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Abstract An accurate mathematical model is indispensable for simulation and con-
trol of a micro helicopter. The nonlinear model in this work is based on the rigid
body motion where all external forces and moments as well as the dynamics of
the different hardware elements are discussed and derived in detail. The important
model parameters are estimated, measured or identified in an identification process.
While most parameters are identified from test bench measurements, the remaining
ones are identified on subsystems using the linear prediction error method on real
flight data. The good results allow to use the systems for the attitude and altitude
controller design.

Keywords Coaxial micro helicopter · Nonlinear model · Parameter identification

1 Introduction

The European Framework project muFly has been initiated to develop a fully
autonomous micro helicopter designated for tasks such as surveillance and security,
search and rescue, as well as inspection and exploration. Target capabilities of the
system are autonomous take off/hover/landing, obstacle avoidance and way point
following. For such capabilities a fast and precise feedback control is needed on
the low level, which makes an appropriate simulation model of the helicopter
indispensable for the controller design. While there exist different other works on
modeling conventional [1, 2] and coaxial helicopters [3, 4] it is necessary to adapt
the model to the specialties of the used platform. One of those specialties is the
stabilizer bar mounted on the helicopter, which passively stabilizes the system and
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strongly influences the dynamics. Further devices, such as the electro motor and drive
train are not considered in the found works, but are important for the designated
control tasks. Therefore, a custom-made dynamic model is developed for muFly. The
goal is to have a structured model reflecting accurately the physics of the different
subsystems for simulations, but on the other side be as simple as possible since it will
be used for the controller design later on.

The nonlinear model is based on the rigid body motions, where all the existing
external forces and moments are discussed and derived. This is followed by defining
the dynamics of the single mechanical devices such as swash plate, electro motors
or stabilizer bar to complete the model. The developed model is then verified
on real flight data and the system parameters are identified. This process is very
important since a model with unknown or wrong parameters is worthless. For
simplification the system identification is done on the linearized model using the
prediction error method (PEM) [5]. Linearization allows to decouple the model
in different subsystems and therefore strongly reduces the complexity. Using the
linearized model is adequate since muFly will only operate close to the hover point.
High velocities are not foreseen for the missions.

The paper is organized as follows. In Section 2 the muFly micro helicopter and
its hardware setup is shown, followed by the nonlinear model in Section 3. The
identification process with the PEM is presented in Section 4 and the identification
and verification results are shown in Section 5.

2 The muFly Helicopter

muFly is a 17 cm in span, 15 cm in height coaxial helicopter with a mass of 95 g
(Fig. 1). The two main rotors are driven by two lightweight brushless DC (BLDC)

Fig. 1 The second prototype of the muFly helicopter
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motors and are counter rotating to compensate the resulting torque due to aero-
dynamical drag. This allows to control the yaw by differential speed variation of
the two rotors, where as the altitude can be controlled varying the rotor speed
simultaneously. The motor speed is reduced by a gear to achieve a higher torque
on the rotor side.

A benefit of the coaxial setup is that one rotor can be used to help stabilizing the
helicopter using a stabilizer bar. Such devices are often found on RC-Models and is
mounted on the upper rotor. The helicopter is steered by a conventional swash plate
actuated by two servos and powered by a lithium polymer battery. All the signals to
the servos and motor controllers are pulse position modulated (PPM) signals, scaled
to userv = {−1, 1} and umot = {0, 1}.

Sensors mounted on the platform are an inertial measurement unit (IMU) and an
ultrasonic distance sensor for the measurement of the distance to the ground. With
this setup, the attitude angles and the height over ground can be measured. Further,
an omnidirectional camera in combination with lasers is in development, that will be
used for the measurement of the horizontal position. The sensor data is processed by
a dsPIC microprocessor and send to the ground station by a serial connection using a
bluetooth module. To minimize time delays, the actuator inputs are send in the same
package as the sensor data.

3 Nonlinear Modeling

The goal of the model presented in this paper is to be as simple as possible, since it
will be used for the controller design. On the other hand, the physics and dynamics
of the different devices mounted on the muFly helicopter have to be reflected
accurately. The complete nonlinear model is described in the following sections.

3.1 Coordinate Frames, Kinematics and Dynamics

As common two coordinate frames, the inertial frame J and the body-fixed frame
B are defined for the model. Where as the body-fixed frame is placed in the Center
of Gravity (CoG) and moves with the helicopter, the inertial frame is fixed to the
original location of the body-fixed frame. The frames are defined as it is common in
aviation and are shown in the schematic view of the helicopter in Fig. 2.

Corresponding to these definitions the transformation from the inertial frame J to
the body-fixed frame B

⎡
⎣

x
y
z

⎤
⎦ = A

BJ
·
⎡
⎣

N
E
D

⎤
⎦ (1)

is given by the transformation matrix

A
BJ

=
⎡
⎣

cθcψ cθsψ −sθ
−cφsψ + sφsθcψ cφcψ + sφsθsψ sφcθ
sθsψ + cφsθcψ −sφcψ + cφsθsψ cφcθ

⎤
⎦ (2)

obtained by the application of the Euler angles (cα = cos(α) and sα = sin(α)).
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Fig. 2 Coordinate frame
convention and the forces and
moments acting in hover (back
view)
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It is well known that this transformation matrix is not valid for angular quantities.
Therefore the angular velocities p, q, r have to be transformed using the transforma-
tion matrix

R
JB

=

⎡
⎢⎢⎢⎣

1
sφsθ

sθ
sφsθ

sθ
0 sφ −sφ

0
sφ
sθ

sφ
sθ

⎤
⎥⎥⎥⎦ (3)

that can be used to obtain a differential equation for the time derivatives of the roll,
pitch and yaw angles φ, θ and ψ :

⎡
⎣

φ̇

θ̇

ψ̇

⎤
⎦ = R

JB
·
⎡
⎣

p
q
r

⎤
⎦ . (4)

The next step is to set up the rigid body dynamics equations in the CoG in the
body fixed coordinate frame. Using Newtonian Mechanics, the differential equations
for the rigid body motion in the body-fixed frame become

⎡
⎣

u̇
v̇

ẇ

⎤
⎦ = 1

m
F −

⎡
⎣

p
q
r

⎤
⎦ ×

⎡
⎣

u
v

w

⎤
⎦ (5)
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and ⎡
⎣

ṗ
q̇
ṙ

⎤
⎦ = I−1

⎛
⎝M −

⎡
⎣

p
q
r

⎤
⎦ × I

⎡
⎣

p
q
r

⎤
⎦

⎞
⎠ (6)

with the body velocities u, v, w, the system mass m, the body inertia tensor I and
the total external force and moment vectors F and M. For simplification, the inertia
tensor I has only diagonal elements. Such a simplification is feasible as a result of the
symmetric design of muFly.

So far the equations of motion are independent of the flying platform and can
be found in literature [2]. Now the platform dependent total external force F and
moment M have to be defined.

3.2 Forces and Moments

In a stable hover position, as shown in Fig. 2, the thrust forces from the two rotors
Tup and Tdw equal the gravitational force G caused by the mass of the helicopter and
the integrated aerodynamical drag force on the fuselage Whub due to the down wash
of the rotors. The moments acting on the helicopter are the two drag torques Qup

and Qdw from the counter rotating rotors (incl. stabilizer bar), which, if unbalanced,
lead to a yaw motion of the helicopter.

In free flight, additional forces and moments result from the aerodynamical drag
due to the motion through the air, but since the helicopter is small and reaches only
low velocities, those can be neglected. More important are the moments resulting
from the tilting of the tip path plane (TPP)—the plane the rotor blade tips are
running in [6]—on the lower rotor caused by a cyclic pitch input from the swash
plate [7] and on the upper rotor due to the stabilization mechanism. These moments
are used for the steering and stabilization of the helicopter.

Summarized, the force vector F and moment vector M are

F = Tup + Tdw + G + Whub,

M = Qup + Qdw + rCup × Tup + rCdw × Tdw. (7)

where rCdw and rCup are the vectors from the CoG to the hub of the lower respectively
upper rotor. In order to achieve a drift free flight, an alignment of the CoG with
the rotor axis is necessary, therefore the two vectors are assumed to have only a
z-component.

The rotor thrust vector Ti and torque vector Qi we define as Ti = Ti · nTi and
Qi = Qi · nQi, with i = {dw, up} for the lower and upper rotor. In hover, the thrust
magnitude Ti of a rotor with radius R can be defined as [8]

Ti = cTiπρR4�2
i = cTikT�2

i , (8)

with the air density ρ, the rotational velocity �i and the thrust coefficient cTi. While
the air density ρ is assumed to be constant and the rotational velocity �i depends
on the motor input, the thrust coefficient cTi depends on different elements such as
the rotor setup and the flow characteristics. However for a given rotor the thrust
coefficient can be evaluated and due to its definition assumed to be constant over the
used range of rotational rotor velocities. Another factor that influences the thrust
coefficient is the inflow velocity of the rotor. This concerns mainly the lower rotor
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since it operates in the down wash of the upper rotor. Due to this down wash, the
inflow velocity is increased and the thrust coefficient decreased [9]. This has to be
considered by identifying the thrust coefficient of the lower rotor. The influence of
the flow velocity due to movement in free flight are neglected in the model, since low
inflow velocities do not significantly change the coefficients and high velocities are
not foreseen for the dedicated missions.

The same assumptions are true for the torque coefficients cQi that are used to
describe the drag torque values Qi of the rotors and stabilizer bar:

Qi = cQiπρR5�2
i = cQikQ�2

i . (9)

The direction of the thrust vector ni is perpendicular to the TPP [6] and can be
defined using tilt angles around the x- and y- axis as shown in Fig. 3.

Using two rotational transformations in series, the vector is expressed in the body-
fixed frame as

nTi =
⎡
⎣

cos α sin β

sin α

− cos α cos β

⎤
⎦ . (10)

The direction of the rotor torque is equal to the z-axis, since the torque mainly
acts on the rotor axis. It has to be considered that one rotor turns clockwise, while
the other one turns counterclockwise.

nQup =
⎡
⎣

0
0
1

⎤
⎦ , nQdw =

⎡
⎣

0
0

−1

⎤
⎦ (11)

The drag force value on the fuselage Whub due to the down wash of the rotors is
small, but nevertheless considered in the model as a help for the identification (see

Fig. 3 Visualization of the
tilted thrust vector with tilt
angles α and β
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Section 4.2). It is assumed to be parallel to the z-axis and constant, since the down
wash is nearly the same around hover:

Whub =
⎡
⎣

0
0

Whub

⎤
⎦ . (12)

The last force is the gravitational force G caused by the mass of the helicopter.
This force is always directed parallel to the D-axis (positive direction) of the inertial
frame with the value G = mg. However the force is needed in the body-fixed frame,
thus it has to be transformed using the transformation matrix from Eq. 2

G = A
BJ

·
⎡
⎣

0
0

mg

⎤
⎦ = mg ·

⎡
⎣

− sin θ

cos θ sin φ

cos θ cos φ

⎤
⎦ (13)

With all forces and moments defined, the next step is to model the dynamics of
the stabilizer bar, swash plate and the electro motors.

3.3 Stabilizer Bar and Swash Plate

An important part of the system model is the stabilizer bar. In simple words this
stabilization mechanism gives cyclic pitch inputs, similar to the swash plate, to the
upper rotor to stabilize the helicopter in flight. The stabilizer bar has a high inertia
and lags behind a roll or pitch movement of the fuselage as shown in Fig. 4. Through
a rigid connection to the rotor, this time delay results in a cycling pitching of the rotor
blades and therefore to a tilting of the TPP. If the stabilizer bar is adjusted correctly
the thrust vector shows in the opposite direction of the roll or pitch movement
causing a redress moment.

TDW
TDW

TUP TUP

M
CoG

Fig. 4 The principle of the stabilizer bar. Due to the high inertia the stabilizer bar lags behind the
roll/pitch movement, applies a cyclic pitch input to the rotor and creates a redress moment
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The stabilizer bar following the roll/pitch movement can be modeled as a first
order element as

η̇bar = 1

Tf,up
(φ − ηbar) ,

ζ̇bar = 1

Tf,up
(θ − ζbar) , (14)

with angles ηbar and ζbar. The tilt angles of the thrust vector in the body-fixed frame
is the difference between the two angles ηbar and ζbar scaled by a factor lup, since we
are interested in the tilt angle of the TPP and not that of the stabilizer bar. Thus the
equations for the tilting angles for the thrust vector are

αup = lup
(
ηbar−φ

)

βup = lup (ζbar−θ ) . (15)

The influence of the modeled stabilizer bar is shown in Fig. 5 where the reaction
of the helicopter to an initial displacement in the roll angle is plotted. After a short
time period the helicopter is back in the hover position.

The idea of the swash plate model is the same as for the stabilizer bar. The reaction
from the servo input (PPM signal) to the change in the TPP is also modeled by a first
order system. Hereby all the dynamics of the servos and rotor are covered by the
time constant Tf,dw. The tilting angles of the lower rotor are modeled as

α̇dw = 1

Tf,dw
(−ldwuserv2 · θSPmax − αdw),

β̇dw = 1

Tf,dw
(−ldwuserv1 · θSPmax − βdw), (16)

with the time constant Tf,dw, scaling factor ldw, maximal swash plate tilting angle
θSPmax and servo inputs userv,i.

Fig. 5 The reaction of the
helicopter to an initial roll
displacement of 20◦ with the
modeled stabilizer bar
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3.4 Electro Motor

The used BLDC motors are controlled by off-the-shelf motor controllers. They have
the drawback that the motors rotational speed is not given and motor speed control
is not possible. Instead of measuring the speed externally, for instance with an optical
device, the motor dynamics are included directly in the model. This allows to use the
model for every kind of motor without the help of any external sensor.

The differential equations for electro motors are well known [10] and can be
simplified to an equation for the motor speed ω in the form of

Jmotω̇ = κMU − κMκEω

R�

− dRω − ML, (17)

with the moment of inertia Jmot, electrical and mechanical motor constants κE and
κM, the input voltage U , the electrical resistance R�, the friction coefficient dR and
the external torque ML.

In the case of the helicopter, the external torque ML is the drag torque value Qi of
the rotor as shown in Eq. 9. Further, for the model the rotor speed is more important
than the motor speed, thus the equation is expanded by the gears to obtain the final
equation for the rotor speed �i

Jdrive�̇i = κMUbatumot,i − κMκEigear�i

igear R�

− dR�i − cQikQ�2
i

i2
gear · ηgear

(18)

with the gear ratio igear, the efficiency of the gear ηgear, the battery voltage Ubat and
the motor input umot,i.
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Fig. 6 muFly dynamic model block diagram
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3.5 Model Summary

With this set of differential equations, the nonlinear model is complete. The full
model consists of 18 states and four inputs (two motors and two servos):

x = [x, y, z, u, v, w, φ, θ, ψ, p, q, r, αdw, βdw, αup, βup, �dw, �up]T ,

u = [umot,dw, umot,up, userv1, userv2]T . (19)

As an overview, the system is shown as a block diagram in Fig. 6. The equations
of the complete system are given in the Appendix A.1.

4 Parameter Identification

After setting up the physical equations, the missing parameters have to be adjusted
to the real helicopter. Without appropriate parameters, the best model is worthless.

4.1 Mechanical Parameters

The identification process is a non trivial task, and it is hard to find the correct
parameters, especially since most of the parameters are coupled. In order to minimize
the complexity of the identification on flight data, it is necessary to measure or
estimate as many parameters as possible beforehand. While some parameters such as
the mass, maximal swash plate angle, gear ratio, rotor diameter and body inertias can
be easily measured or taken from the CAD design (all the equipment is modeled), it
is more difficult to identify parameters such as the aerodynamical coefficients, electro
motor constants or the time constants for the stabilizer bar and the swash plate.

4.2 Aerodynamical Parameters

The aerodynamical coefficients are calculated from the measurements on a coaxial
rotor test-bench designed for blade optimization [11].

On this test-bench it is possible to identify the coefficients cTi and cQi by measuring
the torque and thrust of the lower and upper rotor. Even if it would have been
possible, the torque coefficient of the stabilizer bar cQup,stab is not measured and only
estimated instead. This parameter is identified later together with the fuselage drag
Whub to achieve hovering condition with the recorded motor inputs for hovering.
In other words, they are used as tuning parameters to correct the errors from the
measurements to fulfill the equations in hover (index ‘hov’)

Tup,hov + Tdw,hov = G + Whub,

Qup,rot,hov + Qup,stab,hov = Qdw,hov, (20)

where as the drag torque of the upper rotor Qup is split in the rotor part Qup,rot and
stabilizer bar Qup,stab.
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4.3 Electro Motor

The parameters for the low cost off-the-shell electro motors are not available, thus
experimental data has to be used for the identification. Those motor measurements
have been done by our partner CEDRAT [12] by applying a constant voltage, varying
the external torques on the motors and measuring the rotational speed and current.
The motor constants are identified using the stationary solution ω̇ = 0 of Eq. 17
and the Least-Square method (LS) [13]. Result plots for the identification are shown
in Fig. 7.

4.4 Prediction Error Method

The remaining unknown parameters are identified dynamically using real flight data.
Since the equations are not static anymore, a dynamic identification process has
to be used. In this case, a linear Prediction Error Method (PEM) is chosen. This
method is widely used in aeronautics and compares the measurement data vector
y(t) with the predicted output of the dynamic model ŷ(t|t − 1,�) using the last
t − 1 measurements and the parameter vector � [14]. The difference between the
measurement and the prediction

ε(t,�) = y(t) − ŷ(t|t − 1,�) (21)

is called the prediction error. The covariance matrix R
N
(�) is defined using all errors

ε(1,�), . . . , ε(N,�):

R
N
(�) = 1

N

N∑
t=1

ε(t,�)εT(t,�) (22)

Fig. 7 Least square result
plots for the electro motor
parameter identification
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The wanted parameter vector �min is now calculated such that the loss function
VN(�) is minimized:

VN(�) = det
(

R
N
(�)

)
. (23)

For applying this method, the model has to be linearized around an operation
point, in this case hover. Since only sensors for the attitude angles and the distance
to the ground are mounted, the identification of x/y- dynamics of the model is not
possible yet and is future work. Therefore the linearized model is reduced by the
horizontal linear motion states, resulting in a state-space system of 14 states. It is
almost impossible to identify all the parameters at once for such a high order system,
therefore the system is split into four decoupled subsystems: pitch, roll, heave and
yaw. As an example the subsystems for pitch and heave are shown in Eqs. 24 and 25,
26, respectively:

Apitch =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
cTupkTlup�

2
up,0zup

Iyy
0

cTdwkT�2
dw,0zdw

Iyy
−cTupkTlup�

2
up,0zup

Iyy

0 0 − 1

Tf,dw
0

− 1

Tf,up
0 0

1

Tf,up

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bpitch =

⎡
⎢⎢⎢⎢⎣

0
0

ldwθSPmax

Tf,dw
0

⎤
⎥⎥⎥⎥⎦

Cpitch =
[

1 0 0 0
0 1 0 0

]
Dpitch =

[
0
0

]
. (24)

The states and the input for the pitch subsystems are xpitch = [θ, q, βdw, βup]T and
upitch = userv1.

Aheave =

⎡
⎢⎢⎢⎣

0 1 0 0

0 0 −2cTdwkT�dw,0

m
−2cTupkT�up,0

m
0 0 Mdw 0
0 0 0 Mup

⎤
⎥⎥⎥⎦ ,

Bheave =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

κMUbat

igear Jdrive,dw R�

0

0
κMUbat

igear Jdrive,up R�

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Cheave = [
1 0 0 0

]
, Dheave = [

0 0
]
, (25)
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PID muFly
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Fig. 8 Identification process block diagram

Fig. 9 Identification result of the pitch subsystem
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with

Mdw = 1

Jdrive,dw
·
(

−dR − 2cQdwkQ�dw,0

ηgeari2
gear

− κEκM

R�

)
,

Mup = 1

Jdrive,up
·
(

−dR − 2cQupkQ�up,0

ηgeari2
gear

− κEκM

R�

)
. (26)

The states and the inputs for the heave subsystem are xheave = [z, w,�dw, �up]T

and the two motor inputs uheave = [umot,dw, umot,up]T .
The system for the roll dynamics is similar to the one of the pitch and the yaw

dynamics similar to the heave. Therefore it is abandoned to show those systems here
and are listed in the Appendix A.2.

The subsystems are identified after each other and it has to be considered that
some parameters affect different subsystems. As an example the time constant Tf,dw

affects the roll and pitch subsystem. The time constant is identified on the roll system
and kept constant in the pitch identification.

While the pitch and roll subsystems are easy to identify, the heave and yaw
subsystems are very challenging due to the two poles at zero (critically stable).
Due to this behavior it is difficult to identify the system over a long period of time
without divergence, thus a good sequence has to be found. Further, the identification

Fig. 10 Identification result of the heave subsystem
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process should start at the hover point and the inputs for hovering have to be
determined from the measurements. Deviation in those inputs and in the unknown
initial states leads to strong deviation in the result plots. Therefore the initial states
and a deviation from the determined hover inputs are used as tuning parameters in
the identification process.

4.5 Data Generation

For recording the flight data, the helicopter is steered by a pilot. In order to cover as
much frequency bandwidth as possible, a chirp signal is generated and superimposed
on the pilot input. However, the helicopter is not adequately controllable in open
loop by a pilot. Therefore an additional PID controller is used to control attitude
and help the pilot. Effectively, the pilot controls the set point values of the PID
controller. The controller is not problematic for the parameter identification, since
the actuator signals are recorded and send together with the sensor data. Hence the
identification of the system is independent of the controller. An identification process
overview is shown as a block diagram in Fig. 8. It shows the reference value input r(t)
of the pilot as the input of the PID controller. The output of the controller u(t), the
motor and servo inputs, is send to the helicopter and the respective subsystem, where
a new output ŷ(t|t − 1,�) is predicted. This output is compared to the respective

Fig. 11 Verification of the pitch subsystem
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sensor measurement y(t) and the error ε is build and minimized by adjusting the
parameters �.

5 Results

The results for the identified subsystems for pitch and heave are shown in Figs. 9 and
10. In general the identified models show a good correlation with the real system.
The main deviation is in the amplitude, which is not critical for the controller design,
since those differences will be covered by the gain of the controller. More important
is the phase, which shows that the subsystems are in the right dimensions. Well visible
is the different time span of identification for the two subsystems. While the pitch
subsystem can be identified over a time span of more than 20 seconds it is challenging
to identify the heave system for a period longer than 10 seconds.

An identification alone is not sufficient, the model and the parameters have
to be verified on an other flight sequence. For the verifications only the initial
states and inputs are identified, all the parameters are taken from the previous
identification. The results for the two subsystems are shown in Figs. 11 and 12. Those
verification plots show again an acceptable correlation with the real platform, even
if the performance is slightly worse. Here the model underestimates the amplitude,

Fig. 12 Verification of the heave subsystem
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however, the more important phase matches again. All in all the identification and
verification show good results and a proper controller design with those systems
should be possible. A list of all the identified system parameters is given in Table 1
in the Appendix A.3.

6 Summary and Future Work

In this paper the development of a nonlinear model for the coaxial micro helicopter
muFly is presented An appropriate model is essential for the controller design and
simulations.The model is based on the rigid body dynamics where all the possible
acting forces and moments are discussed. Further the dynamics of the mechanical
devices such as the swash plate, electro motor and stabilizer bar are derived, resulting
in a complete structured model.

However, a good model with bad parameters is worthless, hence those parameters
have to be identified. While most parameters are measured from CAD data or on test
benches, some parameters have to be identified on real flight data using identification
methods. Since muFly will work mainly around the hover point, a linear prediction
error method is chosen to be sufficient. The identification process is discussed and
shown in detail, with specialties of using a PID controller to support the pilot or
parameters which are not measured, but used as a correction of the measurements.

At last the results are presented showing the performance of the identified and
verified models. The identified subsystems are now ready to be used for simulations
and controller design. In future the models will be used to design and test altitude
and attitude controllers using linear optimal controller techniques such as Linear
Quadratic Gaussian (LGQ) or H∞. Another idea is to identify the nonlinear model
by using a nonlinear identification approach (e.g. based on neural networks), allow-
ing to use nonlinear control techniques. After the completion of the position sensor
the identified model will be used for a prediction of the position in a filter approach.
The validation and verification of the x/y-dynamics of the model will be part of this
process.
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Appendix

A.1 Nonlinear Model

⎡
⎣

x
y
z

⎤
⎦ = A

BJ
·
⎡
⎣

N
E
D

⎤
⎦ (27)
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A
BJ

=
⎡
⎣

cθcψ cθsψ −sθ
−cφsψ + sφsθcψ cφcψ + sφsθsψ sφcθ
sθsψ + cφsθcψ −sφcψ + cφsθsψ cφcθ
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ṙ

⎤
⎦ = I−1

⎛
⎝M −

⎡
⎣

p
q
r

⎤
⎦ × I

⎡
⎣

p
q
r

⎤
⎦

⎞
⎠ (32)

F =
⎡
⎣

Fx

Fy

Fz

⎤
⎦ = Tup + Tdw + G + Whub (33)

M =
⎡
⎣

Mx

My

Mz

⎤
⎦ = Qup + Qdw + rCup × Tup + rCdw × Tdw (34)

Fx = cTdwkT�2
dw cos βdw sin αdw − cTupkT�2

up sin βup − mg sin θ

Fy = cTdwkT�2
dw sin βdw + cTupkT�2

up cos β sin αup + mg cos θ sin φ

Fz = −cTdwkT�2
dw cos αdw cos βdw − cTupkT�2

up cos αup cos βup

+Whub + mg cos θ cos φ (35)

Mx = −zdwcTdwkT�2
dw sin βdw − zupcTupkT�2

up cos βup sin αup

My = zdwcTdwkT�2
dw cos βdw sin αdw − zupcTupkT�2

up sin βup

Mz = (cQup,rot + cQup,stab)kQ�2
up − cQdwkQ�2

dw (36)

αup = lup
(
ηbar−φ

)

βup = lup (ζbar−θ ) . (37)

η̇bar = 1

Tf,up
(φ − ηbar) ,

ζ̇bar = 1

Tf,up
(θ − ζbar) , (38)
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α̇dw = 1

Tf,dw
(−ldwuserv2 · θSPmax − αdw),

β̇dw = 1

Tf,dw
(−ldwuserv1 · θSPmax − βdw) (39)

�̇dw = 1

Jdrive,dw

(
κMUbatumot,dw − κMκEigear�dw

igear R�

− dR�dw − cQkQ�2
dw

i2
gear · ηgear

)

�̇up = 1

Jdrive,up

(
κMUbatumot,up − κMκEigear�up

iR�

− dR�up − cQkQ�2
up

i2
gear · ηgear

)
(40)

A.2 Linear Subsystems for Roll and Yaw

Roll

Aroll =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
cTupkTlup�

2
up,0zup
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0 −cTdwkT .�2

dw,0zdw
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−cTupkTlup�

2
up,0zup

Ixx

0 0 − 1

Tf,dw
0

− 1

Tf,up
0 0

1

Tf,up

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Broll =

⎡
⎢⎢⎢⎢⎣

0
0

ldwθSPmax

Tf,dw
0

⎤
⎥⎥⎥⎥⎦

Croll =
[

1 0 0 0
0 1 0 0

]
Droll =

[
0
0

]
(41)

The states and the input are xroll = [φ, p, αdw, αup]T and uroll = userv2.

Yaw

Ayaw =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 −2cQdwkQ�dw,0

Izz

2cQupkQ�up,0

Izz
0 0 Mdw 0
0 0 0 Mup

⎤
⎥⎥⎥⎥⎦

Byaw =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

κMUbat

igear Jdrive,dw R�

0

0
κMUbat

igear Jdrive,up R�

⎤
⎥⎥⎥⎥⎥⎥⎦

Cyaw =
[

1 0 0 0
0 1 0 0

]
Dyaw =

[
0 0
0 0

]
(42)
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with

Mdw = 1

Jdrive,dw
(−dR − 2cQdwkQ�dw,0

ηgeari2
gear

− κEκM

R�

) (43)

and

Mup = 1

Jdrive,up
(−dR − 2cQupkQ�up,0

ηgeari2
gear

− κEκM

R�

) (44)

The states and the inputs are xyaw = [ψ, r, �dw, �up]T and uyaw = [umot,dw,

umot,up]T .

A.3 The Identified Parameters

Table 1 Identified parameters

Parameter Description Identification Value Unit

m Mass Measured 0.095 kg
Ixx Inertia around x-axis CAD/PEM 1.24e−4 kg m2

Iyy Inertia around y-axis CAD/PEM 1.30e−4 kg m2

Izz Inertia around z-axis CAD/PEM 6.66e−5 kg m2

zdw Distance CoG lower rotor hub CAD −0.051 m
zup Distance CoG upper rotor hub Measured −0.091 m
�SP,max Maximal swash plate angle Measured 15 ◦
R Rotor radius Measured 0.0875 m
cTdw Thrust coefficient lower rotor Test bench 0.0115 –
cTup Thrust coefficient upper rotor Test bench 0.0131 –
cQdw Torque coefficient lower rotor Test bench 0.0018 –
cQup,rot Torque coefficient upper rotor Test bench 0.0019 –
cQup,stab Torque coefficient stabilizer bar Hover/PEM 3.58e−5 –
Jdrive,dw Drive train inertia (down) CAD/PEM 1.914e−5 kg m2

Jdrive,up Drive train inertia (up) CAD/PEM 9.78e−6 kg m2

κE Electrical motor constant Least square 0.0045 V−1 s−1

κM Mechanical motor constant Least square 0.0035 Nm A−1

dR Motor friction Least square 5.2107e−7 Nm s
R� Resistance Least square 1.3811 �

igear Gear ratio Measured 1.5 –
ηgear Gear efficiency Measured/PEM 0.84 –
Whub Drag force on the fuselage Hover/PEM 0.0108 N
Tf,dw Following time upper rotor PEM 0.001 s
Tf,up Following time upper rotor PEM 0.16 s
ldw Linkage factor upper rotor PEM 0.41 –
lup Linkage factor lower rotor PEM 0.83 –
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