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Abstract Particle Swarm optimization (PSO) is a search method inspired from the
social behaviors of animals. PSO has been found to outperform other methods
in various tasks. Area Extended PSO (AEPSO) is an enhanced version of PSO
that achieves better performance by balancing its essential intelligent behaviours
more intelligently. AEPSO incorporates knowledge with the aim of choosing proper
behaviors in each situation. This study provides a comparison between the variations
of Basic PSO and AEPSO aiming to address dynamic and time dependent constraint
problems in simulated robotic search. The problem is set up in a multi-robot learning
scenario. The scenario is based on the use of a team of simulated robots (hereafter
referred to as agents) who participate in survivor rescuing missions. The experiments
are classified into three simulations. At first, agents employ variations of basic PSO
as their decision maker and movement controllers. The first simulation investigates
the impacts of swarm size, parameter adjustment, and population density on agents’
performance. Later, AEPSO is employed to improve the performance of the swarm
in the same simulations. The final simulation investigates the feasibility of AEPSO
in time-dependent, dynamic and uncertain environments. As shown by the results,
AEPSO achieves an appreciable level of performance in dynamic, time-dependence
and uncertain simulated environments and outperforms the variations of basic PSO,
Linear Search and Random Search used in the simulations.
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1 Introduction

Particle Swarm Optimization (PSO), introduced by Kennedy and Eberhart in 1995,
has been inspired from animals’ social behaviors which are illustrated by their
social actions resulting in population survival [47]. PSO is a self-adaptive population
based method in which, behavior of the swarm is iteratively generated from the
combination of social and cognitive behaviors [4]. A swarm can be imagined as
consisting of members called particles.1 Particles cooperate with each other to
achieve desired behaviors or goals. Particles’ acts are governed based on simple local
rules and interactions with the entire swarm. As an example, movement of a bird in
a flock is based on adjusting movements with its flock mates (nearby neighbors in
the flock). Birds in a flock stay close to their neighbors and avoid collisions with each
other. They do not take commands from any leader bird (there are no leader birds).
This kind of social behavior (swarm behavior) provides several advantages for birds
such as protection from predators and searching for food [23, 41].

In this study, an enhanced version of PSO called Particle Swarm Optimization
with Area Extension (AEPSO) is introduced and its effectiveness in simulated
environments affected by i) dynamicity, ii) time dependency and iii) uncertainty
constraints is investigated. The problem is search optimization in hazard scenarios
in which, a team of simulated robots participate in a survivor discovery mission in
unpredictable environments.

The environment consists of goals (survivors with time limitations to be located),
obstacles and agents that are randomly positioned during the initialization phase.
The environment is 500×500 pixels and robots, obstacles and survivors size are
considered as 1 pixel. The simulated robots’ task is to locate survivors before they
are eliminated (hereafter refer as elimination).2 Furthermore, robots should evade
collision with obstacles. Robots have no knowledge about the exact location of
the survivors and obstacles. Robots (hereafter referred as agents) complete their
observation task according to the acts and movements that AEPSO method provides
for them in each iterations.

To measure the effectiveness of AEPSO, various simulations are suggested. In
the first simulation, variations of Basic PSO are examined in static environments
in which obstacles and survivors locations are fixed from the initialization. In this
simulation, the impact of various swarm sizes and parameter adjustments on basic
PSO are investigated.

In the second simulation, two environments are simulated (Static and Dynamic
environments). In the static environment, survivors are randomly placed in different
positions and they are fixed after the initialization while in the dynamic environ-
ment, the entire status of the environment changes iteratively due to survivors
movement ability. In the third simulation, tasks’ time dependency simulated in
static and dynamic environments. Time dependency is simulated by defining various
elimination times for survivors. In this simulation, agents have limitation in terms of
communication range (this will effect knowledge sharing issue) and environmental
perception (i.e., agents perception are affected by uncertainty).

1Also considered as: agents, observers or robots in [12, 13, 24, 54, 58].
2To improve the overall performance, simulated robots should give priority to survivors in a way that
survivors with short elimination time be rescued first.
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This paper is organized as follows. In Section 2, a brief description of basic PSO
is presented. In Section 3, PSO’s enhancements and related works are discussed.
Section 6 is dedicated to an enhanced version of PSO called Area Extension PSO
(AEPSO). Simulations and empirical setups are presented in Section 7. Test results
are discussed in Section 8. Discussion and conclusion are presented in Sections 9 and
10 respectively.

2 Background

2.1 Particle Swarm Optimization

In basic PSO [4, 5, 7, 8, 38], the actions of particles are based on their position
in the search space denoted by xi, j and a velocity component in the n-dimensional
search space denoted by Vi, j, where i represents the particle’s index and j is the
dimension in the search space. Particles fly through the virtual space and during that;
they are attracted to positions (e.g., local and global-best positions) in the search
space that yield the best results [1, 6, 52]. These positions in the search space are
solutions and the global optimum is the global best solution (position) achieved by
the entire swarm. In basic PSO, particles are affected from different neighborhood
topologies (i.e., local and global neighborhood). The local neighbourhood,3 is the
neighborhood of a group of subset particles set as neighbors in a predefined way
(particles with closest indices) [57]. The global neighbourhood4 is a neighborhood
containing all of swarm population [54]. In several studies, local neighborhood
showed fast convergence toward optimum (local or global optimum) while global
neighborhood guaranteed convergence toward global optimum even if it is slow
[2, 48]. In basic PSO, a particle’s memory contains local and global-best positions.
The local-best position (pi, j) is the position in which they achieved via their highest
performance (personal best solution). Global-best position (g) is the best overall
position of the neighbors. The velocity equation of the basic PSO contains three
components: last velocity, cognitive and social components (with consideration to
neighborhood topology) as shown in Eq. 1. The cognitive component (denoted by
C), exploits the best local position. The social component (denoted by S) explores
the global-best position based on neighborhood topology [16].

Vi, j(t) = wVi, j(t − 1) + Ci, j + Si, j

Ci, j = c1r1, j × (pi, j(t − 1) − xi, j(t − 1))

Si, j = c2r2, j × (gi, j(t − 1) − xi, j(t − 1)) (1)

where, r1, j and r2, j are different random values in the range between 0 and 1 following
the uniform distribution. c1 and c2 are known as acceleration coefficients. These two
parameters control the effectiveness of social and cognitive components during the

3Also known as local best, lbest, and ring topology by literature in [2, 4, 57].
4Also known as global best, gbest, and star topology by literature in [2, 54].
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solution finding process. The new position of each particle can be computed through
the following equation:

xi, j(t) = xi, j(t − 1) + Vi, j(t) (2)

The velocity components of the particle (Vi, j) are limited to maximum and
minimum allowable Vmax and Vmin, as follows [41]:

Vi, j =
⎧
⎨

⎩

Vmin if Vi, j ≤ Vmin

Vmax if Vi, j ≥ Vmax

Vi, j otherwise
(3)

The value of Vmax is defined as one half of the total search range. The term inertia
weight (w) in Eq. 1 is decreased linearly with time as suggested in [4, 8]:

w = (w1 − w2) × (maxiter − t)
maxiter

+ w2 (4)

where, w is inertia weight, w1 and w2 are the initial and final inertia weights,
respectively. t is the current iteration and maxiter is the termination iteration.
Termination are due to achieving optimum or reaching to the maximum iteration
(termination iteration). The inertia weight controls the effectiveness of previous
velocity on the solution finding task (i.e., large and small values of inertia weight
favors exploration and exploitation respectively). Thus, high inertia weight results
in exploring the search space by avoiding local minima, while decreasing the inertia
weight results in exploiting the search space and converging to the optimal solution.5

Following the velocity and position updates, the local and global-best positions at
time t are updated as follows [3, 18]:

Pi(t) =
{

Pi(t − 1) i f f (xi(t)) ≥ f (Pi(t − 1))

xi(t) otherwise
(5)

g(t) = argmin{ f (P1(t)), f (P2(t)), ..., f (Ps(t))} (6)

f represents the fitness (evaluation) function.
Due to PSO’s potential in solving complex problems, it has been widely used in

various scenarios and domains. Qin et al., in [43], introduced easier implementation
and fewer amount of parameters as main advantages of PSO PSO compared to
Genetic Algorithm GA. In many studies, PSO has been shown to perform as well as
or better than GA in several instances. Eberhart and Kennedy found PSO perform
on par with GA on the Schaffer f6 function [47]. In a study by Kennedy and
Spears, a version of PSO outperformed GA in a factorial time-series experiment
[49]. Furthermore, Fourie showed that PSO appears to outperform GA in optimizing
several standard size shape design problems [50]. In works by Pugh, Zhang, and
Martinoli, a local neighborhood version of PSO outperformed GA in a multi-robot
learning scenario with homogeneous and heterogeneous robots [53–55].

Although PSO out-performed GA and other evolutionary algorithms in some
problem solving tasks, it still suffers from some weaknesses which makes it brittle in

5The best experimental results were obtained by initializing the algorithm with a high inertia and
linearly decreasing the value during the iterations [4].
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some domains. The weaknesses of PSO and suggested modifications are presented
in the following section.

3 PSO: Weaknesses and Enhancements

Although research results in different environments and problems show that PSO
outperforms Genetic Algorithm (GA) in multi-robot learning and other group
working-based problems [4, 8, 38] PSO has some weaknesses. These weaknesses are
as follow:

1. Parameter control: Controlling parameters ( c1, c2, w,w1, w2) in basic PSO is a
major issue (specifically in the velocity equation). These parameters have major
parts/roles in controlling the effectiveness of social and cognitive components
in finding optimal solutions. The following methods were used for controlling
parameter values in various problems: Time Varying Inertia Weigh (TVIW)
[4, 8, 38], Linear Decreasing Inertia Weight (LDIW) [38], Time Varying Accel-
eration Coefficients (TVAC) [4, 8, 38], Threshold Model [4], Random or even
Constant/Fix values (RANDIW, FAC) [8]. Although the Threshold and TVIW
models achieved the best performance compare to others, they are still not ef-
fective for dynamic systems. Furthermore, TVAC achieved better performances
in multi-modal functions in contrast with RANDIW which can only be effective
in unimodal functions. FAC and RANDIW methods results were poor in most of
the problem solving domains [8].

2. Premature convergence: This problem mostly appears when one or more par-
ticles reach a local optimum and attract other particles to that point causing
the swarm to converge to the location without any hope to achieve the global
optimum. In this situation, particles slowly stagnate in the location due to the fact
that other solutions around the local optimum have less fitness compared with
the local optimum. It might also appear in situations in which particles flicker
around global optimum and slow down somewhere around and near it (close
clustering problem).

3. Lack of Dynamic velocity adjustment results the inability to hill-climb solution
(e.g., premature convergence and lack of diversity). As Vesterstrom and Riget [4]
mentioned, particles will flicker around aimlessly when they are settled near an
optimum. It is due to the fact that the velocity vector never dynamically adjusts
or even if it does, it would be so slow which will causes the performance to flatten
out drastically near the optimum-although it is possible to solve this problem with
linearly decreasing inertia weight (LDIW) method, the solution would be highly
problem-dependent.

4. Difficulties on dynamic and time-dependent domains: PSO may not be reliable
in domains with certain time constraints for solution finding tasks or in dynamic
domains were the world (situation and states) would be changed in each period
of time.

Earlier, literature has suggested various solutions and improvements to solve basic
PSO’s problems. Some of these enhancements are listed as follow:

1. Improvements in terms of parameter adjustments. As it was mentioned, various
parameter adjustments have been suggested to solve the basic PSO problems.
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These adjustments are known as linearly decreasing inertia weight (LDIW),
time varying inertia weight (TVIW), random inertia weight (RANDIW), fix
inertia weight (FIW), time varying acceleration coefficient (TVAC), random
acceleration coefficients (RANDAC), and fix acceleration coefficients (FAC).
Furthermore, much literature has proposed to use new parameters to cope the
premature convergence and search diversity problem [2, 4, 6, 18, 52].

2. Improvements in terms of velocity equation essential components. Literatures
argued that in some problems, the algorithm would perform better if one
ignores one of the essential components of velocity equation or even add a new
component to them [8, 9, 38, 41, 51, 58].

3. Improvements in terms of neighborhood topology. As Kennedy and Mendes
discussed in [2], in basic PSO, particles are affected by different neighborhood
topologies (i.e., local and global neighborhood6). The local neighbourhood7 is
a neighborhood of a group of subset particles set as neighbors in a predefined
way (particles with closest indices) [2, 4, 57]. The global neighbourhood8 is
a neighborhood containing all of the swarm population [2, 54]. In literature,
local neighborhood showed fast convergence towards optimum (local or global
optimum) while global neighborhood guaranteed convergence toward global
optimum even if it is slow [2]. Kennedy in [2] discussed that it would be useful if
both topologies used at the same time in a way that favors global optimum and
fast convergence.

4. Mutation. Many studies suggested that it is possible to use a mutation factor
whenever particles converged toward an objective. Such a factor helps them to
explore other objectives or prevent premature convergence. It is also useful to
solve the lack of search diversity [4].

5. Re-initialization. As literature suggested, by re-initializing particles whenever an
objective has been found, it is quite likely to cope with the problem.

6. Clearing memory. Whenever an objective has been found, clearing the memory
(personal best and global best) helps particles to find other objectives and it is
as useful as re-initializing the particles. Such a factor helps them to explore for
other objectives or prevent being trapped in local optimums [4].

7. Using Sub-Swarms. By introducing sub-swarms in a way that each sub-swarm’s
task is to optimize a specific objective, the PSO can handle the multi-objective
problems.

8. Niching PSO. This technique is known as one of the best solutions for the
problem in which sub swarms exists but not pre-fixed [14]. This will helps to
improve the overall performance in multi-modal domains [15].

6Other topologies used by literatures are known as Von Neumann, Star, Cluster, Pyramid, and Wheel
[2, 4, 48, 54].
7Also known as local best, Circle, lbest, and ring topology by literature [2, 4, 57].
8Also known as global best, Star and gbest by literature [2, 48, 54].
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Quite a few articles have addressed improving the PSO model. However, con-
ceptually, these attempts have not differed much from the basic PSO since the
main investigation is on the updating of the velocity parameters to achieve better
and faster convergence [30]. Although many attempts have been made to solve
premature convergence or other major problems of basic PSO by adding new para-
meters and considering the diversity factor, most of them could not be introduced
as a modified version which could achieve the level of real-world and dynamic
environments. Furthermore, most of these methods have problems in the domain
generality issue due to their domain dependency. Although basic PSO’s weaknesses
provides difficulties in terms of algorithm adaptation in needed domain, PSO’s
advantages such as less amount of parameters, less amount of computation, and algo-
rithm simplicity motivated researchers to use it in various problems such as robotic
swarm.

4 Robotic Swarm

Robotic Swarm refers to a population of logical or physical robots. The effectiveness
of participation of such a swarm in complex problem solving tasks is due to the robots
collaboration and cooperation abilities. These types of robots are widely used in
military-based applications as bomb or threat detectors [46], moving products in big
warehouses [40, 45], and search and rescue teams [45]. Research efforts have focused
on methods based on the use of robots in hazard scenarios in which, central control
is weak or even impossible (due to large distance, lack of communication, lack of
information and so on). In such scenarios, the use of single intelligent robots is costly
due to its time consuming nature, level of needed intelligence, and level of physical
structure.

In [39], Bogatyreva and Shillerov suggested a hybrid method using hierarchical
and stochastic approaches in a distributed swarm robotic system. In their study,
the issue was to prevent chaos and perturbation in a path planning scenario. The
study was done on logical robots (simulation-based application). Bogatyreva and
Shillerov also suggested the possibility of adopting their proposed algorithm to a
real world problem by using a modular system of basic robots that are able to
build temporary structures (bridges, shelters) by self assembling with respect to
environmental constriction as in [45]. The principle idea behind robotic swarm is
to use local behavior of each robot to collectively and cooperatively solve a problem.
As Liu and Passino [41] suggested, robotic swarm can be seen as a part of distributed
artificial intelligence. This is due to coordination and cooperation of aggregated
cohesiveness agents who make decisions. Hence, robotic swarms have been used
in studies based on cooperative learning [26], problem solving [26, 44], and path
planning [42, 43].

In [40], Werfel and Yaneer studied a simulation-based robotic swarm scenario
based on goal locating. In this context, the goal refers to a building block. After
locating the goals, robots should push them to another place for assembling. This is
an example of simple, identical, autonomous, decentralized robots participating in
structure building scenario. The idea was to implement a single robot with simple
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skills that has the ability to build simple structures with low level of fault tolerance.
Werfel and Yaneer suggested the expansion of the model to a multi-agent based
system in which more than one robot participate in the structure building task. For
such an aim, they introduced a lock factor on blocks to prevent the violation of
geometric constraints in which more than one block is nominated to be attached
in a similar place of the structure.

In [45], Mondada et al., used a team of simulated robots in a problem based on
exploration, navigation and transportation of heavy objects on rough terrain. In their
approach, robots are able to connect to each other and change their shape. Such
a connection will provide a chain of robots which helps to cope with the problem
of climbing obstacles or surf passing holes. The authors used a distributed adaptive
control architecture inspired from ACO.

Some researchers suggested two models for implementing robot controllers in
robotic swarm. These models are known as i) Macroscopic and ii) Microscopic
models. In macroscopic model, the robotic swarm would be modeled as a whole,
while in microscopic model; each robot would be modeled separately.9 The concepts
of macroscopic and microscopic modeling have been used by many other researchers
in various robotic swarm studies [34, 59–62]. Recently, Pug and Martoinoli [56] and Li
et al., [63] used macroscopic and microscopic modeling in their studies. In [56], Pugh
and Martinoli used macroscopic modeling in a team of robots that participate in a
multi agent search. Li et al. in [63] used microscopic modeling in a robotic swarm. In
[63], agents are represented as separate Probabilistic Finite-State Machines (PFSM).
The authors suggested that by following microscopic modeling, it is possible to study
all levels of swarm diversity. Furthermore, they argued that this type of modeling
can address both homogeneity and heterogeneity issues in agents (due to its ability
to represent agents with different PFSMs).

In this study, we followed the macroscopic modeling idea by introducing a new
modified version of PSO called Particle Swarm Optimization with Area Extension
(AEPSO). The effectiveness of suggested method is investigated in i) dynamic, ii)
time dependent and iii) uncertain environments. In our simulations, the environment
consists of goals (survivors with various elimination times), obstacles and agents with
a randomly position in initialization phase. The environment is 500 × 500 pixels and
agents should rescue survivors as fast as possible while preventing collision with
obstacles. Simulated agents participate in survivor rescuing missions considering
AEPSO’s instructions. In the study, the effectiveness of suggested methods are
investigated with various simulations.

As it would be discussed, AEPSO has the potential to locate the desired goals
faster. It is due to its ability to provide a balance between exploration and exploita-
tion during the search. This balance is achieved by introducing and using heuristics.
In the following sections, AEPSO and their additional heuristics are presented.

9To implement agent controller in a robotic swarm by PSO, macroscopic model refer to implemen-
tations in which each agent represent a particle of the swarm (therefore, the whole team represent
the swarm) while microscopic model refer to implementation in which each agent represent a swarm
by itself and particles of that swarm, represent the possible acts for that individual agents as the next
move.
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5 Problem Statement

To define the problem, the following representations are used:

Term Value
Agents : (A) {a1, ..., am}, 5 ≤ m ≤ 20
Survivors : (S) {s1, ..., sk}, 1 ≤ k ≤ 50
Obstacles : (O) {o1, ..., on}, 1 ≤ n ≤ 50
Environment : (E) {(q1, q2) ∈ N|(0 ≤ q1 ≤ 500), (0 ≤ q2 ≤ 500)}
Agent ai characteristics

Location xa
i ∈ E

Velocity va
i ∈ {1, 2, 3, 4}

Collision cli ∈ {True, False}
Evaluation f (ai) ∈ {Rewarded, Punished}
Observation range r = 3
Communication range cr ∈ {5, 125, 250, 500}

Survivor si characteristics
Location xs

i ∈ E
Velocity vs

i ∈ [0, 3]
Rescue rsi ∈ {Rescued,¬Rescued}
Eliminate status eli ∈ {Eliminated, ¬Eliminated}
Elimination time (3000 ≤ ti ≤ 20000)

Obstacle oi characteristic
Location xo

i ∈ E

Let A = {a1, ..., am} be a set of m cooperative agents (robots) on a cooperative
team. Agents move in an environment (E) represented as a 2D landscape. Let
S = {s1, ..., sk} and O = {o1, ..., on} represent a set of survivors and obstacles respec-
tively. Detailed characteristics of agents, survivors, and obstacles are given as follows:

1. Each ai in A has number of characteristics represented as < xa
i , v

a
i , r,

cri, cli, f (ai) >. xa
i and va

i are location and velocity of ai in the E respectively,
i is the agent’s index and j is the dimension in the search space. r is agent’s
observation range. cr is the communication range of the agent, cli represents that
either the agent ai collide with an obstacle in its previous location or not. f (ai)

represents the result of evaluation of agent ai’s location.
2. Each si in S has number of characteristics represented as < xs

i , v
s
i , ti, rsi, eli >. xs

i
and vs

i are location and velocity of si in the E respectively. Survivors’ movement
provides dynamism in the E. Survivor si would be either rescued or eliminated.
These represent with rsi and eli respectively. The ti is the survivor’s elimination
iterations.

3. Each oi in O has < xo
i > as its characteristic. xo

i represents location of oi in the E.

Problem: Given initial xa
i , xs

i , xo
i of A, O, and S in E, rescue all survivors before they

eliminate and avoid obstacle collision.

1. Assume that ∀ si ∈ S, ∀ oi ∈ O, ∀ ai ∈ A, xa
i , xs

i , xo
i ∈ E.

2. Communicate and share knowledge: ∀ ai ∈ A, ∀ a j ∈ A, (d(ai, aj) ≤ cr). d(ai, aj)

represents the distance of agent ai from agent a j in the E.
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3. Rescue: ∀ si ∈ S, ∀ ai ∈ A, [(d(si, ai) ≤ r) ∧ (ti ≥ t) ∧ (rsi = ¬Rescued)

∧ (eli = ¬Eliminated)] => ( rsi = Rescued ∧ eli = ¬Eliminated). d(si, ai)

represents the distance of si from ai in the E. t represents the iteration and 0 ≤
t ≤ 20000.

4. Eliminate: ∀ si ∈ S, [ (ti < t) ∧ (rsi = ¬Rescued) ∧ (eli = ¬Eliminated) ]
=> (rsi = ¬Rescued ∧ eli = Eliminated).

5. Collide: ∀ ai ∈ A, ∃ oi ∈ O, (d(oi, ai) = 0) => (cli = True).

The basic terms that are used in the study are presented in Table 1.

Table 1 Basic terms and definitions

Area Refers to a group of pixels and it is used to ease the search and reduce the
environment dimensions.

Area Refers to a group of areas that are located near the current area.
neighborhood In our simulations, agents have the knowledge about the credit of areas that are

located in the first and second layers of the area neighborhood. These layers
contain eight and sixteen areas surrounding the current area as in Fig. 1

Agent Refers to an autonomous robot.
Credit Refers to a value which represents agents’ idea about the worth of an area

in term of exploitation. In here, credit value represents the amount of
survivors, obstacles, and agents inside an area.

Diversity Refers to the proportion of agents’ using exploration and exploitation
behaviors.

Elimination Refers to a situation in which survivors would die and be cleared from
the environment.

Mission Refers to a test in which agents search for survivors with the aim of
locating them before they reach their elimination time (iteration).

Neighboring Refers to a group of areas that share boundaries with the current area.
areas In our simulations, neighboring areas contains areas known as

first layer of area neighborhood.
Neighborhood Refers to a group of eight areas surrounding a centering area. These

pack eight areas are neighboring areas of the centering area.
Noise Refers to random values added to areas’ credits
Positive credit Refers to areas that contain un-rescued survivors.

area
Rescue Survivors would be counted as rescued whenever they located by agents.

the rescued and eliminated survivors would be cut out of the environment.
Survivor Refers to goal with a certain living (rescuing) time limit.
Simulation Refers to a group of tests in which a particular constraint is mimicked

from real world.
Termination Refers to situations in which no survivors are remained in the environment.

criteria Either they are eliminated or rescued.
Time-dependency Refers to simulations in which, survivors have specific living times

(here iterations). Survivors would be death and cleared from the
environment if agents do not locate them by the time.

Uncertainty Refers to situations in which agents’ environmental perceptions (here areas’
credits) are not reliable. Uncertainty is simulated as random noise
(a distributed uniform value dedicated to areas’ credits iteratively).

Velocity Refers to the step-size of agents and it is confined in maximum
and minimum allowable values (Vmax and Vmin).
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6 Particle Swarm Optimization with Area Extension (AEPSO)

This new enhanced version of PSO is introduced with the aim of addressing basic
PSO’s problems in robotic domain. The idea is based on using advanced neighbor-
hood topology (dynamic neighborhood topology) and communication methods with
the aim of improving basic PSO performance in two dimensional multi-robot learn-
ing tasks in static, dynamic, time dependent and uncertain simulated environments.

In AEPSO, we attempt to address fundamental problems of basic PSO by adding
these heuristics to it:

1. To handle dynamic velocity adjustment:

– New velocity heuristic which address the premature convergence [4, 8, 38, 58].

2. To handle direction and fitness criteria:

– Credit Assignment heuristic which address the cul de sacs problem [26, 37].
– Environment Reduction heuristic.

3. To handle communication limitation in real-world robotic domains:

– Different communications ranges condition which provides dynamic neigh-
borhood and sub-swarms [2, 4, 14, 56].

– Help Request Signal which provides cooperation between different sub-
swarms [34].

4. To handle the search diversity:

– Boundary Condition heuristic which address the lack of diversity in the basic
PSO [4, 8, 58].

Pseudo-code of AEPSO is as follows:
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In the pseudo-code, t refers to the current iteration and Maxiter refers to the
maximum allowable iteration (here 20000 iterations). Moreover, current area’s credit
refers to the amount of un-rescued survivors in an area. In the pseudo-code, /∗ and
∗/ are used to provide comments and distinguish them from the code. Exploration
refers to choosing a new area and moving toward it by setting the direction and
choosing Vmax as velocity. Exploitation refers to investigating locations inside an area
(a positive-credit-area) using AEPSO’s velocity Eq. 7.

As the pseudo-code depicts, AEPSO’s algorithm replicates in each agent. In each
iteration, agents take following steps. First, each agent checks its current area (the
area it is location in). If the area contains no un-rescued un-eliminated survivor, the
agent changes its behavior to exploration by setting its velocity to Vmax and updating
its x according to the new V and the direction of the destine area. The destine
area would be choose based on first and second layers of neighboring areas which
indicates the credit of neighboring areas (see environment reduction heuristic).
Later, agents check their performance and get suspended if the performance is
lower than a predefined value. Agents get suspended by changing their behavior to
exploration and setting suspend value (see credit assignment heuristic). Agents also
get suspended if their location is so near to the boundary lines. As a result, agents
use boundary condition heuristic’s instructions. If none of previously mentioned
conditions are true, agents update their velocity and location using Eqs. 2, 3, and 7.
As the next step, agents evaluate their new location using credit assignment heuristic.
Finally, agents communicate with each other based on communication heuristic’s
instruction. This helps agents to gain new knowledge and update global best. The
following sections represent details of used heuristics in the AEPSO’s pseudo-code.

6.1 Dynamic Velocity Adjustment

In AEPSO, in each of the iterations, we used one of the three essential components
of basic PSO (last velocity, cognitive, and social components) or one of their four
extra combinations which could shift an agent to an area or position with the best
credit (fittest position of the iteration for that agent) as shown in Eq. 7.

−→
Vi(t + 1) = f ittest

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ2(g(t) − xi(t)) : 1
φ1(pi(t) − xi(t)) : 2

w × −→
Vi(t) : 3

1 + 2 HPSO : 4
1 + 3 GPSO : 5
2 + 3 GCPSO : 6
1 + 2 + 3 Basic − PSO : 7

(7)

where φ1 = c1 × rand()

φ2 = c2 × rand() (8)

Parameters ( w, φ1, φ2, c1, c2, pi, g) and strategies that have been applied to
control them are discussed in previous sections. Equations 5 and 6 are used for new
pi and g in each of the iterations for each agent. Linearly Decreasing Inertia Weight
(LDIW) is used as in Eq. 4. The new modified velocity equation provides extra
control on effectiveness of different components of the velocity in a way to achieve
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the best solution possible for each agent in each iterations. Although the new velocity
equation needs the computation of seven quantities, it can provide dynamic velocity
adjustment due to its ability to provide different behaviors in the swarm at the
same time. In AEPSO, each agent represents a particle of the swarm (macroscopic
modeling). As discussed in previous sections, in microscopic modeling of a robotic
swarm, each agent represents a swarm by itself and a large amount of particles would
be suggested as swarm-size for each agent/swarm (at least 20 particles have been used
as swarm-size by literatures [34, 37]). The use of new velocity equation (Eq. 7) in such
a model will cause a high amount of computation which can slow the process while by
macroscopic modeling of the swarm, as in this study, the swarm-size would be equal
to the amount of agents used in suggested simulations. Therefore, by imitating the
macroscopic modeling, it is preferable to use the benefits of such a velocity equation
due to the fact that the amount of computations are already reduced.

6.2 Environment Reduction Heuristic

As argued in some literature [64–66], it is possible to separate a large learning space
to several small learning spaces with the aim of easing the exploration. The idea
in environment reduction heuristic is to divide the environment to sub-virtual fixed
areas with various credits. In this study, the environment is divided to 20×20 pixels
with square shapes cells (areas). Since the environment is presumed as 500×500
pixels; a matrix of 25×25 areas (625 areas overall) is concluded in a way that each
area contains 400 pixels.10 The credit of each area represents the proportion of
agents, survivors and obstacles positioned in the area. Agents have no knowledge
about the exact location of objects (survivors and obstacles) inside areas. Agents
have knowledge about overall elimination time (iterations) of each area. This can be
used to give the priority to areas with lower elimination times.

In this study, exploration behaviors refers to situations in which an agent leaves its
current area for another one. What’s more, exploitation behavior refers to situations
in which an agent searches for survivors inside an area. Since the environment
reduction heuristic forces agents to only exploit in areas with positive credits11

and explore in other situations, following such rule helps to provide more effective
balance between exploration and exploitation behaviors. In AEPSO, agents use the
credit of their surrounding areas for choosing areas for exploration. To do so, agents
have knowledge about the credit of their first and second surrounding areas. These
areas are referred as neighboring areas. These neighboring layers of areas contain
eight and sixteen areas around current area12 and are depicted in Fig. 1.

Due to the fact that agents give priority to areas for exploitation (based on areas’
credits), they set their behavior to exploration and also set their heading directions
based on the destine area and use maximum velocity (Vmax). Agents change their
behavior to exploitation whenever they reach to the destine area. In this study,
two different Area Deserting Policies (ADP) are assumed (ADP1 and ADP2). In

10Since the size of agents, obstacles and survivors are considered as one pixel, each pixel in an area
represents a possible survivor location for agents.
11An area would be referred as a positive credit area whenever it contains un-rescued survivors.
12Current area is the area that the agent is posed inside it.
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Fig. 1 Different layers of
area’s neighborhood

the ADP1, agents are not allowed to leave an area unless they rescue all of the
remaining survivors inside that area. In the ADP2, agents are allowed to leave an
area without completing survivors’ rescuing tasks inside that area. The ADP2 allows
agents to avoid getting temporarily stuck and loops of movements and directions
(e.g., especially in uncertain environments). It is due to their ability to change their
status by leaving the area. It is still possible for agents to be re-attracted to the same
area during the next iterations.

According to the algorithm, global-best and personal-best positions would be
cleared from the memory of an agent whenever it reaches a position which is
marked as global-best or personal-best position. Hence, whenever the global-best
or personal-best positions are unknown (previously cleared), agents use a random
location inside their current areas and the environment, respectively. It is necessary
to consider that agents share their personal-best-position and personal-best-position
during communications.

In AEPSO, agents move to each of the eight different areas around their current
area (first layer of neighboring areas) with consideration to their credits and by
changing their velocity to Vmax as shown in Fig. 2 each time they decide to leave
their current areas. If none of these neighboring areas had a credit more than zero,
they will choose their new area from the second neighboring areas.

In PSO, Vmax is defined as the maximum velocity value. As [56] discussed, in PSO,
particles have no intrinsic limitation in terms of maximum velocity. It is necessary to
be mentioned that even if there is a velocity limitation, it is common to use a high
value for Vmax. This allows particles of the PSO to fly in the virtual space toward the
interest regions in a single step. However, by considering the fact that in macroscopic
modeling of PSO, as in this study, the Vmax represents the step-size of the agents, it
is impossible to assign high values to Vmax. As it would be discussed in following
sections, in our simulation, we defined Vmax as four pixels per iteration.

6.3 Communication Methodology

It is common to use pre-established connections following neighborhood topology to
model communication between particles in PSO. Hence, particles’ locations in the
search space do not influence their communications [2]. In contrast, in real-world
robotic applications, robots’ communications influence from their location in the en-
vironment. In real-world robotic domains, robots’ communication range have major
role [55, 56]. This cause the existence of dynamic neighborhood topology. In dynamic



J Intell Robot Syst (2010) 58:253–285 267

Fig. 2 The environment
during the initialization phase.
Survivors, obstacles and agents
are shown larger than the real
experiment in which the size is
equal to 1 pixel. White lines are
used to virtually divide the
environment to areas

communication methodology, neighborhood topology would be continuously change
based on the distance of agents from each other. During communication, agents share
local-best-position (p), global-best-position (g). Even though memorizing previous
acts and last-observed areas are common in robotic problems, this study emphasize
on the use of small amount of memory (personal and global-best positions).13

6.4 Help Request Signal

Help request signal is considered as signal that agents send to each other whenever
they found themselves in areas with low elimination time (near to death people).14

In this study, agent’s communication range influence signal sending issue in a way
that agents can only send their help request signals to those who are in their
communication range. Therefore, whenever an agent receives a help request signal, it
will answer the request by either leaving its current location to help the requester or
ignoring the signal and continue with its previous act. Agents that receive the request
will also re-send it to others who are in their communication ranges. This results in
a virtual chain of connection with which, the original requester would be connected
others that are far away. Due to such a connection, agents are able to attract other
agents that are far away from their location. This method can also handle cases in
which agents use various communication ranges.

13Using short memory during the communication and knowledge sharing issues is one of the essential
ideas of basic PSO.
14In this study, agents have knowledge about the amount of survivors, obstacles and other agents
inside the area they are located in. Moreover, agents have knowledge about the overall elimination
time of the survivors inside their area.
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6.5 Credit Assignment

As Pugh and Martinoli argued in [56], in some problems (as in macroscopic modeling
of PSO in a robotic problem), the use of mathematical functions (benchmark func-
tions) as fitness evaluators might not be appropriated. In such modeling, particles of
the swarm are referring to actual locations of agents in the environment. Therefor, in
this study, three new terms called Reward, Punishment, and Suspend are used credit
assignment heuristic. In this study, agents would be either rewarded or punished
based on their status (locations) in the simulated environment. Hence, a reward.15

would be dedicated to an agent either when it locate a survivor or when it locate
itself inside an area with positive credit16 Likewise, Punishment would be dedicated
to a agent either when it could not achieve any reward after certain iterations or
when it collide with obstacles.

In AEPSO, the suspend entity (suspend factor) is designed to force agent to
leave their current area in situation in which they do not achieve performance
for some iteration. In here, suspend factor in agents is simulated by changing the
behavior to exploration and using Vmax as velocity and a new random direction (for
certain duration). This entity would be used for agents that received high amounts of
punishments. Punishment and reward mechanism motivates agents to avoid resting.
It is also useful in situations in which agents stuck between obstacles.17 Since credit
assignment heuristic forces agents to locate themselves in a far distance from the trap
zone (due to using the suspend factor) it is a promising solution for the stagnation
problem. Therefore, AEPSO considers the following instructions to evaluate agents’
achievements.

f (a(i)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Reward <= [∃si ∈ S, d(si, ai) ≤ r]
∨ [current area is a positive_credit_area]

Punish <= [¬∃si ∈ S, d(si, ai) ≤ r]
∧ [current area is not a positive_credit_area]

Suspend <= [Punishement value is higher than maximum allowable]
f represents the results of evaluation (fitness) of agent ai. S, si, ai, d(si, ai) and r

are introduced in problem statement (Section 5).

6.6 Boundary Conditions

In this study, the boundary conditions determine AEPSO’s policy whenever agents
are exploiting around the environment boundaries and cross them.18 As it is shown in
numerous studies with basic PSO, it often happens that particles position themselves

15In here, reward and punishment are considered as positive and negative units of credit.
16A positive-credit-area is assumed as an area with un-rescued survivors.
17In [37], it is mentioned that in robotic domain, robots are often stuck (trapped) between obstacles
without any hope to be released. This problem causes robots to lose performance and it is referred
as cul de sac or stagnation problem.
18Even though agents have knowledge about the location of boundaries, they would consider
themselves crossing them whenever they see them in their observation ranges and pass them.
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Fig. 3 Algorithm’s flowchart

in a location out of the search space ( by crossing the search boundaries) [4]. The
evaluation of such particles causes negative effects on the overall performance of
the swarm. It is due to the fact that these particles are referring to locations out of
the space. Evaluation of such particles also motivates other particles to imitate same
behavior and converge toward that location by leaving the search space. Vesterstorm
and Riget in [4] suggested following strategies to handle such a problem:

– Relocating particles to locations inside the search space or somewhere on the
boundary line.

– Ignoring particles miss-position and evaluate them as they are on the boundary
lines.

– Re-initializing particles.19

In this study, the third solution (re-initializing particles) is used to handle bound-
ary problem. Since it is not possible to relocate agents in robotic problem, re-
initialization is simulated by forcing agents to follow a random direction for certain
iteration using suspend factor. Therefore, agents will change their behavior to
exploration whenever they crossed the boundary lines. Likewise, agents will choose
(Vmax) as their velocity. They will also choose a random direction and set their
suspend factor true.

As it is mentioned in [22], this heuristic is useful when agents are flickering around
the boundary lines while survivors are placed in a different part of the environment.
The idea of forcing agents to relocate themselves somewhere in the middle of the
environment shows a large influence on agents’ performance.

The used steps in AEPSO are illustrated in flowcharts in Figs. 3 and 4. Figure 3
depicts the algorithm’s flowchart. In the flowchart, in the initialization step, a random

19Other strategies such as Warping and Reflecting have also been examined in robotic by literature.
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location would be dedicated to agents, obstacles and survivors. In addition, each
survivor’s elimination time would be set randomly with a value between 5000 to
20000 iterations. Figure 4 demonstrates the use of heuristics in the algorithm. In the
flowchart, the value of suspend factor depict the iteration durations that agents are
suspended.

7 Simulations and Empirical Setups

In this study, three different simulations are defined to measure the effectiveness
of AEPSO in different realistic environments. These simulations represent various
constraints which are common in real world applications. These constraints are

Fig. 4 Details about AEPSO’s
use in each agent



J Intell Robot Syst (2010) 58:253–285 271

Table 2 AEPSO’s parameter
setups in various simulations

Parameters Simulations

Simulation 2 Simulation 3

Static Dynamic TS TD

Vmax 4 4 4 4
Vmin 1 1 1 1
c1 0.5 0.5 0.5 0.5
c2 2.5 2.5 2.5 2.5
w1 0.2 0.2 0.2 0.2
w2 1 1 1 1
Observation-radius 3 3 3 3
Obstacles 51 51 45 45
Survivors 51 51 15 15
Agents 5 5 5 5
Executions 100 100 100 100
Environment 500 × 500 pixels 500 × 500 pixels
Elimination time 20000 iterations [3000–20000] iterations

known as i) dynamicity, ii) time-dependency and iii) uncertainty. Details of the
constraints and simulations are explained in the following sections. In these simu-
lations, the environment is a two-dimensional 500×500-pixel space in which, agents,
survivors, and the size of obstacles are assumed as 1 pixel. The details of parameter
adjustments used in AEPSO and the variations of basic PSO are demonstrated in
Tables 2 and 3.

In the experiments, two environments denoted as Static and Dynamic environ-
ments are defined. The details of these environments are as follows:

Static Environment: In this environment, survivors and obstacles positions are
fixed from the initialization phase. Likewise, survivors’ elimination times are set
at 20,000 iterations (simple goals) as discussed in Table 2. (∀ si ∈ S, vs

i = 0 ∀ si ∈
S, ti = 20000).

Dynamic Environment: In the dynamic environment, survivors can use stochastic
movements. Survivors’ velocity is three pixels per iteration (∀ si ∈ S, vs

i = 3).
Survivors use arbitrary directions and renew them iteratively. Survivors have no

Table 3 Basic PSO and AEPSO’s variation

PSO type Details

Inertia weight Acceleration coefficients Used equations

AEPSO (LDIW)a:w1 = 0.2, w2 = 1 (FAC)d:c1 = 0.5, c2 = 2.5 v:7, w:4, x:2, p:5, g:6, Vmax:3
basic PSO1 (LDIW):w1 = 0.2, w2 = 1 (FAC):c1 = 0.5, c2 = 2.5 v:1, w:4, x:2, p:5, g:6, Vmax:3
basic PSO2 (FIW)b:w = 0.729844 (FAC):c1 = 0.5, c2 = 2.5 v:1, x:2, p:5, g:6, Vmax:3
basic PSO3 (RANDIW)c:w ∈ [0, 1] (FAC):c1 = 0.5, c2 = 2.5 v:1, x:2, p:5, g:6, Vmax:3
aLinearly decreasing inertia weight (i.e., Eq. 4)
bFixed Inertia Weight
cRandom inertia weight
dFixed Acceleration Coefficients
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idea of the agents’ trajectory and therefore, they can not get close to the agents
consciously. Agents should find wandering survivors as fast as possible.

In Table 2, time-dependencies of the tasks in static and dynamic environments are
simulated in the third simulation and they are referred to as TS and TD, respectively.

The experiments investigated in this simulation are presented in Table 4.

7.1 First Simulation: Feasibility of Employing basic PSO in Static Environment

In this simulation, macroscopic models of basic PSO are employed as movement
controller and decision makers of simulated agents in survivor-rescuing missions. In
this simulation, the effects of entities such as swarm size, parameter adjustments, and
population density are investigated in a static environment. Agents are not allowed
to leave an area unless they have completed their rescuing task (ADP1), and their
communication range is set to 5 pixels.

In this simulation, a comparison between the variations of basic PSO is presented.
The PSO variations, in terms of parameter adjustment, are defined as basic PSO1,
basic PSO2, and basic PSO3. The details about these variations are discussed in
Table 3. The experiments investigated in this simulation are presented in Table 4.

To examine the effects of swarm size, experiments with basic PSO1 are replicated
by 5, 10, 15 and 20 agents for 100 executions. This experiment is referred to as
swarm size in the following chapters. Furthermore, a set of experiments are designed
to investigate the effects of the survivors’ population on the overall performance
of three different types of basic PSOs (see Table 3). For such an aim, a rescuing
mission is designed in which the population of survivors is fifteen, one third of that
of the obstacles. Such an experiment is designed to measure the effectiveness of
basic PSO in environments where the survivors are positioned far from each other.
This experiment is referred to as population density in the following sections. In
previous experiments, due to the high amount of survivors, they are often clustered
in a few spots in the environment which gives an advantage to the agents in taking
on their rescuing missions. In contrast, in this experiment (population density),
the probability of existence of the survivor’s cluster is low and this increases the
complexity of the missions. The increment of the complexity of the mission is due
to the use of fewer number of survivors in the environment which results in their
spreading in the wide range of environment.

It is necessary to mention that in our earlier experiments, a version of basic PSO
without a boundary heuristic, which allowed agents to explore near the boundary
lines or even leave the environment, were examined. The results of that version of
basic PSO showed that agents converged somewhere near the boundary lines or left
the environment. Moreover, a version of basic PSO with a higher observation-range

Table 4 Investigated effects on various basic PSOs in the first simulation

Investigated effects Initial settings

Obstacles Survivors Agents Iteration Executions/terials

Swarm-size 50 50 5,10,15,20 20000 100
Parameter adjustment 50 50 5 20000 100
Population density 15 45 5 20000 100



J Intell Robot Syst (2010) 58:253–285 273

compared to the maximum step-size (Vmax) showed the same behaviour.20 Therefore,
the variation of basic PSO used for the comparison is equipped with a simple
boundary condition which forces them to relocate aggressive agents somewhere near
the environment boundaries. Moreover, observation-radius is considered as three
pixels which is less than Vmax (four pixels per iteration). Fitness function used for
these variations of basic PSO is based on the achieved performance whenever a
survivor is rescued. This simulation and its experiments can be addressed as follows:

– Parameter Adjustment Experiments: A = {a1, ..., am}, m = 5, and S = {s1, ..., sk},
k=50 and O = {o1, ..., on}, n=50, ∀ ai ∈ A, cr = 5, ∀ si ∈ S, vs

i = 0, ∀ si ∈ S,
ti = 20000.

– Swarm Size Experiments: A = {a1, ..., am}, m = 5, m = 10, m = 15, m = 20,
∀ ai ∈ A, cr = 5, ∀ si ∈ S, vs

i = 0, ∀ si ∈ S, ti = 20000.
– Population Density Experiments: A = {a1, ..., am}, m = 5, and S = {s1, ..., sk},

k=15 and O = {o1, ..., on}, n=45,∀ ai ∈ A, cr = 5, ∀ si ∈ S, vs
i = 0, ∀ si ∈ S,

ti = 20000.

7.2 Second Simulation: AEPSO vs. Basic PSO

In this simulation, both static and dynamic environments are simulated in which,
survivors, obstacles and agents are located randomly at the initialization phase. The
main reasons for implementing such a simulation is to investigate whether AEPSO
could be employed as a movement controller and decision maker of agents in static
environment and to provide a comparison between the variations of basic PSO
and AEPSO. In this environment, a comparison between AEPSO, random search,
and linear search is presented. Due to the fact that in real world applications the
environments are mostly dynamic, AEPSO’s performance in such an environment is
also examined. In addition, this simulation can be addressed as follows:

– A={a1, ..., am}, m=5, S={s1, ..., sk}, k=15, O = {o1, ..., on}, n=45, ∀ ai ∈ A, cr = 5.
– Static environment: ∀ si ∈ S, vs

i = 0, ∀ si ∈ S, ti = 20000.
– Dynamic environment: ∀ si ∈ S, vs

i = 3, ∀ si ∈ S, ti = 20000.

7.3 Third Simulation: AEPSO vs. Time Dependency and Random Noise

Since the previous simulation shows AEPSO’s advantages and feasibilities as com-
pared to basic PSO, the principle idea of implementing this simulation is to investi-
gate AEPSO’s performance in both static and dynamic environments affected with
time dependency and uncertainty of tasks. Due to the fact that uncertainty and time
dependency of tasks are common constraints in real world applications, AEPSO’s
performance in environments affected with such constraints is examined. In this
simulation, time dependency means that each survivor has a specific living time. The
living time is randomly initiliased. Uncertainty is assumed as negative or positive
random values uniformly distributed between −1 and 1, added to the credit of an
area. The task of a simulated agent is to locate the survivors before the living time
ends.

20Due to poor performances of these two experiments (lower than 40% success rate), these results
are omitted from the study.
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As in [19, 20], agents are allowed to leave an area without completing the task
(ADP2) and they are also able to send help request signals. The use of a second area
deserting policy (ADP2) is due to the fact that ADP1 which were used in the previous
simulation caused a temporary stagnation of an agent and looping of directions and
movements. This is due to the fact that ADP1 forces the agents to continue exploring
the areas with positive credits and prevents them from leaving those areas despite
the agents’ desires to leave the areas. The desire to leave is controlled by the utilities
computed from punishments and suspense factors. In contrast, ADP2 allows agents
to leave the areas. This helps to reduce the loop in directions.

In this simulation, agents are able to send help request signal to their neighbors
whenever they find themselves in an area with more than one survivors with
low living time (near-death survivors). Various communication ranges are used to
examine the effectiveness of communication in static and dynamic environments.
Suggested communication ranges are 5, 125, 250, and 500 pixels. This simulation can
be addressed as follows:

– A = {a1, ..., am}, m=5, S = {s1, ..., sk}, k=15, O = {o1, ..., on}, n=45.
– ∀ ai ∈ A, cr ∈ {5, 125, 250, 500}.
– ∀ si ∈ S,3000 ≤ ti ≤ 20000.

8 Experimental Results

In robotic problems, it is common to use an environment with 500×500 or even
1000×1000 pixels and 200,000 iterations for problem solving tasks. It is also common
to use a high number of agent population (approximately between 20 to 100 and
even more [31, 34, 37, 45]. Here, five agents with 20,000 iterations are used. In our
idea, such constraints are more realistic. In our study, the performance measurement
is based on the overall amount of rescued survivors in different experiments. The
parameter adjustment and settings in all the simulations have been discussed in the
previous section.

In this study, experimental results would be discussed based on several factors.
These factors are presented in Table 5.

8.1 First Simulation: Basic PSO’s Potential in Static Environment

As discussed in Table 4, in this simulation, the experiments are organized based on
the effects of parameter adjustment, swarm-size, and population density in a static

Table 5 Experimental results categorization

Factors Remarks Relevant figures

The amount of Figures shows iterations in which 5a, 6b, 7b, 8a,
rescued survivors survivors are located and rescued 9a, 9b

The amount of Figures shows iterations in which 11, 13b
eliminated survivors survivors are died

Complete execution Figures shows iterations in which 5b, 6a, 7a, 8b,
(missions) various executiones achieved 10, 12a, 12b, 13a

the termination criteria
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(a) (b)

Fig. 5 The impact of various basic PSO in static environment. a Rescued survivors. b Missions

environment. All experiments presented are based on 100 trials (100 missions with
random initial locations).

8.1.1 Effects of Parameter Adjustment

Figure 5a and b show the performance variations of different basic PSOs. As
discussed in Table 4, in this experiment, basic PSO1 used Linearly Decreasing Inertia
Weight (LDIW) and Fixed Acceleration Coefficients (FAC), basic PSO2 used
Fixed Inertia Weight (FIW) and Fixed Acceleration Coefficients (FAC), and basic
PSO3 used Random Inertia Weight (RANDIW) and Fixed Acceleration Coefficients
(FAC). In Fig. 5a, the performance is measured based on the speed of the agent in
rescuing the survivors. In contrast, in Fig. 5b, the performance is measured based
on the speed of the agents to locate the survivors and finish the mission.21 The
results illustrate that basic PSO2 performed the worst. This is similar to the results
from Vesterstrom and Riget [4]. The low performance in basic PSO2 is due to its
inability to control the search diversity which causes stagnation of particles. In this
experiment, basic PSO1 performed a better search due to the fact that LDIW method
provides a better control for search diversity as compared to other techniques.

8.1.2 Effects of Swarm-Size

Figure 6a and b shows the effect of swarm size on the basic PSO’s performance.
In Fig. 6a, the chart shows the achieved results in missions in each period of time
(iterations). In Fig. 6b, the chart shows the amount of rescued survivors in each
period of time (iterations). Since basic PSO1 achieved the best performance among
others in previous experiment, in this experiment, basic PSO1 has been used as a
movement controller of simulated agents. The swarm size showed a great effect
on the overall performance of the team of rescuing agents. It is due to the fact
that a team of twenty agents have better chances in terms of communication and

21Missions finish either whenever there is no unrescued survivor left or whenever the termination
iteration (20,000 iteration in here) is achieved.
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(a) (b)

Fig. 6 The impact of swarm size on basic PSO in static environment. a Missions. b Rescued survivors

cooperation compared to a team of five agents. It is also due to the probability of
covering a higher percentage of the environment even with low communication range
as in here. As it is mentioned in Tables 3 and 4, to control the value of inertia weight,
basic PSO1 uses LDIW method, basic PSO2 uses FIW method, and basic PSO3 uses
RANDIW. All of the PSO’s variation used in this study uses FAC method for setting
the acceleration coefficients.

8.1.3 Effects of Population Density

Figure 7a and b show the effects of survivor population on the performance of various
basic PSOs in static environments. In Fig. 7a, the chart shows the results of the
missions in each time period (iterations). In Fig. 7b, the chart shows the amount
of rescued survivors in each time period (iterations).

Although the overall performance of all the three methods demonstrate their
inability to finish their missions in a predefined time limit, basic PSO1 performed

(a) (b)

Fig. 7 The impact of population density on basic PSO in static environment. a Missions. b Rescued
survivors
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better in terms of the amount of rescued survivors during the missions. The poor
variation results of PSO are due to their inability to locate the remaining survivors
spread in the environment. Such a constraint and disadvantage can be addressed
by providing a balance between the exploration and exploitation of the swarm.
Although the variation of PSO used in these experiments attempt to balance these
behaviors, their balancing mechanism frequently ends up in exploring the spots
that they should exploit or in exploiting the areas that they should explore. Such
a disadvantage persuades us to examine AEPSO’s ability in such an environment. It
can be concluded that although it is possible to use basic PSO in these environments,
it is still possible to substitute it with techniques which control the search diversity by
providing a better control.

8.2 Second Simulation: AEPSO’s Potential in Static and Dynamic Environments

Previous experiments revealed that basic PSO can be employed as robot con-
troller in suggested environments. Here, we show that it is possible to improve
the performance of basic PSO by providing better exploration and exploitation. In
this experiment, AEPSO is compared with basic PSO, linear search, and random
search. AEPSO explores and exploits the search space by utilizing cognitive and
social components while random searches and linear searches do not utilize any
knowledge. Therefore, AEPSO can outperform random search and linear search
methods. AEPSO is also reliable in dynamic environments since cognitive and social
components are dynamically updated.

As in the previous simulation (population density), in this experiment, 5 agents,
15 survivors and 45 obstacles are used. All of the presented experiments are based
on 100 trials (executions). The executions end whenever the termination criteria are
achieved (mission). A comparison of AEPSO’s progression in static and dynamic en-
vironments is illustrated in Fig. 8a and b. In Fig. 8a, the progress is presented in terms
of the amount of rescued survivors in certain time durations (iterations). The results
show a rapid improvement in the early stages followed by a gradual improvement in

(b)(a)

Fig. 8 The feasibility of AEPSO in static and dynamic environment. a Rescued survivors. b Missions
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Fig. 9 Comparison of AEPSO’s results in static and dynamic environments, linear search, and
random search

the later stages. Figure 8b shows the results achieved in 100 executions in static and
dynamic environments with AEPSO.

In Fig. 8a and b, the results in dynamic environment show that in the worst
execution, the mission was completed by 11,000 iterations (i.e., all of the survivors
were rescued). Figures 8 and 9 show the differences of AEPSO in static and dynamic
environments. Moreover, results from a random search and a linear search method
are also shown in this figure.

As the results show, due to dynamic adjustments to social and cognitive compo-
nents, AEPSO rescued more than 80% of the survivors in less than 3,000 iterations
(in static environment). Unexpectedly, in a dynamic environment, AEPSO rescued
more than 95% of the survivors in the first 3000 iterations.

As the results show in Fig. 9a and b, AEPSO achieved better results in the
dynamic environment in which survivors were moving around. Additionally, in
Fig. 9, AEPSO shows a high potential for completing the missions in the dynamic
environment. The reason is, although dynamic environments have a higher level
of complexity as compared to the static ones, survivors’ movement helps agents
from temporarily-getting-stuck-behind problem. Results show that linear searches
and random searches are not reliable in dynamic environment. As the results
demonstrate, AEPSO outperformed variations of basic PSO in static environment
because it is able to perform a better local search.

8.3 Third Simulation: Time Dependency

As previously discussed, AEPSO has the potential to outperform basic PSO, linear
search, and random search. It is also reliable in dynamic environments in which
survivors choose random directions and move iteratively. As time dependency,
uncertainty, and communication difficulties are known as common constraints in
real world robotic applications, AEPSO’s potential in such environments is inves-
tigated. The results indicate that AEPSO is reliable in time-dependent and uncertain
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Fig. 10 Experimental results
of AEPSO on uncertain static
environment with different
communication ranges

environments due to its ability to provide better local search due to additional
heuristics, AEPSO’s ability to give priority to tasks by exploiting areas with lower
overall living times first, and also due to the use of help request signal. The results
indicate that different communication ranges affect the performance of the AEPSO
due to its effect on providing sub-swarms and dynamic neighborhood topology.

In this simulation, the results are presented in two groups according to the use of
various area deserting policies. As mentioned earlier, in the first group, the first area
deserting policy which is denoted by ADP1 is used. In contrast, in the second group,
the second area deserting policy which is denoted by ADP2 is used. Experiments of
both groups are replicated by using various communication ranges (e.g., 500, 250, 125,
5 pixels). The survivors’ living times are set to a random value in the range between
3000 to 20000 iterations (time-dependent problem). All of the presented results are
based on 100 executions and both of the scenarios are re-examined with a simple
noise involved in dynamic and static environments. As discussed in Table 2, in this
experiment, 15 survivors, 45 obstacles and 5 agents are used (as in population density
experiment where basic PSO showed its poorest performance).

Figure 10, describes the impact of different communication ranges on AEPSO
which is equipped with ADP2 in an uncertain static environment. As shown, experi-
ences with higher communication ranges showed most of their highest peaks in the
first half of the experiment (sometime between 0 to 11000 iterations), while, those
who have lower communication ranges have their highest peaks in the second half of
the experiment.

Figure 11a and b describe the effects of various communication ranges on
the loss of survivors (elimination of survivors) in uncertain environments. The

Fig. 11 Experimental results
of AEPSO with different
communication ranges in
uncertain dynamic
environment
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comparison between the achievements in static and dynamic environments illustrates
that AEPSO performs better local search in higher communication ranges in which
higher cooperation between agents is possible.

The results in both dynamic and static environments show that although in
experiments with higher communication ranges agents are unable to rescue survivors
with low elimination times, they performed better than others in the rest of the
mission and located most of the remaining survivors with high elimination times.
It might be due to their lack of knowledge in early iterations. The lack of knowledge
in early stages causes an inability to give priority to the tasks accurately. This
disadvantage has been addressed with the cooperation between agents in the later
stages.

Figure 12a and b, describe the effectiveness of two deserting policies in static
and uncertain dynamic environments respectively. The comparison is based on the
amount of missions (executions) that were finished before termination iteration. The
communication range of an agent is set to 500 pixels and results are achieved from
100 executions with different initializations.

Figure 13a and b show the experimental results of AEPSO in various environ-
ments (static, static noisy, dynamic, and dynamic noisy) with the communication
ranges equal to 250 pixels. It is necessary to notice that in both figures, the second
deserting policy (ADP2) has been applied. The results are demonstrated based on
the impact of various environments and their constraints on the amount of missions
that were finished before the termination of iteration and the amount of eliminated
survivors.

As the results depict, different communication ranges have major effects on the
swarm performance (i.e., low (5 pixels) and high (500 pixels) communication ranges
favored in low and high proportion of sub swarms respectively). Although in the
communication range of 500 pixels all the agents are able to communicate with each
other, the best results are achieved in the range of 250 pixels due to the effectiveness
of sub-swarm existence. In addition, AEPSO shows reliable results in time dependent
(dynamic and static) environments and is able to overcome the noise. (AEPSO

(a) (b)

Fig. 12 Effects of different deserting policies in static and uncertain dynamic environments. a Static.
b Uncertain dynamic
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(a) (b)

Fig. 13 Feasibility of AEPSO in various environments. a Missions. b Eliminated survivors

rescued 88% of the survivors in a time dependent, noisy, static environments and
95% of the survivors in a time dependent, noisy, dynamic environments).

9 Discussion

In this study, the advantages and disadvantages of various enhanced versions of
the basic PSO are presented. As mentioned, most of these methods had certain
weaknesses. Their poor performances in dynamic, time-dependent, and uncertain
environments encouraged us to introduce AEPSO as an alternative approach in our
study.

9.1 The First and the Second Simulations

As other studies and our own results proved, the PSO method is not a competitive
method for the robotic problem domains due to some of its flaws (e.g., high
computing demand and the use of high amount of particles are the drawbacks of
PSO in robotic domain). In this study, these flaws and weaknesses are addressed with
population size problem and the use of maximum iteration. Many previous works
hasve suggested the use of swarm-sizes approximately between 20 to 100 agents.
Such a high amount for swarm-size is necessary for PSO effectiveness in terms of
performance. Furthermore, the maximum iteration that is used by other researchers
to complete the observation task is 200,000 iterations. In contrast, in this study, we
used a 20,000 iteration limitation as our maximum of iterations and our population
size is based on using 5 individuals as agents. As the results in static environment
display, AEPSO achieved a competitive performance as compared to random and
linear search methods. Moreover, AEPSO outperformed the variations of basic
PSO which are used for comparison. As the outcomes demonstrate, none of the
basic PSOs (except in one experiment) used for comparison were able to finish the
missions before the termination iteration (20,000 iterations) while AEPSO was able
to finish 70% and 100% of missions in static and dynamic environments respectively.
The closest performance to AEPSO is achieved by a version of basic PSO which used
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20 agents. Furthermore, AEPSO show great potential in dynamic environments, in
situations where the entire environment changes due to the stochastic movements
of the survivors. Based on the results, in a dynamic environment, AEPSO located
survivors much faster than in a static environment and no loop of direction or
temporary stagnation was detected in such an environment. The loop of direction
and stagnation problems were caused by the use of suspense factor and first area
deserting policy (ADP1). The first area deserting policy gives the highest priority to
the areas that agents are exploiting inside it while the suspense factor tries to force
agents to leave their locating areas. In contrast, in a dynamic environment, due to
the iterative movements of the survivors, the agents are able to change the priority of
areas iteratively and this helps them to avoid stagnation. The achieved performance
is due to AEPSO’s capability of providing the balance between exploration and
exploitation behaviors. Unlike basic PSO, in AEPSO, agents only exploit locations
which have high probability of achieving performance (i.e., in AEPSO, agents only
exploit positive-credit-areas). Therefore, AEPSO has the advantage in terms of local
search.

9.2 The Third Simulation

In the third simulation where uncertainty and time-dependency of tasks are exam-
ined, AEPSO proves to be able to locate survivors within the specified time before
their elimination in dynamic and static environments while PSO, random search, or
linear search are not reliable in such environments. Furthermore, also show that
AEPSO is also robust to noise (random noise) which helps it to withstand and
achieve acceptable performance in uncertain environments. As the results show,
the best performances appeared in the communication range of 250 pixels which
illustrates the effectiveness of sub swarms on the swarm performance (e.g., in the
communication range of 500 pixels, all the members and population of the swarm are
involved in the same sub swarm). It is also demonstrated that lower communication
ranges which can provide more sub swarms cannot guarantee the achievement of
better performances (in the communication range of 5 pixels, each individual particle
can be considered as a unique sub swarm). It is due to the existence of individual
sub-swarms (in here individual agents) which do not cooperate with each other.
Furthermore, experimental results prove ADP2 efficiency. The low performance of
AEPSO with the ADP1 is due to the existence of the loop of directions caused by
employed policies. Although such a policy (ADP1) forces the agents to remain in
positive-credit-areas, it causes them to lose the balance between their behaviors and
contributes to their stagnation.

10 Conclusion

This study addresses the feasibility of AEPSO in robotic scenarios. AEPSO has been
applied to various robotic search scenarios such as bomb disarming and survivor
rescuing. These scenarios address static, dynamic time dependent and uncertain
environments. Even though AEPSO shows a reliable performance in such environ-
ments, it is still not possible to establish it as a general method that can handle
the entire robotic search domain. In this study, AEPSO showed great potential in
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time-dependent and uncertain environments. AEPSO was able to outperform the
variations of basic PSO in static environments. It was due to AEPSO’s ability to
perform more efficient local searches because it provides a better balance between
essential behaviors of the swarm. In addition, AEPSO showed a better performance
as compared to random and linear search methods. One future direction is to conduct
a research to examine the effectiveness of AEPSO with physical robots in a real-
world application.
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