problem without differential constraints.

Optimality may be defined as minimizing the flight time between initial and goal
points, or by minimizing some other attributes of the trajectory, such as energy
consumed.
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2.5.3 Jogger’s Problem

This problem, named in Shkel and Lumelsky [101], deals with the dynamic problem
of a jogger with a limited field of view attempting to reach a goal position. The
jogger’s problem is representative of a vehicle with differential constraints, operating
in a dynamic and possibly time-variant environment, with limited sensory range.

Optimality is defined the in the same manner as in other differentially constrained
problems.

2.5.4 Bug Problem

This is actually a special case of the jogger’s problem, in the limit when the field of
view goes to zero. A complete algorithm for this problem is described in [118]. In this
case, the vehicle must touch the obstacle (or come in very close proximity) in order
to sense it.

2.5.5 Weighted Region Problem

When some regions of the world, configuration, or state-space are known to be more
desirable then others, the problem is better modeled as a weighted-region problem.
An example of this problem is the case of an off-road ground vehicle that drives
more quickly over smooth terrain and more slowly over rough terrain. The terrain
is represented by a function close to 0 for smooth terrain, and with an infinite value
representing un-navigable terrain. This type of problem may be formulated either as
an unconstrained or a dynamics-constrained vehicle.

In this problem, an optimum planner minimizes the integral of the weight over the
path.

2.5.6 Mover’s Problem

This is the problem of moving an object through an obstacle field to a goal state. The
vehicle is usually modeled as a rigid body, thus the configuration space has a larger
dimension than the world space. A classical problem of this case is the famous piano
mover’s problem. For this kind of problem, it is usually assumed that the object has no
dynamic constraints. Mover’s problems measure complexity of the vehicle in addition
to that of the obstacle field, and call this number m or M. A more general case is
to allow dynamic constraints, and is most commonly used in manufacturing. The
differentially-constrained mover’s problem is of very high dimension: for example,
a three-dimensional differentially-constrained mover’s problem has 12 dimensions.
Given this difficulty, this problem is generally solved in configuration space, and
many algorithms are merely complete and ignore the optimization problem. Some
algorithms maximize closest approach between the vehicle and obstacle field.

2.5.7 General Vehicle with Differential Constraints

This is the most sophisticated problem type that is investigated. The differential
constraints typically arise in two forms: one is on kinematics, and this kind of
problem are usually called nonholonomic problem. Another one is on dynamics, this
means that it involves second-order or higher differential constraints. The difference
between this problem and the point vehicle problem is that now it is insufficient
to model the vehicle with only a point in the world space, since we now need six
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variables to indicate the position of the vehicle in a three dimensional Euclidean
space. But for a space with no obstacles, the location can be converted to a point in
a higher dimension configuration space. For most cases, the configuration space is
not a simple Euclidean space. To make things worse, when obstacles are involved,
the configuration space itself is not adequate to represent the obstacle avoidance
requirements, a higher order phase space has to be employed.

2.5.8 Time-Varying Environments

In this problem, the vehicle has to avoid obstacles that are moving in time. Fujimura
and Tunii [39] discusses this problem in depth, and determines some upper and lower
bounds for algorithm complexity.

Optimal planners for time-varying environments generally attempt to minimize
path length or time.

2.5.9 Multiple Movers Problem (Multimovers)

This is the case where there are multiple vehicles moving in the same space. It can
be seen as a combination of the mover’s problem and the time varying environment
case. An example is a factory floor where many robots move between stations. As
the dimension of the configuration space increases for each robot added, algorithms
scale poorly with the number of robots.

One possible way of measuring optimality is to minimize the sum of the distance,
time, or some other quantity covered by all vehicles in the problem space.

2.6 Problem Metrics

The choice of algorithm to use depends on the type of problem to be solved. For
example, if the problem is one of plotting a course for a truck to travel across
a continent, there is no need to use a dynamics-constrained planner. The most
commonly-used metric is obstacle complexity, or the amount of information used
store a computer model of the environment. It is generally measured in terms of num-
ber of obstacles, obstacle edges, or obstacle vertices, and is called N. Other metrics
are the fill ratio (percentage of the configuration space occupied by obstacles), along
with higher-order characteristics, such as mean passage width or degree of clustering
of obstacles. A useful and thorough discussion on metrics useful for vehicle motion
planning is available in Rhinehart [90].

2.7 Algorithm Performance Criteria

One of the purposes of this paper is to list the performance of various motion
planning algorithms published in literature. Criteria that are important for a suc-
cessful practical implementation include operational and computational aspects.
Consistently keeping a safe distance from obstacles, and producing smooth paths that
exhibit desirable properties (e.g. duration, energy usage) are typical requirements.
A reliable, real-time computation without unexpected lags is critical since it can
impede maintaining the operational requirements. Low computational complexity
is therefore generally an important goal for an algorithm. A faster algorithm can
allow a more rapid update of the solution. The main algorithm characteristics
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used for describing algorithms include computational complexity (often described
in asymptotic big-O notation), and degree of approximation to the optimal solution
(generally described by a maximum error factor or bound). Given the often uncertain

Sensor model: 
Sensor data representation: 

- Black points represent sensed obstacle points 

- Initial position marked by a square, goal position
marked by a diamond 

-The grid is not actually part of the representation 

Terrain representation: 
Obstacle space represented in this example by grey pixels
and free space by white pixels 

Roadmap:
Many types of roadmap are possible – shown here is a
quadtree spatial decomposition map 

Graph search: 
The roadmap step produces a graph, and graph search
algorithms such as Dijkstra's method or A* are used to find a
sequence of waypoints 

Trajectory generator: 
This starts with waypoints produced by the graph search, and
is smoothed into a flyable trajectory. This may be divided into
two steps: smoothing and speed control. Only smoothing is
shown in this image. 

Fig. 2 Stages in a typical example multi-level decoupled control type planner
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nature of real-world problems, the ability to deal with various types of uncertainty
and system errors is also crucial for algorithms in practical applications. Another
way to deal with uncertainty is to have adaptive algorithms which do not require
re-computing.

Asymptotic polynomial time computational complexity for an exact algorithm
has been demonstrated for some simple problems (especially in two-dimensional
problem spaces). For most problems considered for UAV tasks, it has been proven
that no algorithm exists that can find exact solutions in polynomial time. In the
absence of a proven computational bound, it is important to have methods that
allow precise benchmarking in order to characterize the algorithm, and demonstrate
experimental performance. Ultimately, an algorithm’s performance is judged by the
operators of the actual vehicle in the field; this practical perspective needs to be kept
in mind when analyzing computational complexity.

2.8 Problem Definition for a UAV as an Illustrative Example

Many UAVs can be modeled as a point vehicle, as described above in Section 2.2.
This is the simplest model that is sufficiently detailed to produce a practically
meaningful result: Since UAVs don’t have to fit into tight spaces while flying, the
simplification of bounding the UAV by a rotationally-symmetrical solid has little
effect on the trajectory generated by the algorithm. The mover’s problem therefore
has more complexity then what is actually needed for UAV tasks.

In many UAV problems, the differential constraints are significant since not
accounting for the equations of motion may produce conservative results and also
precludes explicitly taking into account for criteria like duration or energy.

The jogger’s problem, weighted region problem, and multiple vehicle problem are
also useful to consider. Poor GPS telemetry, air turbulence, or obstacle detection
and registration are common issues in UAV applications. Properly dealing with
such sources of uncertainties has not yet been adequately posed or studied for this
class of planning problems. In fact, the traditional problem statement of motion
planning does not admit solution that is sound or complete, whenever uncertainty
is characterized by an infinite-tailed distribution (such as the normal distribution). In
other words, the motion planning is ill-posed for most practical problems involving
uncertainty.

Figure 2 shows stages in an example multi-stage algorithm, and illustrates the close
interaction between sensor data processing and motion planning. Many algorithms
are able to combine two or more of these stages.

3 Recent Work in Path Planning Without Differential Constraints

Path planning without differential constraints is included in this article because it
is often used as a basis for algorithms with differential constraints. Most of the
algorithms are well covered by other surveys and textbooks, so comprehensive
references are not provided for this class of problems unless significant advancements
have been published. The reader is advised to refer to the references given in
Section 2.2: Previous surveys. Table 1 provides a direct side-to-side comparison of
all the algorithms presented in this section.
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3.1 Roadmap Methods

These methods reduce the problem to that of a graph search by fitting a graph (ie. a
roadmap) to the space. In order for the algorithm based on a given roadmap to be
complete, it must follow certain topographical properties [66].

A couple of more recent roadmap methods have been published. Dechter and
Pearl [29] verifies the optimality of A*, in comparison with generalized search
strategies.

3.1.1 Visibility Graph

This is an exact solution to the point vehicle problem, is both complete and optimal,
and runs in O(N2) time. However, it is computable in only two dimensions. In a
C-space of more then two dimensions, an exact solution is proven to be NP-hard.
This approach uses the knowledge that the shortest path grazes polygonal obstacles
at their vertices, and builds a roadmap of lines connecting each vertex with all vertices
visible from its position. Since the minimum-length path comes arbitrarily close
to obstacles many times in a typical path, this approach offers no safety buffer to
prevent collisions in the case of systems with uncertainty in their position. One way
researchers have attempted to avoid this problem is by expanding the obstacle space
by a ball larger then the vehicle’s longest radius.

3.1.2 Edge-Sampled Visibility Graph

This algorithm approximately solves the three-dimensional path length minimization
point vehicle problem, and runs in complexity that is polynomial in both error and in
computation time. This algorithm assigns multiple vertices along edges of polyhedral
obstacles so that there is a minimum edge length η, and builds a visibility graph from
this expanded set of vertices. It is complete and resolution-optimal.

3.1.3 Voronoi Roadmap

Given the difficulty in controlling vehicles precisely enough to follow the minimum-
distance path without risk of colliding with obstacles, many skeleton-based roadmap
approaches have been taken. The Voronoi approach builds a skeleton that is maxi-
mally distant from the obstacles, and finds the minimum distance path that follows
this skeleton. This computationally efficient algorithm runs in O(N log N) time.
Although this algorithm is a two-dimensional algorithm, there have been several
efforts to convert it to 3 dimensions. It is complete, but not optimal.

More recently, Choset and Burdick [21] proposed a hierarchical Voronoi graph
generalized to multiple dimensions, and in [22] the algorithm is updated to allow
incremental construction. Howlett et al. [45] discusses use of Voronoi roadmap
methods for practical unmanned helicopter operation.

3.1.4 Freeway Method

This method, like the Voronoi roadmap, builds a skeleton that is distant from the
obstacles, by fitting free space with generalized cylinders. It is not limited to two
dimensions, but it is incomplete and non-optimal.
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3.1.5 Silhouette Method

While not used in practical applications, this method is useful for proving bounds on
complexity. This is the only algorithm that is proven to be complete for an arbitrary
number of dimensions with arbitrary obstacle geometry. Canny [18], who designed
the algorithm, proved that it can solve the problem in double exponential time. The
algorithm is complete but not optimal.

3.2 Exact Cell Decomposition

These methods decompose the free configuration space into smaller convex poly-
gons, which are then connected by a graph and searched using a graph search.

3.2.1 Trapezoidal (Vertical) Decomposition

This approach divides the free space into trapezoidal regions by dividing it with
vertical lines from each of the obstacle vertices. The vertical lines are trimmed
so that they do not bisect the obstacles themselves. A roadmap is then formed
by connecting the midpoints of adjacent trapezoids, and searched using a graph
searching algorithm. This approach is complete but not optimal, and runs in O(N
log N) time.

3.2.2 Critical-Curve Based Decomposition

While the trapezoidal decomposition is useful for point vehicle path planning,
rigid vehicles with freedom to rotate require a more complex approach. In this
algorithm, free space is divided into critical and non-critical regions. The boundaries
of these regions are piecewise polynomial curves. The various regions formed by the
decomposition process are connected by a graph and this graph is searched for a
path. The algorithm is for two-dimensional problems, is complete but not optimal,
and runs in O(N2 log N) time.

3.2.3 Cylindrical Algebraic Decomposition

This more complex decomposition extends the critical-curve decomposition to three-
dimensional problems. It bisects parts of the free space using critical surfaces. It is
complete but not optimal, and runs in double exponential time.

3.2.4 Connected Balls in Free Space

This approach is designed to deal with un-structured obstacle fields, and operates
by filling free space with overlapping balls (for instance, spheres are balls in three-
dimensional Euclidian space) that are totally in free space.

Vandapel et al. [117] introduces unions of free-space balls as a roadmap in multi-
dimensional space.
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3.3 Approximate Cell Decomposition

3.3.1 Rectanguloid Cell Decomposition

This divides the entire configuration space into rectanguloid regions, and labels each
rectanguloid as being completely filled (black), partially filled (grey), or completely
empty (white). It is proven to be resolution-complete.

The most common example is that of the A* or D* search over a square or
cubic grid of occupied or unoccupied cells. Ferguson et al. [33] reviews this type of
approach, with a focus on dynamic problems.

3.3.2 2m Tree Decomposition (Quadtree or Octree Decomposition)

This decomposition is designed to reduce the number of points needed to represent
obstacles as compared to a full grid representation.

This type of representation is becoming increasingly more common, and several
new papers using tree decompositions have been published. Sinopoli et al. [102] uses
wavelet transform processing for path planning purposes. Behnke [5] proposes a
quadtree algorithm with weights put in to avoid obstacles by a longer distance. Soucy
and Payeur [105] compares a fixed resolution vs. quadtree characterization for similar
problems. Tsenkov et al. [113] describes a real-time implementation of planning over
a quadtree representation of obstacles, demonstrated on an unmanned helicopter.

3.4 Approximate and Decompose

This decomposition is similar to the trapezoidal decomposition, but replaces the
triangular end regions with rectangular mixed regions. This approach reduces the
proportion of mixed area in comparison with a grid decomposition with mixed cells.

3.5 Potential Field Methods

Potential field methods are based on the idea of assigning a potential function to
the free space, and simulating the vehicle as a particle reacting to forces due to the
potential field. The goal point has the lowest potential, and attracts the vehicle, while
obstacles repel the vehicle. Since their initial publication Khatib and Mampey [59],
potential field methods have been generally known for being of low computational
complexity but incomplete. However, a potential field which has the properties of
a navigation function [92] makes a complete path planner. There are two classes
of potential fields known to satisfy properties of a navigation function: those based
on harmonic functions [27] and those based on solving the optimal distance-to-go
function [42]. These methods require, however, discretizing the configuration space
into a grid with M points, and this discretization scales as O(MD) with the dimension
D of the configuration space. The added advantage of a navigation function is that it
can be used to provide direct feedback control, rather then relying on feed-forward
control, as traditional trajectory planners do. A single navigation function produces
a trajectory for every possible starting point in the configuration space.
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3.5.1 Potential Field with Gradient Descent (Virtual Force Field—VFF)

This is the original potential field approach, and is designed to run quickly. It assigns
a decaying function to the goal point with a negative minimum value, and a decaying
function to each of the obstacles with a positive maximum value, and sums the
functions from the goal and all obstacles to get the total potential.

Since the VFF algorithm is sometimes used directly for trajectory generation and
is valid for an arbitrary number of dimensions, some references are included here.
Khatib and Mampey [59] is cited as the first use of the potential field method, and for
many years the term “potential field” applied strictly to this algorithm. Borenstein
and Koren [12] and Borenstein and Koren [13] couple sensing with planning in an
evidence grid, using the VFF method to provide motion planning inputs for ground
robots. A reactive method, based heavily on localized sensor input and immediate
response, uses a grid with VFF. Yoram Koren and Johann Borenstein [63] discusses
inherent limitations of potential methods, but the contents of this article apply only
to the VFF algorithm. The limitations mentioned in this article, trap situations due
to local minima and no passage between closely spaced obstacles, do not apply to
potential fields that are navigation functions in the sense of Rimon-Koditschek. The
oscillations cited here result from poor control system design, and can be eliminated
by applying classical control theory. Ahuja and Chuang [2] publish a generalized
potential field based on summed Poisson solutions of simple cases.

3.5.2 Potential Field Guided Search (Depth-First, Best-First, Variational
Planning—Arbitrary Potential Field)

This approach is designed for potential fields that have local minima. Rather then use
gradient descent, which is easily trapped in local minima, a search that is complete in
the resolution or probabilistic sense is used. This can be considered as being similar
to an A* search with the simple heuristic replaced by a potential field, although this
approach is somewhat more general since it admits depth-first searches as well. The
variational planning approach uses the potential as a cost functional, and attempts to
find a path to the goal point that minimizes this cost.

3.5.3 Harmonic Potential Functions

This class of functions is based on solving a partial differential equation with a
Laplacian term. These equations include Laplace’s equation, Poisson’s equation,
the conduction heat flow equation, approximations to Navier–Stoke’s equation, and
other partial differential equations of this type. While not producing an optimal path,
these equations generate functions that are true navigation functions in the sense of
Rimon and Koditschek, meaning they are smooth, have only one local minimum
that occurs at the goal point, potential obtaining a constant maximal value at the
boundaries of obstacles, and has a non-degenerate Hessian at each critical point of
the function. This implies that these functions may be used to produce a complete
planner using a simple gradient descent search. This type of function needs to be
solved by a numerical method with global information, and is generally solved on
a grid.



82 J Intell Robot Syst (2010) 57:65–100

The first publications of this method are in Akishita et al. [93] and Connolly
et al. [27]. Connolly et al. [26] provides further theory into the dynamic aspects
of the approach, including a Hamiltonian framework to model inertial effects, and
allowing orbits around a goal point. Zelek [124] makes use of the harmonic potential
field, and [107] use solutions the diffusion equation as potential fields. Kazhdan
et al. [83] describes Poisson surface reconstruction: while not a path planning paper,
it describes numerical methods useful for solving the three-dimensional partial
differential equation. Scherer et al. [94] describes the results of this method actually
flown on an unmanned rotorcraft, and combines a harmonic potential planner with
reactive planner.

3.5.4 Continuous Dijkstra (Optimal Navigation Function Using Visibility Polygons)

The exact optimal navigation function can be generated using this method for two-
dimensional problems, and runs in O(N5/3 log N) time. This method divides the
space into visibility polygons, each encoding “wavelets” rooted at a polygon vertex,
and searches them. However, it cannot be extended to higher-dimensional problems.

3.5.5 Wavefront Expansion (Dynamic Programming)

This is the grid-sampled version of the Continuous Dijkstra method, and can be used
in multiple dimensions, running in O(M log M) time. It is also closely related to the
complete search over a grid using dynamic programming. It is able to produce a path
that is complete and optimal in the resolution sense.

3.5.6 Wavefront Expansion with a Skeleton (NF2)

This is an obstacle avoiding navigation function that plans paths along the medial axis
rather then nearly optimal paths, and also runs in O(M log M) time. The advantage
of this is that the paths do not graze obstacle, but rather avoid the nearest obstacles
by a maximal amount. Thus it is more suitable for practical applications, where the
position of the vehicle or obstacles may not be know with perfect certainty.

3.6 Probabilistic Approaches

3.6.1 Randomized Search in a Potential Field to Avoid Being Trapped in Local
Minima

This method is designed to help a gradient descent search routine escape from local
minima that are found in the original potential based method. There are various
approaches to randomizing the search, such as adding random components to subse-
quent steps or changing the values of obstacle potentials at random. Completeness
of these algorithms has been difficult to prove.

Caselli et al. [20] uses a heuristic stochastic search (instead of a random walk) to
escape local minima.

3.6.2 Potential Field with a Global Optimization Search or Learning Algorithm

The field of global optimization has several algorithms that are able to solve an
optimization problem with local minima. Any of these may be applied to a potential
field with local minima in order to find the true solution.
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3.6.3 Probabilistic Roadmap (PRM)

This approach is important because it admits a solution to problems of arbitrary
complexity and dimension that is convergent in the probabilistic sense. It is generally
used in manipulator problems, where the configuration space is typically of high
dimension and complex. However, the rate of convergence is slow, and the paths
it produces are not optimal. In the case of two- and three-dimensional configuration
space planning, the resultant paths are required to be smoothed significantly before
a trajectory can be formed. It has particular difficulty in converging in problems that
have long passageways.

Kavraki et al. [57] initially describes this algorithm. Mazer and Ahuactzin [76]
combines random landmarks with a local search. Kavraki et al. [56] discusses
theoretical properties of PRM algorithm. Bohlin and Kavraki [11] outlines the Lazy
PRM, a modified method that overcomes some of the simple PRM’s limitations.

3.7 Weighted Region Problem

In this problem, the configuration space has an associated weight function. The path
planner has to minimize to weight integrated over a path.

3.7.1 Exact Algorithm for Polygonal Weighted Regions

This algorithm uses results of variational calculus used to derive Snell’s law of refrac-
tion. It is capable of finding the exact path over weighted polygonal regions. While
operating in polynomial time, it is expensive, requiring O (N8 log N) operations [82].

3.7.2 Approximation Algorithm for Polygonal Weighted Regions

The approximation algorithm for this problem is resolution optimal, and can run in
O (MN log MN) operations [88]. It divides the edges of the polygons into shorter
segments, and finds a path connecting these vertices.

3.7.3 Exact Algorithm for Weighted Grids

This is a simpler problem then general polygonal weighted regions. It is simply a
discrete search over a grid, and can be accomplished in O(M log M) time. It is
complete and optimal in the resolution sense.

Recently, Ikonen and Toivanen [51] discuss grey-level distance transforms for
shortest paths on curved surfaces and their approximation using dynamic program-
ming, and Ikonen [50] discusses the priority queue implementation and compares
computational complexity with a previous iterative approach.

4 Trajectory Planning with Differential Constraints

Most trajectory planning problems relevant to today’s UAV applications have to
be considered as dynamics-constrained problems. The behavior of aerial vehicles is
often not sufficiently well approximated by their kinematics (as is more often the
case in ground vehicles). Taking into account the equations of motion is directly
relevant to guaranteeing the soundness of the planner, since approximating the
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dynamics solely through a kinematic model with constraints will lead to overly
conservative models. The equations of motion are also relevant in details of the
vehicle maneuvering affecting energy or duration of the trajectory. For example
Kong and Mettler [62] show that performance criteria have a significant effect on
the resulting trajectories and heuristic methods (e.g. minimizing distance) are not
able meet specific performance requirements.

This class of planning problems is substantially more difficult to solve due to
the dependency between time and the state-space introduced by the differential
constraints. Even in the trivial case of connecting two states in a configuration
space without obstacles, an exact solution is generally not possible. An exact
solution is available for two-dimensional problems only, solvable in exponential
time and polynomial space [54]. However, this approach cannot be extended to
three-dimensional problems. For applications requiring a vehicle to navigate among
obstacles or complex terrain, algorithms that exploit some form of approximation or
heuristic are necessary, not only for the merit of finding a feasible or sub-optimal
trajectory but also for the need to negotiate with hardware capacity. Solutions to
this class of problem represent a newer research area where very few approximation
bounds or benchmarking results have been proposed.

A tabulated overview of these algorithms is given in Table 2. Blank table cells
correspond to properties of algorithms that cannot be determined from the literature.
For a more detailed breakdown of potential-based methods, refer to Table 1.

4.1 Sampling-Based Trajectory Planning

4.1.1 Grid-Based State Space Search

This method played an important role because it establish proof for the completeness
and optimality (in the resolution sense) for the case of a polynomial approximation
to the problem with dynamic constraints, which are represented in the form of
velocity and acceleration bounds. Furthermore, it defines an arbitrary speed-varying
safety corridor, making this particular algorithm one of very few trajectory planning
algorithms with a proven explicit safety guarantee. The way this algorithm works is
that it discretizes the entire state space of the vehicle onto a lattice, and searches
the lattice for the time-optimal path that satisfies the safety corridor. Although the
algorithm converges as a polynomial of the number of obstacles, it is a high-order
polynomial that is exponential with the number of dimensions, making practical real-
time implementation difficult due to high dimensionality of the state space. It also has
difficulty in solving planning problems for the case of under-actuated vehicles, which
are quite common in application.

Donald [31] is the first publication of this algorithm. Donald and Xavier [32] gives
a proof of a lower complexity bound for the same algorithm. Reif et al. [89] uses
nonuniform discretization to reduce the algorithm’s complexity.

4.1.2 State-Space Navigation Function with Interpolation

Much like the grid-based state space search, this method approximates the time-
optimal path to a goal. Instead of returning only a single trajectory, it returns a
navigation function over the state space. This navigation function can be computed
by either value iteration or control policy iteration, although value iteration is more
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popular. Bertsekas [6] gives details in a more general sense. For any given state, per-
forming gradient descent on this navigation function will produce an approximately
time-optimal trajectory to the goal. Interpolation between lattice points allows a
continuous function which can be used for feedback. The algorithm takes on the
same order of complexity as the grid-based state space search. A recent paper which
employs this method can be found in LaValle and Konkimalla [68].

4.1.3 Rapidly-Expanding Random Tree (RRT)

This works by using a stochastic search over the body-centered frame of reference,
and expanding a tree through a random sampling of the configuration space. This
algorithm is proven to be complete in the probabilistic sense, and to produce a
trajectory that is feasible given the dynamic constraints of the vehicle. However,
there is no proof of the convergence rate or of optimality. In fact, it is known that
certain types of problems, such as those with long passageways, may have very slow
convergence rates. However, in these cases gradient based optimization methods can
be applied to reach locally optimal solutions.

LaValle [67] is the first publication describing the RRT, followed by a more
detailed report [71]. In these two papers, the vehicle is considered holonomic; neither
dynamics nor kinematic constraints are considered. Frazzoli et al. [36] extends the
RRT to systems with dynamics by reducing the whole system to finite states possible
using a finite automaton. LaValle [69] compares dynamic programming and RRT
algorithms. Frazzoli et al. [37] gives a more extensive description to the RRT method,
and Redding et al. [87] provides an application of the RRT: this approach uses the
RRT in combination with a Dijkstra search based path refinement step.

4.1.4 Reachability Graph

This approach also uses a body-centered frame of reference: for each state, the tree
explores variety of states including the maximum deflection states. The combinatorial
complexity of such a process is often prohibitive (in fact, exponential with M), and
the tree quickly fills the space close to the initialization point. The basic approach has
been employed for curvature-constrained path problem in two dimensions [70].

Another way to make this approach tractable is to use cell-based pruning: the
configuration space is divided into cells, and the reachability graph is set up to be a
tree that has no more then one leaf ending in each cell [70].

4.2 Decoupled Trajectory Planning

4.2.1 Minimum Distance Discrete Path Followed by Trajectory Forming (Two-Step
Approach)

The algorithms in this section follow the same general approach: first a discrete path
through the configuration space is found by one of the algorithms, and then the
resulting path is used as the basis for the generation of a trajectory that is feasible
for the dynamics-constrained vehicle. For the first stage, a well-known algorithm
such as A* is applied over a grid, the PRM, or the Voronoi approach is typically
used. Complexity in this approach is typically dominated by the path planning phase
computations.
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This decomposition-based approach allows efficient computation of approximate
solutions, but makes proofs of completeness, optimality, or even of soundness, diffi-
cult. There is no safety corridor built in and soundness requires checking whether the
trajectory intersects with obstacle space, and re-computing or rejecting trajectories
that do not pass. Generally, practical implementations of these algorithms will use a
conservative safety corridor to prevent collisions.

4.2.2 Discrete C-Space Search Connected by Two-Point Free-Space Boundary
Value Solver

In this approach, a set of waypoints is first selected (generally by a grid-based search),
a velocity is assigned to each one, and a boundary-value problem connecting each
waypoint to the next point is solved. Although these boundary-value problems don’t
have to deal with obstacles, a general simple solution is not possible, so the solution
is generally approximated using numerical methods. As with the previous method,
an explicit collision check on the trajectory is needed to ensure soundness, possibly
at the expense of completeness.

4.2.3 Hierarchical Decoupled Planning and Control

This is a general strategy that is used in most practical applications. Since feedback
control is typically required for reliable operation of air vehicles and most traditional
algorithms provide only feed-forward solutions, the hierarchical decoupled planning
and control approach provides a straightforward way to integrate a waypoint plan-
ning algorithm and the vehicle control system. The overall hierarchic system involves
open- and closed-loop controllers operating at a variety of rates, linked together from
top to bottom. The outer, open loop consists of a discrete search that produces a set
of waypoints leading to the goal while avoiding obstacles. The second open loop level
smoothes this set so that the waypoints are feasible given the vehicle’s velocity and
acceleration limits. The third open loop level generates a timing function along the
trajectory, and creates a set point (or “rabbit”) that moves through space, and last,
the inner loop is a closed-loop tracking controller that attempts to minimize the error
between the vehicle and the rabbit.

This approach has been popular for UAVs because it is relatively easy to im-
plement since it requires no sophisticated solvers and is made of a hierarchy of
modules with well defined functions. Since many unmanned aircraft are often already
equipped with an inner-loop tracking controller it can be easily adapted to a variety
of vehicles. In addition, the majority of UAVs currently in production already have
a waypoint following system (without obstacle avoidance) as the primary means of
control—this makes the multi-level decoupled control approach easiest to integrate
with the existing control scheme. However, there is no proof demonstrating in
general that this method is sound, complete, nor that it produces near-optimal paths.
Evidence of a sound planner needs to be produced on a case-to-case basis for safe
use of this approach.

Boyle and Charnitoff [14] covers the closed-loop section of the planner, or the
maneuver tracking controller. Judd and McLain [55] describes a Voronoi-based
planner followed by spline smoothing for trajectory formation. Yang and Zhao [122]
is based on A* coupled with higher order heuristics. Suzuki et al. [108] uses A*,
followed by direct optimization of the trajectory, using an RTABU search. Scherer
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et al. [94] uses an evidence grid with a Laplacian-based potential method as the
outer loop, a reactive planner (dodger) to enforce soundness, a speed controller
to convert the path into a trajectory, and an inner loop flight controller. Kim and
Bhattacharya [60] is based on a modified visibility graph roadmap method that
is followed by finite horizon optimal control. Takahashi et al. [110] covers the
design and characterization of the inner-loop control law used in such a multi-level
decoupled controller for an unmanned rotorcraft based on two types of path planners
(quasi-3d implementations of an A* and a Voronoi-based planner). Howlett et al.
[44] describes the implementation of the two path planner modules.

4.2.4 Discrete C-Space Search Interpolated with Polynomial Arcs

In this approach, an ordered set of waypoints produced by a discrete planner is fitted
with a spline made up of polynomial arcs. This spline is set up so that the vehicle can
follow it without violating acceleration constraints, and typically consists of circular
arc segments with a minimum radius and straight segments. Other types of spline,
such as the Pythagorean hodograph, have been proposed for the same purpose.

Yakimenko [120] uses optimization on a family of polynomials to approximate
the two-point boundary value problem solution, which can be used for interpolating
between states. Shanmugavel et al. [99] describe Pythagorean hodograph interpo-
lation. Both approaches use optimization to determine the spline that gives best
performance based on minimal time or minimal control energy.

4.2.5 Curvature-Constrained Paths with Speed-Control Planning

This is coupled with the previous approach: once a path is produced that is curvature
constrained, it is possible to optimize the speed so that the vehicle will follow this
path in minimal time. This path-constrained trajectory planning problem requires
solving only a two-dimensional path-constrained state space (with time and velocity
axes), and can be accomplished efficiently.

Slater [104] describes an approach for helicopter short trajectories based on
guidelines for piloted flight. Yang and Kapila [121] considers curvature constrained
paths based on the Canny’s exact algorithm for two-dimensional problems.

4.2.6 2-D Voronoi Solutions from Multiple Body-Based Planes

In this approach, several planes containing both the initial and goal points are
extracted as subsets of the three-dimensional configuration space. These planes that
are discriminated from each other by a single angle—this angle is discretized so
there are a finite number of planes (in experiments, it was found that four to six
planes suffices). These planes are then searched with a two-dimensional path planner,
such as a Voronoi roadmap planner, and then rated against each other according to
optimality criteria. The best of the set is chosen.

Howlett et al. [45] provides a basis by describing the 2-d Voronoi approach, and
Whalley et al. [119] describes the Voronoi-based plane slicing method with multi-
level control for an unmanned rotorcraft with multiple-target surveillance ability.
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4.3 Finite-State Motion Model: The Maneuver Automaton (MA)

The general idea of finite state models is to reduce the optimization or search
problem from an infinite-dimensional space to a finite one. It helps to significantly
reduce the computational complexity of a trajectory optimization.

There are two primary type of finite-state models for dynamics systems: the first is
a discrete-time model with quantized states (quantization); another choice is to relax
the restrictions on control and time and instead use operations over discrete stages
with fixed start and end states. These stages, which are feasible time-parameterized
curves in state space, are called motion primitives.

In the context of vehicle trajectory planning, this model is called a maneuver
automaton (MA). The concept of MA for vehicle is based in part on the observation
that human pilots achieve agile control using a combination of trim trajectories and
maneuvers (non-equilibrium transitions between trims).

While Agarwal and Wang [1] is not exactly a MA, but is based on Canny’s
exact algorithm with fixed-radius segments, it includes some ideas similar to the
MA. Yakimenko [120] stores a set of solutions to the two-endpoint boundary value
problem as a motion primitive set (but does not deal with obstacles). Piedmonte and
Feron [85] and Gavrilets et al. [40] investigate the concept of maneuver automaton
for human piloted acrobatic flight. Frazzoli et al. [35] provides a rigorous definition
of the concept of MA within the context of autonomous guidance. In the basic MA
form the set of trim and maneuvers are used to pre-compute a cost-to-go map. This
map can be used online with a greedy guidance policy. States falling between the
pre-computed values are obtained via interpolation. Mettler et al. [78] provide a
simulation example of this MA based guidance policy for online rotorcraft guidance.
In this form of guidance policy, the vehicle behavior is constrained to the set of
primitives in the MA. Hence, for agile vehicles, it can be an issue to achieve a
sufficiently expressive MA due to the “curse of dimensionality”. To relax the vehicle
behavior and provide flexibility in an obstacle-rich environment, Schouwenaars et al.
[96] use the concept of the MA within a receding horizon optimization framework.
Instead of fixed trim trajectories, the trims are replaced by controllable linear
modes. This model is a more faithful emulation of the human control strategy. The
maneuvers are still open-loop trajectories used to transition between modes or for
a tactical purpose (e.g. split-S maneuver can be used to reverse direction of flight
without lateral displacement). Dever et al. [30] extends this framework to allow
interpolation between maneuver boundary conditions within a class of maneuver.
This provides additional flexibility for the initiation and completion of maneuvers. In
the meantime, the MA has also been used to generate a state-dependent cost-to-go
map for a receding horizon planning [81]. This will be discussed in Section 4.5.

Parallel to the maneuver automaton concept, a similar idea called “control
quanta” is introduced for driftless systems with a symmetry property [72]. For this
special class of systems, by employing control quanta, the reachable set can be
restricted to a lattice. And by choosing a suitable set of control quanta, the reachable
set can be everywhere dense in the limit when M approaches infinity. The difference
is that for the control quanta method, the control policy is chosen from a collection
of control library policies, while for motion primitive method the trajectory is chosen
from a library of maneuvers that can result from a various control strategies.
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4.4 Mathematical Programming

Mathematical programming methods treat the trajectory planning problem as a nu-
merical optimization problem. Some popular methods include Mixed Integer Linear
Programming (MILP), nonlinear programming, and other constrained optimization
approaches. These methods are also known as trajectory optimization methods,
since they find a trajectory to a goal point that is optimal in the resolution sense.
However, the cost functions typically have a number of local minima, thus finding
the global solution strongly depends on the initial guess (the general formulation is
NP-hard, although given an initial guess sufficiently close to the global solution, the
optimization converges in polynomial time).

For this type of problem, one standard strategy it to enforce the equations of
motion as constraints. An earlier review of this method can be found in Betts [10].
Another strategy is to discretize the variational principles underlying the systems
dynamics, such as Hamilton’s principle or Lagrange–D’Alembert principles, and
then these discrete equations can serve as constraints. This kind of strategy is called
Discrete Mechanics and Optimal Control (DMOC) and can be found at Marsden
and West [75] and Junge et al. [53]. Kobilarov et al. [61] extends the framework to
deal with obstacles. Several approaches have been used to break this into simpler
problems.

4.4.1 Initialization of Mathematical Programming Methods
(Infinite Horizon Control)

An initial trajectory for the mathematic programming methods, such as a constant-
speed trajectory, can formed using a discrete search over the configuration space.
These waypoints are then used as an initial point in the mathematical programming
search. If this initial point falls within the basin of attraction of the global solution,
then the mathematical programming approach can find the optimal solution in
polynomial time. However, unless care is taken in finding proper initial points, the
solution could fall into a local minimum, and general global optimization approaches
guaranteed to find the global minimum are prohibitively expensive.

Toussaint et al. [112] describes this approach and Richards and How [91] covers
both single and multiple-vehicle planning in two-dimensional cases. Milam [74]
produces trajectories for a constrained ducted fan setup with two degrees of freedom
and provides flight test results. Carlyle and Wood [19] describes the Lagrangian
relaxation solution. Menon et al. [77] give an application of direct optimization used
in aerospace: they produce fuel-optimal periodic cruise trajectories involving high
Mach numbers and allowing periodic large changes of altitude. Carlyle and Wood
[19] describes again the Lagrangian relaxation approach, with the addition of risk
avoidance (UAVs are required to avoid SAM sites). Keith et al. [58] describes how
a trajectory planning problem within complex terrain can be converted into a MILP
problem by representing terrain as a piece-wise affine function.

4.5 Receding Horizon Control (Model Predictive Control)

Receding horizon control (RHC) or model predictive control (MPC) solves the
numerical optimization problem over a reduced time horizon. In this approach,
an open-loop control policy is designed to control the vehicle until the end of
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the time horizon. Optimization over a finite horizon requires reduced computation
time, however, it will not converge to a globally optimal solution without using an
appropriate cost-to-go function to capture the discarded portion of the trajectory.
Except in trivial cases, optimality and completeness are difficult to prove. In UAV
guidance applications, this approach has often been used with a MILP solution,
however, there is no reason to restrict the receding horizon control method with this
type of numerical solver.

Jadbabaie [52] introduced receding horizon control to solve trajectory planning
problems for general nonlinear systems in an obstacle-free environments. The paper
also provides necessary conditions for the stability of the RH scheme by employing
concept of control Lyapunov function. The RHC-based approach is used in Singh
and Fuller [103] to navigate a vehicle with nonlinear dynamics through a toy urban
environment with a vector of known way-points in a decoupled manner: first convert
the problem into a convex optimization problem by linearizing the vehicle model and
obtain a nominal trajectory, then generate a series of overlapping convex regions
around the trajectory and finally within these feasible convex regions open-loop
trajectory is updated by RHC as time evolves.

The features of RHC makes it a suitable trajectory planning technique for many
UAV applications. Sensory information can be incorporated into on-line compu-
tation thus it can deal with uncertainty; at the same time, only local information
is integrated thus it can reduce computational effort. However, properly designed
terminal cost function needs to be provided to the on-line planner to guarantee
completeness and near-optimality. For instance, Schouwenaars et al. [97] uses a cost
function based on a visibility graph and [7] estimates the cost function by searching a
graph representation of the environment with Dijkstra’s algorithm. Schouwenaars
et al. [97] also investigates the effect of the length of planning horizon on the
computation time and optimality. Schouwenaars et al. [96] and Shim and Sastry
[100] investigate hardware and software implementation details and also provide
experimental flight-test results for a fixed-wing aircraft and a rotorcraft vehicle
in various 2D guidance missions. Mettler and Bachelder [79] describe a receding
horizon scheme in 3D with visibility constraints. Frew [38] describes the way to
apply the Fisher information matrix to integrate passive, non-cooperative sensory
information into the RHC framework. Prazenica et al. [86] estimates the obstacle
map from local visual data by using an adaptive learning algorithm so as to avoid
unknown obstacles in an urban environment and uses RHC to generate a trajectory
and control strategy.

The value function captures the relationship between the vehicle dynamics (state),
the environment and the cost.

Without a cost-to-go function which provides an sufficiently good approximation
of the value function associated with the trajectory optimization, important aspects
pertaining to performance can be lost. This may be acceptable for vehicle with
simpler dynamics but will cause a gap in performance for highly agile vehicles.
For example, techniques like the visibility graph do not take the vehicle state into
account and therefore cannot capture the spatio-dynamic relationship. Toupet and
Mettler [80] approximate the state-dependency using a multi-scale environment
decomposition. Toupet and Mettler [111] implement and flight test the receding
horizon planner with an improved CTG on a surrogate A-160 rotorcraft. Mettler
and Kong [81] use the concept of MA to compute state-dependent cost-to-go map
for a receding horizon planning. Dadkhah et al. [28] describes the implementation
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and experimental evaluation of this planner and highlight the shortcomings of
approximate CTG functions that do not take into account state information.

4.6 Other Methods and Issues

4.6.1 Ad Hoc Receding Horizon Planning

The advent of more agile robotic platforms has highlighted some limitations of classic
robot motion planning techniques. In the Dynamic Window Approach (DWA) [34],
a robot’s translational and rotational velocity is computed periodically by optimizing
a measure of distance to the goal. The velocities are selected from a finite set of
admissible velocities, which is determined based on the proximity of immediate
obstacles.

The concept was extended to prevent local minima [15] by combining the DWA
with a global path planner based on an occupancy grid. Further extensions were
implemented to guarantee the stability of the system [84]. Finally, in Hwangbo et al.
[49], a similar technique was applied to aerial vehicle motion planning. These latest
techniques are conceptually similar to receding horizon optimization but are ad-
hoc in their formulation and implementation. These examples can be viewed as a
testimony of the convergence of the robotics planning and control concepts.

4.6.2 Potential Field Methods and the Navigation Function

Just as in solving a problem with unconstrained dynamics, the potential field can be
used to serve as a controller. The same properties apply here: the function is generally
simple to compute, but may result in an incomplete planner, and is non-optimal in
general. If the potential field is designed properly, it may be used directly as part of a
feedback controller. However, if used in that way, care needs to be taken so that the
feedback controller is stable. Furthermore, to use such a method, there usually exist
certain constraints on the form of the vehicle dynamics.

Such a method is first proposed by Conner et al. [23]: the free configuration space
is first decomposed into convex cells and then local control policies are designed for
each cell to respect dynamic constraints. The convergence is proved for a double
integrator. Belta et al. [9] uses the same idea to solve planning problem of a
vehicle whose dynamics can be represented as an affine system within a polyhedral
environment. Such configuration space division techniques also enable a marriage of
control method and powerful logic-based AI methods as shown in Belta et al. [8].
Conner et al. [24] further extend the idea to convex-bodied nonholonomic wheeled
vehicles.

4.6.3 Planning in the Presence of Uncertainties

The general problem of planning with uncertainty can be phrased as follows: Given a
vehicle with uncertain position information, uncertain environment knowledge (e.g.
obstacle locations), and having limited precision in tracking commands, find the best
path to the goal.

While the idea of uncertainty in planning has been around for a long time, it has
traditionally been considered in the domain of compliant control, where the robot is
allowed, or even required, to touch obstacles. The type of situations considered are
relevant to problems involving manipulators and gripping, but are not of much use to
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vehicle motion planning, where contact with an obstacle is to be avoided at all costs
(with the exception of landing or perching). In most of the real world UAV planning
problems, the issue of uncertainty in sensing and control is unavoidable.

Connolly [25] presents the Laplacian potential field as a solution to the problem
of minimizing collisions of a random walk with an obstacle field. Lazanas [3] solves
the problem exactly given regions where there is no uncertainty. Schouwenaars et al.
[95] describes a robust Maneuver Automaton which guides the vehicle by taking
explicitly into account the uncertainty in the maneuver outcome. Zengin and Dogan
[125], which solves the problem of approaching a goal while avoiding SAM sites, uses
a state-space search. The RHC framework described earlier can also be employed to
deal with uncertainties: the off-line, pre-planned trajectory or approximate cost-to-go
function accounts for global convergence based on known knowledge and the online
RHC can used to negotiate with mid-flight uncertainties. For instance, in Kuwata
et al. [65], the RHC is used to generate trajectories for a vehicle operating in an
environment with atmospheric turbulence.

The field of Simultaneous Localization and Mapping (SLAM) is important in
problems of planning with uncertainty. Although the SLAM problem is closely
linked with the problem of motion planning with uncertainty, it doesn’t immediately
address the motion planning issue, so it is not covered here in any detail. Thrun [114]
gives a survey of SLAM techniques [115], describes a SLAM example for helicopter
flight, and Thrun et al. [116] shows what part SLAM played in their DARPA Grand
Challenge entry.

4.6.4 Reactive Planning

The term “reactive planning” refers in general to a broad class of algorithms that use
only local knowledge of the obstacle field to plan the trajectory. Reactive algorithms
are important in dealing with uncertainty, and run very quickly since no elaborate
couplings are involved. In the case where a global obstacle map is not available and
obstacle positions are known only within a small radius, a reactive algorithm prevents
last-minute collisions by stopping or swerving the vehicle when an obstacle is known
to be in the trajectory, which has been planned by a different algorithm. This type of
approach is important in many existing practical implementations in order to “patch”
an unsound algorithm to ensure that it is sound, as well as to deal with obstacle fields
that may change suddenly. However, reactive planners, due to their inability to take
the global planning problem into consideration, are seldom used as the sole trajectory
generation process. In other words, if only the reactive planner is used, the vehicle
may never find a trajectory that will lead to the goal, let alone an optimal one.

The Motion Description Language (MDL), described in Brockett [16], and its
extension MDLe [73] can be used to define and design the reactive algorithms. In this
framework, a sensor based interrupt (i.e. obstacle detected) will cause the vehicle to
switch to another behavior. Hristu-Varsakelis et al. [46] proves that MDLe is formal
language.

Zavlangas et al. [123] uses fuzzy logic as a basis for a reactive algorithm.
Hui-Zhong et al. [47] describes a different approach, and [43] describes an algorithm
that uses learning from the examples of human operators to improve the reactive
planner. Call et al. [17] describes visual flow based reactive planning, and Spenko
et al. [106] uses a planner based on a high fidelity ground vehicle dynamic model.
Geyer and Johnson [41] uses a reactive algorithm in based on laser scanner data in
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local coordinates. There are numerous ongoing works on this topic, especially bio-
inspired reactive planning algorithms. This can be explained due to the deficiencies
of existing planning algorithms to involve sensory information in a principled way so
that a complete planning framework results.

5 Discussion

In this paper we provided a survey of published motion planning techniques. This
survey emphasizes practical methods and provides a general perspective on the
particular problems arising with UAVs. UAVs belong to a class of vehicles for which
velocity and acceleration constraints are both significant. More agile UAVs even
require taking into account the higher order differential constraints associated with
the equations of motion, or accounting for aerodynamic effects.

While efficient algorithms exist that are well-characterized for simpler sub-
problems, such as the problem of motion planning for vehicles not bound by
dynamic constraints, an exact solution to a typical UAV problem is often not trivial.
Algorithms that can solve these planning problems are frequently too expensive to
be used in real time, and when they are tractable, they are not proven to be complete,
sound, or optimal.

Given these difficulties, one conclusion of this survey is that a solutions must
be chosen to specifically fit the characteristics of the particular planning problem.
In some cases, aspects that at first may seem challenging like partial knowledge of
the environment or disturbances, can in reality provide opportunities, or at least
rationales, for certain forms of approximations.

From the reviewed literature, we find that the issue of uncertainties and ro-
bustness in general has not been studied much. Therefore understanding these
effects represents a fundamental aspect of determining practical algorithms that
are simultaneously computationally efficient, optimal and robust. If we consider
feedback control systems, we get a general ideas on how uncertainties or partial
knowledge can be addressed by an algorithm. We also see that often relaxing the
complexity of the controller can contribute to robustness.

When reviewing the different papers, we find that the majority of the methods
surveyed here do not include much discussion about practical implementation. When
they do, they often only provide simulation results based on idealized vehicles and
operational conditions. So it is inevitable that theoretical work often leaves out
important issues. In particular, some of the more expensive, complete algorithms
have, to date, never been implemented in code. Among the papers surveyed, most
of the practical implementations of UAV guidance have been of the hierarchic
decoupled control type, or in some cases focus only on the reactive planning needed
to avoid obstacles. With the advent of smaller and faster microcontrollers, more
sophisticated planners are beginning to be implemented for real-time guidance of
vehicles.

The reality is that it is often going to be impossible to generate provably complete
or optimal algorithms for problems with differential constraints, therefore more work
needs to take place on the development of benchmarks needed to compare algo-
rithms and provide some design standards. Benchmarking will give researchers a way
of determining the ability of an algorithm to approximate an optimal solution as well



J Intell Robot Syst (2010) 57:65–100 95

as an evaluation of its computational complexity. They also provide opportunities
to develop more knowledge about the characteristics of the planning problem itself,
which ultimately will be most important in the optimality and complexity and the
choice of method.

Finally, not all tasks are simple goal-directed guidance problems, but the overall
guidance behavior results from the interaction of the vehicle with the environment.
In many cases, the information gathered by the UAV about the environment (and
the mission) will be useful to improve the trajectory. In robotics these interactive
problems are most often found in the context of simultaneous localization and
mapping (SLAM). For UAVs there is a stronger emphasis on the system dynamics,
thus simultaneous mapping and planning (SMAP) may be more appropriate. Sensors
and perception may play as much of a role as the control system or the dynamics
in dictating the behavior and performance of the autonomous guidance system.
Therefore, future work will have to encompass all of these aspects to achieve a
realistic and comprehensive understanding of the algorithms and the development
of design principles that will achieve reliable performance and robustness.
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