
J Intell Robot Syst (2010) 57:143–170
DOI 10.1007/s10846-009-9367-1

Integration of Path/Maneuver Planning in Complex
Environments for Agile Maneuvering UCAVs

Emre Koyuncu · N. Kemal Ure · Gokhan Inalhan

Received: 1 February 2009 / Accepted: 1 August 2009 / Published online: 23 September 2009
© Springer Science + Business Media B.V. 2009

Abstract In this work, we consider the problem of generating agile maneuver
profiles for Unmanned Combat Aerial Vehicles in 3D Complex environments.
This problem is complicated by the fact that, generation of the dynamically and
geometrically feasible flight trajectories for agile maneuver profiles requires search
of nonlinear state space of the aircraft dynamics. This work suggests a two layer
feasible trajectory/maneuver generation system. Integrated Path planning (consid-
ers geometrical, velocity and acceleration constraints) and maneuver generation
(considers saturation envelope and attitude continuity constraints) system enables
each layer to solve its own reduced order dimensional feasibility problem, thus
simplifies the problem and improves the real time implement ability. In Trajectory
Planning layer, to solve the time depended path planning problem of an unmanned
combat aerial vehicles, we suggest a two step planner. In the first step, the planner
explores the environment through a randomized reachability tree search using an
approximate line segment model. The resulting connecting path is converted into
flight way points through a line-of-sight segmentation. In the second step, every
consecutive way points are connected with B-Spline curves and these curves are
repaired probabilistically to obtain a geometrically and dynamically feasible path.
This generated feasible path is turned in to time depended trajectory with using time

E. Koyuncu (B) · N. K. Ure
Controls and Avionics Laboratory, Istanbul Technical University, Istanbul, Turkey
e-mail: emre.koyuncu@itu.edu.tr

N. K. Ure
e-mail: ure@itu.edu.tr

G. Inalhan
Faculty of Aeronautics and Astronautics, Istanbul Technical University, Istanbul, Turkey
e-mail: inalhan@itu.edu.tr

144 J Intell Robot Syst (2010) 57:143–170

scale factor considering the velocity and acceleration limits of the aircraft. Maneuver
planning layer is constructed upon multi modal control framework, where the
flight trajectories are decomposed to sequences of maneuver modes and associated
parameters. Maneuver generation algorithm, makes use of mode transition rules
and agility metric graphs to derive feasible maneuver parameters for each mode
and overall sequence. Resulting integrated system; tested on simulations for 3D
complex environments, gives satisfactory results and promises successful real time
implementation.

Keywords Path planning · Maneuver planning · Dynamic feasibility ·
Agile maneuvering · Unmanned combat aerial vehicles

1 Introduction

Practical usage of Unmanned Air Vehicles has underlined two distinct concepts at
which these vehicles are instrumental. First are the routine operations such as border
or pipeline monitoring for which manned systems are expensive and inefficient.
Second are scenarios such as an armed conflict reconnaissance or nuclear spill
monitoring, in which there is a high risk for human life loss as the proximity to the
scenario increases. In this work, we consider a specific case of the second type of
scenarios which involves flying through a complex and dense city-like environment
rather this be for reconnaissance or monitoring.

Although many kinodynamic motion planning methods that declares generating
dynamically feasible path have been developed, they rarely can be used in practice
especially for the aerial vehicles because of computational complexities. General
kinodynamic motion planners require at least exponential time in that dimension of
the state space of dynamical systems which is usually at least twice the dimension
of the underlying configuration space [11]. In practice, kinodynamic planners are
implementable only for systems that have small state-space dimensions. For example,
the work presented in [11] suggests a path-planning relaxation which defines a class
of maneuvers from a finite state machine, and uses a trajectory based controller to
regulate the unmanned vehicle dynamics into these feasible trajectories. However,
the trajectories to be controlled are limited to the trajectories generated by the
finite state machine and the computational challenges of generating real-time imple-
mentable flight trajectories in 3D complex environments still remains as a challenge.
Demonstration of path planner solution for flight in the 3D crowded MelCity model
and landing to base is seen in Fig. 1.

The most important advantage of combination of path and maneuver planning
that proposed in this work is related with generation of feasible agile flight trajec-
tories. When the path planning problem is complicated with dynamic constraints
on vehicle along with geometrical constraints, problem becomes challenging due to
complexity of dimension. Therefore one cannot simply generate a trajectory that is
dynamically feasible (feasible in the sense that it would be trackable by a control
system in the flight envelope and actuator limits), relying on the path planning. This
is where the maneuver planning comes in; by taking the advantage of working with
a pre-defined dynamically feasible flight trajectory given by trajectory planner, it
can identify and extract appropriate angular velocity and angular attack information

J Intell Robot Syst (2010) 57:143–170 145

Fig. 1 UCAV flight
demonstration in the 3D
complex city-like environment
and landing to its base

needed to create a maneuver profile without concerning with the trajectory gener-
ation and obstacle avoidance. However if the flight trajectory is generated without
checking the velocity and acceleration bounds, maneuver planning layer will have
hard time searching for angular velocities and angle of attack history that are
in the feasible set. Therefore by sharing the dynamic feasibility checks between
path planner and maneuver planner, these two layers covers their disadvantages
and provides both dynamically and geometrically feasible flight trajectories and
maneuver profiles for complex environments. This two step feasibility check is the
main contribution of this paper to the field.

In the Trajectory Planer layer, we suggest a real-time implementable two-step path
planner strategy. As the first step, 3D environment and the passages are rapidly
explored using an RRT based planner. From this geometrically feasible but not
dynamically feasible path, line-of-sight critical milestones are extracted. Although
these milestones allow point-to-point flyable flight path segmentation, it does not
necessarily correspond to a fast agile and continuous motion plan. To address
this, as a second step, B-Spline method is used for generating C2 continuous flight
path that pass through these milestones. In face of geometrically and dynamically
unfeasibility, generated path is probabilistically reshaped to eliminate the collisions
and dynamically unfeasibility thanks to local support property of the B-Spline curves
and at the end the time scale is adjusted to allow dynamic achievability.

Main contribution of the Maneuver Planner layer is a new perspective on ma-
neuver/motion planning algorithms, which does not require any pre-build maneuver
libraries and relies on the parameterized modal decomposition of arbitrary flight
maneuvers. Integration with a path planning algorithm results in capability of
generating feasible flight trajectory and maneuver profile which can be tracked
by a switched control system where every maneuver mode is locally controllable.
Integrated architecture of the Path/Maneuer Planning is demonstrated in the Fig. 2.

Rest of paper is organized as follows. In Sections 2 and 3, we gave detailed descrip-
tions of the Path Planner and Maneuver Planner respectively. Literature surveys and
related framework has been given at the beginning of these sections. In Section 4,
example solution of the integrated Path/Maneuver Planning is demonstrated for the
selected environment and complete computational time-table for the other example
environments also has been given. The conclusions are discussed in Section 5.

146 J Intell Robot Syst (2010) 57:143–170

Fig. 2 Integrated planning
architecture of UCAVs

2 Dynamically Feasible Path Planning Algorithm

For developing a real-time implementable planner, motion planning researches have
been focused on sampling based approaches that rapidly search either the configura-
tion or the state space of the vehicle. In the last few decades, sampling-based motion
planning algorithms have shown success in solving challenging motion planning
problems in complex geometries while using a much simpler underlying dynamic
model in comparison to an air vehicle. Roadmap-based planners, like well-known
Probabilistic Road Mapping (PRM) method as mentioned in [18], are typically used
as multi-query planners (i.e. simultaneous search of the environment from different
points) that connect these multiple queries using a local planning algorithm. PRM
planners converge quickly toward a solution path, if one exists, as the number of
milestones increases. This convergence is much slower when the paths must go
through narrow passages. For complex environments, some extended algorithms
are suggested for PRM like planners in [3] and [14]. Tree-based planners build a
new roadmap for each query and the newly produced samples are connected to the
samples that are already exists in the tree as in [13, 17], and [23]. Rapidly-Exploring
Random Tree (RRT) is the most popular representative of tree-based planners
that is an exploration algorithm for quickly searching high-dimensional spaces that
have both global and differential constraints. Sampling-based planners, especially
tree-based planners (RRT and single-query PRM variants), have been adapted
to solve dynamically feasible paths that accommodate kinodynamic constraints.

J Intell Robot Syst (2010) 57:143–170 147

Kinodynamic planning refers to problems in which the motion must satisfy non-
holonomic and/or dynamic constraints. The main philosophy behind kinodynamic
planning is searching a higher dimensional state space that captures the dynamics of
the system [16, 23].

Gradual motion planning methods -our approach can be represented in this
class- are recently proposed to solve complex path planning problem in cluttered
environments. These methods first solve a relaxed form of the problem and then
the approximate solution is refined to solve the original problem with a repairing
method. In [15], a roadmap is initially generated by allowing some penetration
into the collision workspace. Later, milestones are carried to collision-free space.
In Iterative Relaxation of Constraints (IRC) method [1], first a relaxed version of
problem is solved and then this coarse solution is used as a guide to solve original
problem iteratively. The strategy of using an approximate solution to obtain a
collision-free path is also used in Lazy PRM [2] and C-PRM [30]. In our earlier work
[22], using a similar strategy, a Mode Based PRM method is refined with modal flight-
path segments to obtain flyable trajectories.

From a deterministic perspective, B-Spline curves have been used in many
dynamic path planning and control problem implementations. In [20], dynamic
trajectory is generated with the minimum travel time for two-wheeled-driven type
mobile robot. In [25] visibility-based path is modified to continuous feasible path via
B-Spline curves. Using the well known local support property of B-Spline curves,
real-time path modification methods are proposed for multiple mobile robots in [28]
and robot manipulators in [7]. Constant acceleration time-scalable path generation
method for the unmanned helicopters flying in the urban environments is used in our
earlier work in [21] that we will use similar method but this time for the unmanned
combat aerial vehicles.

In comparison, our method utilizes both the probabilistic and the deterministic
aspects to obtain a real-time implementable planner strategy. In the first step, the
algorithm rapidly explores the complex environment and the passages using an RRT
planner because of its well quick spreading ability. In this part, our strategy focuses
only finding an obstacle-free path that can be tracked from the initial point to the goal
point with line segments in the configuration space. Vehicle’s dynamic constraints are
completely disregarded to decrease the computational time. This coarse obstacle-
free path will be called as connectivity path. After finding the connectivity path, this
path is filtered with the line-of-sight implementation to eliminate the points that
cause long detours. Remained points that we call as way points naturally appear
in entering and exiting regions of the narrow passages that are formed between
the obstacles. An advantage of this refinement is that we can use these way points
as guide-milestones that point hard regions and directions of the next coming hard
regions in the environment.

In the second step of our strategy that dynamically feasible path is searched, every
way-point connected with forth-order B-Spline curve and collision and dynamic
feasibility cases are checked on curve. These forth-order B-spline curve presents C2

continuous flight path. If the generated curve is not feasible, probabilistic repairing is
achieved by randomized waypoint expansion on the connecting line path and the unit
flight time is expanded to limit the accelerations within controllable regime. Since
B-Spline curves have local support property, these repairing processes can be made
on local path segments of interest. All path planning process is illustrated in Fig. 3.

148 J Intell Robot Syst (2010) 57:143–170

Fig. 3 Dynamically feasible
path planning process

2.1 First Step: Connectivity Path

In real-time applications, planners should be able give a reliable answer in min-
imal permitted time slot. In motion planning problem, especially in complex en-
vironments, it is hard to say when planners should stop searching or change the
searching strategy (i.e. switching to a more complex planner etc.). Moreover, finding
an obstacle free geometrical path does not necessarily mean that a dynamically
feasible path can be implemented by the vehicle exists. Although geometrical paths
can be implemented via point to point navigation by the helicopter like vehicles
with a inefficient manner but this flight strategy is not applicable for agile combat
vehicle operations in under-threat environments. For the vehicles that have complex
dynamics like combat aerial vehicles, directly searching in high dimensional state-
space—as kinodynamic planners do—consumes long computational time to find a
feasible path. Specifically, in our earlier work [22], we observed that before the
major feasible path planning phase, defining the geometrical obstacle free path and
trackable way points significantly accelerates the searching ability and decreases the
total computational time of planner.

For finding connectivity path, RRT algorithm is used because of its rapid spread-
ing ability. RRT is a considered as being an efficient algorithm to search even high
dimensional spaces. However, one of the important drawbacks of using RRT as a
stand-alone planner is biasing of the distribution of milestones towards the obstacle
regions if the configuration space has large obstacles. Bi-directional RRT method
shows performance more than single tree approach but it has also discontinuity
problem on the connection points of the paths. Therefore, we choose to use single
Goal-Biased RRT [23] approach that converges to goal configuration rapidly. We
tested performance of the algorithm in different complex environments to conserve
both rapid converging to solution and spreading abilities of the RRT, we chose the
50% percent goal biasing value. In this phase, we are only motivated by RRT’s good
property to obtain connectivity path. Our strategy does not focus on dynamically
feasibility in this part of the path planner. Therefore, RRT algorithm is only used for
searching configuration-space of the vehicle with primitive maneuvers that includes
level and climbing flight and changing instantaneous heading direction. Construction
of connectivity path algorithm is given as Goal Biased RRT Algorithm.

In Algorithm 1, to find the connectivity path, Goal Biased RRT method is used
that one single tree is extended from the initial point. Each loop attempts to extend
the τ tree first toward the random selected point mrand, and second toward the goal

J Intell Robot Syst (2010) 57:143–170 149

Algorithm 1: Goal Biased RRT Algorithm
input : initial configuration qinit and goal configuration qgoal
output: connectivity path
τ qinit and i 11
repeat2

Select random point mrand in C and its neighbor point mnear in τ3
Generate mnew is gone with trajectory enew from mnear toward mrand4
if enew is in Cf ree then5

τ mnew and i + 16
if mnew is in end region then7

break with success8

Select neighbor point mnear of qgoal in τ9
Generate mnew is gone with trajectory enew from mnear toward qgoal10
if enew is in Cf ree then11

τ mnew and i + 112
if mnew is in end region then13

break with success14

if i = N max iteration number then15
break with fail16

until end region is reached with success17
Select connectivity path can be gone back from end region to initial point in τ18

point by adding new points. To expand the tree, nearest point already within the τ

tree to the sampled random point (in Line 3) and the nearest point to the goal point is
selected (in Line 9) respectively in every one loop. Generate function generates new
points mnew on the direction of the selected nearest points mnear at random selected
distances as shown in Line 4 and 10. If direction angles exceed predefined limits,
max direction angles are selected. These boundaries should be chosen according
to vehicle’s kinematic boundaries. If new generated point and trajectory is within
obstacle-free configuration (checked in Line 5 and 11) then mnew is added τ tree
as shown in Line 6 and 12. If τ tree reaches end region anytime, algorithm returns
connectivity path. End region can be obtained within a tolerable capture region as
explained in [19]. A solution of the algorithm in a complex city-like environment is
illustrated in Fig. 4.

Fig. 4 Demonstration of the
RRT based finding
connectivity path algorithm

150 J Intell Robot Syst (2010) 57:143–170

Algorithm 2: Line-of-Sight Filtering
input : connectivity path
output: way point set WP
mvisib m1 and mi m21
repeat2

Generate line visib from mvisib to mi3
if visib is collide with Cobst then4

WP mi 15
else6

i + 17

until last point of connectivity path is reached8

_

Because of the RRT’s extending strategy and our simplifications, undesirable
detours are frequently seen in obtained connectivity path. Since we only consider
finding the obstacle-free region; we can simply remove the points that cause these
detours. In this phase of our strategy, connectivity path is refined by Line-of-Sight
Filter algorithm that erases points that result in useless fluctuations with using a line-
of-sight arguments. As can be seen in Fig. 5, remaining points generally appear in
nearby entering and exiting field of the narrow passages and inherently hard regions.
Hence, these guard points also indicate where hard regions are beginning, what the
direction of the next-coming hard region. These points also give a sense of agile
maneuvering that are needed to fly over these points.

In this part of algorithm, a simple iteration checks if the selected point mvisib can
connect with the previous points in connectivity path with a line segment without
colliding with any obstacle. If the line segment collides with an obstacle, in other
words, if the current point cannot be connected to the selected point, last connectible
point is added to the way point sequence and the subsequent search continues from
this point. This algorithm runs until the last point of connectivity path is reached with
a line segment. A solution is illustrated in Fig. 5.

2.2 Second Step: Dynamically Feasible B-Spline Algorithm

In the first step, generated connectivity path with straight line segments result in a
simple and implementable piecewise flight plan. However, this flight plan is not a fast

Fig. 5 Demonstration of the
refining connectivity path with
the line-of-sight filter
algorithm

J Intell Robot Syst (2010) 57:143–170 151

agile and continuous motion plan - a desirable feature in many complex unmanned
combat aerial vehicles applications. After obtaining the way points (we will call
remaining points as way point set) on the environment, many deterministic and
sampling based path planner methods can be used to find the dynamically feasible
path between the way points. Moreover, generated path must be continuous on the
way points dynamically. During the path generation phase, since feasibility is desired,
trajectory generation method should allow reshaping to supply collision avoidance
and dynamic feasibility. Therefore, local support is also a desirable property on the
path generation method. Local support means that the paths only influence a region
of the local interest. Thus, obstacle avoidance and dynamic-feasibility repairing can
be achieved without changing the whole shape of the generated path. B-Spline
approach can supply these main requirements. An overview of B-Spline can be found
in [29] .

Basically, output C (u) can be defined in terms an k order B-Spline curve;

C (u) =
n∑

i=0

Pi Ni,k (u) 0 ≤ u ≤ umax (1)

The coefficients Pi in Eq. 1 are called control points that will represent way points
and pseudo way points in our approach.

The B-Spline basis functions Ni,k are given by the Cox De Boor recursion;

Ni,0 (u) =
{

1, ui ≤ u ≤ ui+1

0, otherwise
(2)

Ni,k (u) = u − ui

ui+k−1 − ui
Ni,k−1 (u) + ui+k − u

ui+k − ui+1
Ni+1,k−1 (u) (3)

A B-Spline curve can be constructed from Bezier curves joined together with
a prescribed level of continuity between them. A nondecreasing sequence of real
numbers U = [

u0 . . . umax
]

is called the knot vector. Frequently, the knot points are
referred to as the break points on curve [26]. B-Spline basis function Ni,k is zero
outside the interval

[
ui, ui+k

]
and non-negative for all values of k, i and u.

Derivatives of B-Spline curve exist on the knot vector span. Since, the kth-order
B-spline is actually a degree (k − 1) polynomial, produced curve can be differentiated
k − 1 times.

C (u)(j) =
n∑

i=0

Pi N
(j)
i,p (u) 0 ≤ u ≤ umax (4)

A valuable characteristic of the B-Spline curves is that the curve is tangential to
the control polygon (formed by the control points) at the starting and ending point
if some modifications are supplied. This characteristic can be used in order to define
the starting, ending and transition directions of the curve by inserting an extra pseudo
control points in directions which are defined according to way points’ orientations
assigned in the first step as explained in [26].

In this strategy, we choose generate forth-order path B-Spline (cubic polynomials)
to obtain continuous inertial velocity and acceleration.

152 J Intell Robot Syst (2010) 57:143–170

For generating B-Spline trajectory pass through way points, two pseudo control
points are inserted after and before the every waypoint(except initial and last way
point) in direction of the their tangent vector that these tangent directions are
assigned during the path planning step. Note that; for the first way point, only further
pseudo way point and for the last way point, only back pseudo way point should be
added to way point set. The distance value between the way-point and the added
pseudo-way points will define the transition velocity and acceleration on the way
points of the path. Hence, C2 continuity, in other words, continuous velocity and
acceleration transition is naturally achieved on the way points.

For generate cubic B-Spline curves, we use specific nonuniform knot vector form
U = [0 0 0 0 Umid 1 1 1 1] to obtain the coincidence between the first and last
control points and the first and the last ends of the generated B-Spline curve respec-
tively. Detailed information about this effect can be found in [29] as open uniform
knot vector effect. Umid is represents middle knot vector that is initially uniformly
distributed in (0, 1) interval -number of points depends on the number of control
points- and algorithm can add new knot points to the vector without preventing its
uniform form. We choose using arbitrary [0, 1] interval for parameter u such that it
represents unit-time scale [38]. This property is later used to allow dynamic feasibility
via time scaling (i.e. expanding the time horizon of the maneuver). Overall B-Spline
path planning algorithm can be demonstrated in Algorithm 3.

This algorithm tries to find dynamically feasible B-Spline curve passes through
on the way points with their heading angles and runs until the last way point is
connected with a feasible path. Initially, m number way points - generated in the
first step- are added in control point set P as seen in Line 2. Then, for every way
point, except first and last way point, back pseudo way point gpi,b and further pseudo
way point gpi, f is located on random selected distance d from way points on their
heading tangent directions and these pseudo way point set gp is also added in control
point set P that is demonstrated in Line 3 to 6. Different from other way points,
for the first way point, only further pseudo way point gp1, f is located and for the
last way point, only back pseudo way point gpm,b is located. Thus, algorithm initially
begins with 3m − 2 control points where m indicates that number of way points but
note that the algorithm can add new control points during to implementation to
repair the B-Spline. As initial form, open uniform knot vector form that is chosen
in unit interval [0,1] is used in our implementation as shown in Line 8. As depicted
in Line 9, in a loop, B-Spline basis function is generated via u parameter and then
collision and dynamic feasibility is checked on every discrete point of the curve as
shown in Line 10. Since velocity and acceleration on the path is a function of time,
for each point of the trajectory we have to check if the instantaneous velocity and
acceleration is within the limits of the flight envelope. This Dynamic Feasibility check
is done by checking the first and the second derivatives of the B-Spline curve which
gives the velocities and accelerations of the aircraft respectively. If these velocity
and acceleration values are within the limitations of the aircraft (flight envelope)
using chosen unit time scale, generated path segment is accepted as dynamically
feasible. One of the most critical step in the path planning layer is to determine the
velocity and accelerations on the trajectory; if the aircrafts velocity constraints are
not taken into account, maneuver planning layer would not be able to find feasible
maneuver reference from this generated trajectory. This concept is used for giving
a sense on Dynamic Feasibility on the side of the Path Planning layer as a first step

J Intell Robot Syst (2010) 57:143–170 153

Algorithm 3: Dynamically Feasible Trajectory Generating with B-Spline
input :

:
way point set g = [g1 . . . gm]

output dynamically feasible path
TimeScale unit-time scale1
P g = [g1 . . . gm] as control point set2
foreach element gi of the g do3

Insert back pseudo way point gpi,b to the random selected distance d from gi on its negative4
heading direction
Insert further pseudo way point gpi, f to the random selected distance d from gi on its positive5
heading direction

P gp = [gp1, f gp2,b gp2, f . . . gpm 1,b gpm 1, f gpm,b] as control point set6
U [0 0 0 0 Umid 1 1 1 1]7
for u 0 to 1 do8

Evaluate B-Spline basis function9
Check collision and dynamic feasibility10
if collision occurs or point of the spline is not dynamically feasible then11

Change locations of the pseudo way-points gpi,b,gpi, f of the interest curve segment12
according to u
Set u value as indicates that local interest curve segment −

−

−

k /2 segment13
m1 + +14
if m1 > M1 then15

Change locations of the way points gi and its pseudo way-points gpi,b,gpi, f of the16
interest curve segment according to u in its small region
Set u value as indicates that local interest curve segment k /2 segment17
m2 + + and m1 = 018
if m2 > M2 then19

P Pnew as new control point around unfeasibility and update knot vector20
Set u value as indicates that local interest curve segment k /2 segment21
m3 + + and m1, m2 = 022
if m3 > M3 then23

Change TimeScale to insert min/max values of velocity and acceleration in24
dynamically feasible region
Set u value as 025
m4 + + and m1, m2, m3 = 026
if m4 > M4 then27

break with fail28

Set TimeScale as generated path can be implemented as possible as in optimal time29
return B-SplineTrajectory30

_ _

Dynamic Feasibility check. The more precise Dynamic Feasibility check will be done
on Maneuver Planning layer as explained in following section. Maneuver planer
layer may also request from Path Planner to re-plan of the trajectory if dynamic
feasibility can not be repaired during Maneuver planning using the Replanning
request connection seen in demonstration of the all interactions between the layers
(Fig. 2).

If feasibility cannot be obtained during the path planning, repairing methods are
implemented hierarchically. Firstly, location pseudo control points are slid on the
same tangent directions as shown in Line 12 and the algorithm decreases the u value
from current interest curve segment −k/2 curve segment where k is represents order
that is four in this implementation. Note that, B-Splines’ local support property

154 J Intell Robot Syst (2010) 57:143–170

allows local control over the generated spline. Specifically, this control is over the
curve segments with ±k/2 polygon spans around the displaced or newly added point.
Therefore, when any changes is made on spline, instead of evaluate all spline over
and over again, u value is decreased by value interval that spans local interest.
Note that, all the repairing steps are tried with predefined threshold iteration times
illustrated as Mis in the algorithm. After predefined number of trials, if the spline
cannot be repaired, the way point and its pseudo way points within local interest
are carried to a new collision-free locations and these locations are chosen as small
random-selected distance away from the prior locations as seen in Line 16.

If the B-Spline still cannot be repaired, new control point Pnew is added in control
point vector P around the region in which collision or infeasibility has occurred
(Line 20). Since we know the infeasible knot value and its interval in the knot vector,
new knot point is added to the midpoint of the infeasible knot interval. Hence, only
a limited interval of the knot vector U is updated. Reader should remember, only
±k/2 polygon spans around the displaced or newly added point will be effected with
this change.

If all these processes can not repair the path, the time scale value is scaled in
Line 24 to reallocate the min-max velocity and acceleration interval of the trajectory
(time depended path) within the dynamically feasible interval that can be achieved by
the aircraft (falls into limits of flight envelope). For example in Fig. 6, search begins
in a point outside the flight envelope and in two steps it is moved into limits of flight
envelope by time scaling. Finding the feasible velocity-acceleration by this method
is similar to what authors had done for finding the feasible modal inputs in the [22].
Note that other than flight envelope check there isn’t any dynamic model involved in
path planning layer. All the other feasibility problems (actuator saturation, attitude
discontinuity etc.) are left to maneuver planning layer.

Fig. 6 Feasible
velocity—acceleration search
on flight envelope

J Intell Robot Syst (2010) 57:143–170 155

Fig. 7 Dynamically feasible
path solution of the B-Spline
planner algorithm in the
complex 3D environment
for UCAV

The end result is a time expanded or shortened flight path. Dynamic feasibility of
the all generated spline should be checked from the beginning considering to newly
changed time scale. After the generating B-Spline, TimeScale is also set again to fly
over the all path in optimal time interval. Dynamically Feasible Path solution in the
MelCity model for the UCAV is demonstrated in Fig. 7.

3 Maneuver Planning Algorithm

Multi Modal control framework basically consists of decomposition of the arbitrary
maneuvers into set of maneuver modes and associated maneuver parameters. The
main aim of the work was the help to reduce complexity of the both planning
and control part. Complexity of maneuver planning part has been reduced by
reducing the dimension of the problem (modal sequence has strictly lower dimension
than state space description) and control part was relaxed by designing specific
controllers for each mode and switch between them in order track maneuver mode
sequence instead of designing a single controller for maneuver tracking over full
flight envelope. In this paper we shall only focus on maneuver planning part,
discussion of the switched control layer can be found on [34] and [35]. Motion
planning problem for aerospace vehicles are complicated by the fact that, planners
based on optimal performance begins to fail in means of computation, when one
takes into account of constraints related with dynamical equations of aircraft. Due to
fact that, aircrafts state space is at least 12 dimensional, input-state search becomes
too complicated; therefore such planners are only successful for vehicles with small
state space dimensions [11]. To reduce the complexity of this problem, motion
description languages and quantized control concept have been adopted into motion
planning [4]. Motion description languages, makes use of classified combination of
simplified control laws to track generalized outputs. Most of these languages are
strongly connected with the concept of hybrid systems, which in general, classifies
the motion by using discrete states which switches in between according to input
and state information and each discrete state having its own continuous dynamics. A
subclass of such languages which is based on classification of behavior (or reaction)
of the dynamic systems, has been successfully adapted for non-holonomic robotic

156 J Intell Robot Syst (2010) 57:143–170

systems [36]. More recently, closed loop hybrid control systems were developed
based on linear temporal logic for the same purpose by [10]. For aerospace vehicles,
a hybrid model for aircraft traffic management was developed in [5]. Study showed
that, hybrid system representation gives opportunity to calculate reachable sets of
the system and design hybrid control laws to drive the system to safe states [5].
Frazzoli [11] suggested a maneuver automaton, which uses a number of feasible
system trajectories to represent the building blocks of the motion plan of the aircraft,
and a trajectory based (based on maneuver regulation principle) control system
which asymptotically regulates the actual trajectory to the trajectory generated
by maneuver automaton. However, motion plans and controllable trajectories are
restricted to the library of the maneuver automaton. Such libraries can be built
by using interpolation between feasible trajectories [6]. Feron [33] extended this
system for online planning of feasible trajectories in partially unknown environments
by using receding horizon iterations. Description of aircraft dynamics from hybrid
system point of view has been studied previously in [11, 12, 27]. These works have
been successful in using the advantages of hybrid system methodology in control of
both single and multiple aircrafts. However, these approaches did not include the
full flight envelope dynamics of the aircraft. Specifically, both mode selection and
controller design is strictly based on selected maneuvers; therefore controllability is
limited [11, 12, 27] to these predefined trajectories. In our work, we make use of
parameterized sub maneuvers which builds up complex maneuver sequences. We
show that it is possible to cover almost any arbitrary maneuver and the entire flight
envelope by this approach.

In this section we shall detail the maneuver planning layer. As it is indicated
in Fig. 2 this layer is below the path planning layer, in the sense that it receives
path-flight trajectory information from PP layer and shapes the trajectory by adding
aircrafts attitude angular rates time history while checking the dynamic feasibility
of these maneuvers. Maneuver planning takes advantage of multimodal control
framework described in [22] and [35].

Multi Modal control framework basically consists of decomposition of the arbi-
trary maneuvers into set of maneuver modes and associated maneuver parameters.
The main aim of the work was the help to reduce complexity of the both planning and
control part. Complexity of maneuver planning part has been reduced by reducing
the dimension of the problem (modal sequence has strictly lower dimension than
state space description) and control part was relaxed by designing specific controllers
for each mode and switch between them in order track maneuver mode sequence
instead of designing a single controller for maneuver tracking over full flight enve-
lope. In this paper we shall only focus on maneuver planning part, discussion of the
switched control layer can be found on [34] and [35].

In this section, we will first briefly review the multi modal control framework.
Then, step by step maneuver generation algorithm is explained.

3.1 Brief Review of Multi Modal Control Framework

Basically, main idea is to divide an arbitrary flight maneuver into smaller maneuver
segments (called maneuver modes) and associated maneuver parameters (called
modal inputs). If the maneuver modes are found properly, one can describe any

J Intell Robot Syst (2010) 57:143–170 157

maneuver by giving the maneuver mode sequence. This idea makes use of the fact
that, 12 states of the conventional aircraft are not independent during all maneuvers
and one does not need to give all the state trajectory of the aircraft to define a
maneuver.

Complete list of modes and their modal inputs along with state constraints on each
mode was given in [35]. We review this table (Table 1) below since the same modes
will be used during design of the algorithms. Note that for 6 DOF flight state space
variables are chosen as:

X = [
VT α β ϕ θ ψ P Q R np ep h

]T (5)

Where, VT is the total speed, α and β are aerodynamic angles, angle of attack and
sideslip angle respectively. � = [

ϕ θ ψ
]T is 3-2-1 Euler angle set(which are replaced

with Quaternions during simulations). ω = [
P Q R

]T is the angular velocity vector

in the body axes, and ρ = [
np ep h

]T is the set of Cartesian coordinates. Flight path
Euler angles (or wind axis angles) are denoted with �w. Note that, safety mode on
Table 1 is an artificial mode which serves as an emergency break for the control
framework, in the case that aircraft goes out of domains of a particular mode or
becomes unstable, it recovers the aircraft by setting it back to level flight.

So via Table 1 state trajectory X (t) is replaced by the triplet (qi, σi, τi) , i = 1,

2..., N , where qi is the ith maneuver mode, σi is the set of modal input values
associated with ith mode, and τi is the time duration of the ith mode. is the number
of maneuver modes in total. This triplet is abbreviated as simply “modal sequence”.
Since this approach is of lower dimension than state space description, it reduces the
complexity of motion planning problems.

Another advantage of maneuver decomposition methodology, other than reduc-
tion of the order of the problem, is; it gives opportunity to design specific controllers
for each mode of the system. This task is very natural to the system, because each set
of modal inputs also serve as a reference output profile for a tracking controller. It
is also obvious that if a successful (and possibly nonlinear controller due to coupled
nonlinear dynamics of agile maneuvers) each mode is designed, one can gain control
over full flight maneuver sequence by switching the controllers. For the assignment
of such a switched controller family see [35], and for design of an actual system based
on Higher Order Sliding Modes see [34].

Table 1 Flight modes and
modal inputs

Mode State constraints Modal inputs

q0 Level flight ḣ = 0,
(
ϕ̇, θ̇ , ψ̇

) = 0 VT , α

q1 Climb/descent
(
ϕ̇, θ̇ , ψ̇

) = 0 VT ,
(

ḣ, θw

)

q2 Roll
(
θ̇ , ψ̇

) = 0 VT ,
∫

Pwdt
q3 Longitudinal

(
ϕ̇, ψ̇

) = 0
(
VT , rloop

)
, θ̇

placeLoop
q4 Lateral ḣ = 0,

(
ϕ̇, θ̇

) = 0
(
VT , rloop

)
, ψ̇

placeLoop
q5 3D Mode {} VT , P, Q, R/

VT , ϕw, θw,ψw

q6 Safety {} {0, 1}

158 J Intell Robot Syst (2010) 57:143–170

However to ensure that controllers are capable of tracking the maneuver, one
must guarantee that maneuvers are feasible in the sense that they are executable
by a piloted system, thus satisfying the saturation envelopes. An additional criterion
for switching stability is the smooth connection of each mode to another in terms of
kinematic parameters, if they are not; discontinuous jumps in output profiles while
switching the control system can result in degradation of tracking performance or
even instability.

In the next subsection, structure of the maneuver generation algorithm based on
the multi modal control framework will be given.

3.2 Maneuver Generation Algorithm

Main aim of this section is to develop a maneuver planning algorithm, which extracts
the mode sequence from given flight trajectory and derive modal inputs (maneuver
parameters) for each mode based on the feasibility constraints. General structure of
the algorithm is shown on Fig. 8.

In the Fig. 8, each block represents a part of the algorithm directed for a specific
task. After receiving flight path with velocity history from path planning layer,
segment identification part decomposes the flight path into a sequence of maneuver
modes. Next feasible modal input for each mode is determined by the help of
agility metric graphs. Mode Transition table checks if every two adjacent mode is
compatible with each other, if not, transition modes are placed between each mode
for sequential feasibility, then modal inputs for these transition modes are found
similar to previous step. Finally, a time interval for each mode is determined and
maneuver profile is generated.

Fig. 8 Overview of the maneuver planning algorithm

J Intell Robot Syst (2010) 57:143–170 159

3.2.1 Maneuver Segment Identification

Initially, path planning algorithm provides the flight trajectory history, np (t),
ep (t) , h (t). From this data it is easy to recover by the velocity variables in wind axes
via Eq. 6 [31]

⎡

⎣
ṅp

ėp

ḣ

⎤

⎦ = VT

⎡

⎣
cos θw cos ψw

cos θw sin ψw

sin θW

⎤

⎦ ⇒

ψw (t) = tan−1

(
ėp

ṅp

)

θw (t) = tan−1

(
ḣ
ėp

sin ψw

)

VT (t) =
√

ṅ2
p + ė2

p + ḣ2

(6)

Next flight trajectory is divided into waypoints, and by comparing the velocity vari-
ables between each waypoint, maneuver modes listed on Table 1 can be determined
via Table 2.

On the Table 2. “C” means constant and “T” means time varying. Table is self-
explanatory; for example in level flight, flight path angle (or wind axis pitch angle)
must be zero so that aircrafts altitude doesn’t change, while heading can take any
value as long as it doesn’t vary with time (i.e. zero derivative). This straightforward
logic is applicable to every mode on the table.

Note that, at this point it is not possible to recover roll mode from given trajectory,
since B-Splines (or any curve in space) do not carry this information. In the meth-
dology, roll mode is counted as a transition mode between maneuver segments and
inserted by maneuver planning layer. How the roll mode is inserted into maneuver
profile is explained in the subsection: ‘Satisfying the Sequential Constraints’.

Since mode labeling action only depends on wind Axes Euler Angles, it is possible
to recover the mode sequence and velocity on each mode from given flight trajectory.
However complete modal sequence is incomplete because modal input sequence
cannot be recovered without attitude history. In the next step each mode will be
analyzed via agility metric graphs, and modal inputs will be recovered from flight
equations or agility metric graphs.

3.2.2 Selection of Modal Inputs

Since velocity is already given by path planner, only remaining modal inputs to be
obtained are angular velocities which rely heavily on information of angle of attack.
It is obvious that angle of attack cannot be determined alone from given data, so we
have to obtain it from some other methods. Selection of angle of attack is a very
critical part of creating agile and feasible path, because larger values of angle of

Table 2 Wind axes euler
angles identification table

θw θ̇w ψw ψ̇w

Level flight 0 0 C 0
Climb / descent C 0 C 0
Roll C 0 C 0
Lon. loop T T C 0
Lat. loop C 0 T T
3D Mode T T T T

160 J Intell Robot Syst (2010) 57:143–170

attack may cause stall whereas smaller values can result in aerodynamic inefficiency
or event saturation of true inputs of the aircraft (control surfaces and throttle).
Therefore we have to consult the flight and saturation envelope of the aircraft for
a healthy selection of agility metrics.

One way to combine flight envelope, actuator saturation envelope and aggressive-
ness properties is to use agility metrics. Agility metrics were initially developed for
comparing agility characteristics of fighter aircrafts, because classical metrics (such
as thrust to weight ratio) were incapable of showing the true agility potential of these
aircrafts. Agility metrics are usually given in terms of aircraft states or a time for a
specific task (such as time to go through 90 degrees of roll angle), then these metrics
are plotted against velocity or angle of attack for various aircrafts.

The strategy for this section consists of specifying an agility metric for each mode
(such that associated metric is closely related to the dominant states of each mode)
then evaluating the metric from nonlinear flight model simulations for various angles
of attack and Mach number (thus building a library of agility metrics for feasible
velocity-angle of attack intervals). Then for each mode due to fact that velocity
(thus the Mach number) is specified from path planning, is it possible to select
an angle of attack from feasible interval (to speed up the process it is selected
randomly, it may also be possible to optimize it for some cases, but optimization
is not primary objective, because it will decelerate the process and complicate its real
time implementability).

In this study a 6 DOF high fidelity nonlinear F-16 model is used for simulations
[9]. Selected agility metrics were take from various NASA reports [8, 24, 37]. Selected
agility metric for multi modal control frameworks are;

Level and Climbing Flight For level and climbing/diving flight total speed and
acceleration capability is the most important parameter. Maximum and minimum
achievable speed depends heavily on available power and thrust. Selected agility
metric is power onset/loss parameter which can be written as:

Ṗs = d
dt

(
VT (T − D)

W

)
(7)

Where T is thrust, D is drag and W is weight. This agility metric quantifies
maximum thrust and drag of the aircraft, which determines the total speed and
acceleration capability.

Roll Mode For rolling motion either average roll rate or time to go through certain
roll displacement can be used. Second one is more convenient as it gives transient
performance more clearly. For specific angle 90 degrees can be used, because most
of the rolling maneuvers consists of rolling aircraft to side (knife edge), or inverting
it (180 degrees). Therefore selected agility metric is

T R90 (8)

which means “Time To Go Through 90 Degrees Roll Angle”. 3D plot of this metric
is shown in Fig. 9.

J Intell Robot Syst (2010) 57:143–170 161

Fig. 9 Time to capture 90 deg
roll angle metric for sea level

Longitudinal Loop For pitch up/down motion, very simple and convenient metric
is average pitch rate which can be written as

Qavg =
∫ t2

t_1
Qdt

t2 − t1
(9)

Lateral Loop For turning performance load factor and turning radius is chosen as
a predominant factor, by using the simple kinematic equation [31]:

rloop = V2
T

g(n2 − 1)
(10)

3D Mode In 3D mode both rolling and pitching motion becomes dominant; there-
fore we seek a metric which can combine these two properties. An appropriate metric
is loaded roll which is given by the formula

PN = pw Nz,w (11)

This is simply the product of roll rate in wind axes and normal acceleration in wind
axes. This metric belongs to torsional agility and combines the rolling motion of the
aircraft with bending of the flight path.

Once the angle of attack history for each mode is obtained (note that final and
initial angle of attack for each mode is selected appropriately for continuity), it is
possible to recover all of the modal inputs for each mode shown in Table 1. From the
rotation matrices and assumption of β = 0, ψw = ψ it is possible to recover:

R (−β, α, 0) .R (ψw, θw, ϕw) = R (ψ, θ, ϕ) (12)

By setting sideslip angle zero, and comparing two sides of these equations which
do not contain the variable, we write the equations in closed form;

θ = fa (ψw, θw, ψ, α)

ϕ = fb (ψw, θw, ψ, α) (13)

After obtaining the body axes Euler angles almost all of the modal inputs for each
mode can be obtained. Total velocity is a modal input for every mode is available

162 J Intell Robot Syst (2010) 57:143–170

from path planner. For level flight and Climb/Descent mode, everything needed
is already available on Table 2 (Climbing/Diving rate). In roll mode, only desired
roll angle displacement (value of the integral associated with roll mode on Table 1)
is needed, which can be obtained from Euler roll angle time history. Loop modes
require the body Euler angle rates as modal input, which can be obtained from θ (t)
and ψ (t) for Longitudinal Loop and Lateral Loop respectively. Things are a bit more
complicated in 3D mode, because it is required to extract the angular body rates
from a given 3D trajectory and attitude data. Since all the body Euler angles are
available, kinematical equation for Euler angles can be solved inversely to acquire
the angular rates, but this is not convenient since equations have singular points
and requires manipulating trigonometric equations. More elegant approach would
be converting the Euler angles to Quaternions (shown by bi, i = 0, 1, 2, 3) , and
solve the algebraic, singularity free Quaternion kinematical equation to obtain body
angular rates. Equation 14 gives the well known formula for converting Euler angles
to Quaternions and Eq. 15 shows the kinematical Quaternion equation which has to
be solved inversely in order to obtain the angular rates.

B =

⎡

⎢⎢⎣

b 0

b 1

b 2

b 3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

±
(

C
φ

2
C

θ

2
C

ψ

2
+ S

φ

2
S

θ

2
S

ψ

2

)

±
(

S
φ

2
C

θ

2
C

ψ

2
− C

φ

2
S

θ

2
S

ψ

2

)

±
(

C
φ

2
S

θ

2
C

ψ

2
+ S

φ

2
C

θ

2
S

ψ

2

)

±
(

C
φ

2
C

θ

2
S

ψ

2
− S

φ

2
S

θ

2
C

ψ

2

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S : Sin, C : Cos (14)

Ḃ =

⎡

⎢⎢⎣

ḃ 0

ḃ 1

ḃ 2

ḃ 3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0 −P −Q R
P 0 R −Q
Q −R 0 P
R Q −P 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

b 0

b 1

b 2

b 3

⎤

⎥⎥⎦ (15)

3.2.3 Satisfying the Sequential Constraints

Multi modal control system is based on the successful execution of one mode after
another, but this doesn’t mean that mode sequence is arbitrary. We can simply cast
the mode compatibility condition as; final states of the first maneuver mode must
intersect with the second modes initial conditions [32]. This is valid for kinematical
variables, or to be more specific the attitude angles (since geometric path is given
continuous from path planning layer). The only problem is associated with pitch
angle and roll angle, (for example level flight ends with zero roll angle where as the
coordinated turn starts with non-zero roll angle). If we neglect this issue, reference
maneuýver profiles will have discontinuous attitude histories which could degrade
the performance of low level controller and may even cause instability.

Therefore a transition mode (roll mode to change and longitudinal loop mode to
change) must be inserted between incompatible modes. To speed up the process a
mode transition table (Table 3) was prepared; showing which mode is compatible
with each other, and which needs a transition mode.

J Intell Robot Syst (2010) 57:143–170 163

Table 3 Mode transition table δij q0 q1 q3 q4 q5 q6

q0 1 θ∗ 1 ϕ∗ θ∗, ϕ∗ 1
q1 θ∗ θ∗ θ∗ θ∗, ϕ∗ θ∗, ϕ∗ 1
q3 1 θ∗ 1 θ∗, ϕ∗ θ∗, ϕ∗ 1
q4 ϕ∗ θ∗, ϕ∗ θ∗, ϕ∗ ϕ∗ θ∗, ϕ∗ 1
q5 θ∗, ϕ∗ θ∗, ϕ θ∗, ϕ∗ θ∗, ϕ∗ θ∗, ϕ∗ 1
q6 1 0 0 0 0 0

in which 1 means that modes are always compatible and sequential feasibility
check is not needed at all.

At this step, mode transitions which satisfy the table are neglected and the modes
which require attitude tweaking (in either roll or pitch angle) is checked to be com-
patible. If they are not, additional translational modes (roll mode and longitudinal
loop) are inserted between these modes to connect the attitudes of each mode. Since
roll mode cannot be identified from trajectory data it only acts as a transition mode
and it is not included in the table. Note that table is symmetrical (except for safety
mode which is accessible from every mode but only allows transition to level flight).

This attitude changes are made quickly as possible to not to change shape of
the flight trajectory (note that feasibility of modal inputs of transition modes are
also checked via agility metric plots which corresponds to the loop in Fig. 8), if
these transitions make dramatic changes on the flight trajectory, re-planning of the
trajectory may be required to make sure that path avoids the obstacles, but this is a
very rare case since most of the time environment is big enough to avoid obstacles
during execution of transition modes.

3.2.4 Recovering the Feasible Modal Sequence

After checking the mode transition table, and finding the appropriate attitude
changes for sequential feasibility, these transition modes are added to original mode
sequence and final modal sequence is recovered. This modal sequence is feasible in
the sense that it satisfies the envelope and sequential constraints.

Algorithm 4: Maneuver Generation
input : Flight Trajectory (np (t) , ep (t) , h (t))
output: Feasible Modal Sequence (qi,σi,τi) , i = 1, 2..., N
Solve the velocity variables from equation 6 Discretize the flight trajectory, with constant time step1
Δ t to M waypoints repeat

Label qi according to

qw j+ 1

− qw j)) from table 2.2

until j=M3
repeat4

switch Mode Label do5
CheckAgility Metric Grap, Recover α Recover Modal inputs σi through table 2 and6
equations 14 and 15 Adjustσi such that it is compatible withσi−1

until i=L7
repeat8

Check Mode Transition Between qi−1 and qi via table 3 Insert Transition modes between9
modes if neccessary Recover Modal inputs of transition modes via previous step

until i=L10
GatherFeasible modal sequence by combining identified modes with transition modes11

164 J Intell Robot Syst (2010) 57:143–170

Table 4 Generated mode
sequences

Mode Label Time intervals (sec)

q0 Level flight [0, 0.83]
q3 Longitudinal loop (transition) [0.83, 1]
q1 Dive [1, 3.57]
q2 Roll mode (transition) [3.57, 4.57]
q4 Lateral loop [4.57, 26.7]
q2 Roll mode (transition) [26.7, 27.7]
q0 Level flight [27.7, 30.3]

Fig. 10 State history and
tracking performance

Fig. 11 Time history of true
inputs of the aircraft

J Intell Robot Syst (2010) 57:143–170 165

In the next section integration of path and maneuver planning algorithms for a
complex environment is shown for an example mission.

4 Simulation Results

For simulation purposes we consider an example 200×200×200 unit cube complex
city-like environment. In first part; path planning layer, constructs a 3D flight
trajectory which avoids the obstacles while satisfying the velocity and acceleration
constraints (by checking the flight envelope). This flight trajectory with velocity is
given to maneuver planning layer. Example solution of the Path Planner in the 3D
MelCity model environment is seen in Fig. 12.

Maneuver planning algorithm decomposes the path into flight modes in multi
modal control framework and derives the feasible modal sequence based on the
search of agility metric graphs and mode transition rules. Generated model se-
quences on the solution of the path planner is seen in Fig. 12 and timetable of the
maneuver sequences is seen in Table 4. Three transition modes are placed between
the other modes to obtain the attitude continuity.

Fig. 12 Integration and
solutions of the path planner
and maneuver planner

166 J Intell Robot Syst (2010) 57:143–170

Fig. 13 3D Test environments
for the performance test

For low level control purposes the switched Higher Order Sliding Mode Control
system were used, [34], time histories of important states (with reference tracking
performance) and control inputs are shown on Figs. 10 and 11. Judging the magnitude
of state and control inputs we conclude that overall architecture has been successful
in finding a feasible maneuver sequence (Figs. 12 and 13).

To get a better understanding of what we have gained by this integrated archi-
tecture,two extra simulations were done. In the first simulation, path planning step
has no flight envelope feasibility check, which results in breakdown in maneuver
planning section, because the algorithm fails to compute feasible modal inputs from
agility metric graphs and velocity given by path planner is out of range, so no results
could be obtained from this simulation. This shows that flight envelope check is a
critical part of the integrated architecture.

In second simulation, no maneuver planning is used; trajectory from path planner
is directly given to a trajectory tracking control system. Results of this simulation is
shown on Fig. 14. This simulation results show that, attitude is unstable on flight path
and there are deviations from the trajectory, which has two reasons. First, nonlinear

Fig. 14 Direct path planning
trajectory tracking without
maneuver planning

J Intell Robot Syst (2010) 57:143–170 167

Table 5 Dynamically feasible path and maneuver sequences construction times (seconds)

Trajectory planner Maneuver planner

Connectivity B-Spline Total Solution Number of
path planner path planner time mode sequence

Single-passage avr 0.440 0.206 0.646 0.233 6
Problem std 0.287 0.011 0.293 0.001
City-like avr 0.977 0.326 1.303 0.354 9
Environment std 0.935 0.254 0.930 0.005
Mostly-blocked avr 3.930 2.182 5.837 0.421 13
Environment std 2.504 3.347 3.912 0.006
MelCity model avr 3.306 0.538 3.844 0.322 6
Volume; 23x std 1.528 0.650 1.212s 0.001

controllers based on trajectory references are likely to become unstable on agile
trajectories while multi modal control framework uses stable controllers for each
mode [34]. Second reason is the absence of maneuver planning part; since there
isn’t any feasibility check on the agility metrics and attitude continuity, it is very
reasonable to get unstable attitude and deviations from flight path due to saturated
inputs, which have been supported by the simulation results.

Overall, these simulation results show that, when they are isolated path and
maneuver planning layers have critical defects. They must be integrated together
to get a feasible and controllable flight path.

We tested the performance of our method on some environments in varying ratio
of obstacle-space. The computational times of the all phases of the algorithm are
illustrated in Table 5 for 3D single-narrow-passage problem, city-like environment,
mostly-blocked environment and MelCity model environment that has volume 23

times greater than the others as all seen in Fig. 13. All the experiments were
conducted on a 3.00 GHz Intel Pentium(R) 4 processor with 2 Gb memory and the
average results are obtained over 50 runs.

On side of the path planner, increasing complexity of the environment, as shown
in Table 5, mainly increases computational time of the connectivity path that is
implemented with a simplified version of RRT. Since repairing part of the algorithm
is visited much more in planning complex environments, computational time of
the B-Spline based planner phase is also rises. However, this rising rate does not
grow exponentially and computational times mostly based on Finding Connectivity
Path phase. On side of the maneuver planning, since length of the generated
path by the path planner increases when the complexity of the environment is
increased, computational time of the maneuver planner phase slightly rises according
to environment complexity. The complete solution times suggest that our method
will be applicable for real-time implementations as the solution time is favorably
comparable to implementation times.

5 Conclusion

Trajectory design of an air vehicle in dense and complex environments, while pushing
the limits of the vehicle to full performance is a challenging problem in two facets.
The first facet is the control system design over the full flight envelope and the

168 J Intell Robot Syst (2010) 57:143–170

second is the trajectory planning utilizing the full performance of the aircraft. In
this work, we try to address the mostly second facet via the generating dynamically
feasible trajectory planning and refining of the flight trajectory using the flight modes
from which almost any aggressive maneuver can be decomposed. Hence, a real-
time implementable two layer planner strategy is implemented for obtaining 3D
flight-path generation for an Unmanned Combat Aerial Vehicles in 3D Complex
environments. Integrated path planning and maneuver generation system enabled
each layer to solve its own reduced order dimensional feasibility problem, thus
simplified the problem and improved the real time implement ability.

In Trajectory Planning layer, to solve the motion planning problem of an un-
manned combat aerial vehicles, we suggested a two step planner. Initially, simplified
version of the RRT planner is used for rapidly exploring the environment with an
approximate line segments. The resulting connecting path is converted into flight
way points through a line-of-sight segmentation. In the second step, remaining way
points are connected with cubic B-Spline curves and these curves are repaired
probabilistically to obtain a geometrically (prevents collisions) and dynamically
feasible (considers velocity and acceleration constraints) path. In the maneuver
planning layer, the flight trajectory are decomposed to sequences of maneuver modes
and associated parameters (considers saturation envelope and attitude continuity
constraints). Maneuver generation algorithm derives feasible maneuver parameters
for each mode and overall sequence by using of mode transition rules and agility
metric graphs. Resulting integrated system is tested on simulations for 3D complex
environments and it gave satisfactory results to used for real time implementation
for UCAVs operating in challenging urban environments.

One of the venues considered for future work is maneuvering in extreme narrow
passages in which the aircraft has to roll or tilt to pass through the very narrow
passages. In the problems we have examined distance between obstacles are far wider
compared to wing span of the aircraft, so we did not include this case. Another venue
for future work includes expanding the maneuver modes by adding un-coordinated
turns (non-zero sideslip angle). In a framework sense, these extensions will require
tighter integration of the path and the maneuver planning layers in the case of
uncertain environments. Moreover, extension of the algorithms presented to UAV
fleets is another natural application of this work.

References

1. Bayazit, O.B., Xie, D., Amato, N.M.: Iterative relaxation of constraints: a framework for im-
proving automated motion planning. In: 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2005), pp. 3433–3440 (2005)

2. Bohlin, R., Kavraki, L.E.: A randomized algorithm for robot path planning based on lazy
evaluation. Handbook on Randomized Computing, pp. 221–249. Kluwer, Dordrecht (2001)

3. Boor, V., Overmars, M.H., van der Stappen, A.F.: The Gaussian sampling strategy for proba-
bilistic roadmap planners. IEEE Int. Conf. Robot. Autom. 6 (1999)

4. Brockett, R.W.: Languages for motion description and map making. Proc. Symp. Appl. Math. 14,
181–293 (1990)

5. Sastry, S., Tomlin, C., Pappas, G.J.: Conflict resolution for air traffic management: a study in
multi-agent hybrid systems. IEEE Trans. Automat. Contr. 43 (1998)

6. Dever, C., Mettlera, B., Feron, E., Popovic, J., McConley, M.: Nonlinear trajectory generation
for autonomous vehicles via parameterized maneuver classes. J. Guid. Control Dyn. 29, 289–302
(2006)

J Intell Robot Syst (2010) 57:143–170 169

7. Dyllong, E., Visioli, A.: Planning and real-time modifications of a trajectory using spline tech-
niques. Robotica, 21(5), 475–482 (2003)

8. Murphy, P.C., et al.: Fighter agility metrics. Candidate Control Design Metrics for an Agile
Fighter (1991)

9. Nguyen, L.T., et al.: Simulator study of stall/post-stall characteristics of a fighter airplane with
relaxed longitudinal static stability. NASA Technical Paper 1538 (1979)

10. Fainekos, G., Gazit, H.K., Pappas, G.J.: Hybrid controllers for path planning: a temporal logic
approach. In: IEEE Conference on Decision and Control (2005)

11. Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for agile autonomous vehicles.
AIAA J. Guid. Control 25(1), 116–129 (2002)

12. Ghosh, R., Tomlin, C.: Nonlinear inverse dynamic control for mode-based flight. In: Proceedings
of AIAA Guidance, Navigation and Control Conference and Exhibit (2000)

13. Hsu, D.: Randomized single-query motion planning in expansive spaces, p. 134. PhD Thesis
(2000)

14. Hsu, D., Jiang, T., Reif, J., Sun, Z.: The bridge test for sampling narrow passages with probabilis-
tic roadmap planners. In: IEEE International Conference on Robotics & Automation (2003)

15. Hsu, D., Kavraki, L.E., Latombe, J.-C., Motwani, R., Sorkin, S.: On finding narrow passages
with probabilistic roadmap planners. In: International Workshop on Algorithmic Foundations
of Robotics, pp. 141–153 (1998)

16. Hsu, D., Kindel, R., Latombe, J.-C., Rock, S.: Randomized kinodynamic motion planning with
moving obstacles. Int. J. Rob. Res. 21(2), 233–255 (2002)

17. Hsu, D., Latombe, J.-C., Motwani, R.: Path planning in expansive configuration spaces. Int. J.
Comput. Geom. Appl. 4, 495–512 (1999)

18. Kavraki, L., Svestka, P., Latombe, J., Overmars, M.: Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

19. Kindel, R., Hsu, D., Robert, J.C., Latombe, S.: Randomized kinodynamic motion planning with
moving obstacles. Int. J. Rob. Res. 21(3), 233–255 (2000)

20. Komoriya, K., Tanie, K.: Trajectory design and control of a wheel-type mobile robot using b-
spline curve. In: IEEE/RSJ International Workshop on Intelligent Robots and Systems ’89.
The Autonomous Mobile Robots and its Applications. IROS ’89. Proceedings, pp. 398–405
(1989)

21. Koyuncu, E., Inalhan, G.: A probabilistic b-spline motion planning algorithm for unmanned he-
licopters flying in dense 3d environments. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems 2008. IROS 2008, pp. 815–821 (2008)

22. Koyuncu, E., Ure, N.K., Inalhan, G.: A probabilistic algorithm for mode based motion plan-
ning of agile unmanned air vehicles in complex environments. Int. Federation of Automatic
Control (IFAC’08) World Congress (2008)

23. LaValle, S., Kuffner, J.: Randomized kinodynamic planning. In: 1999 IEEE International Con-
ference on Robotics and Automation. Proceedings, vol. 1, pp. 473–479 (1999)

24. Liefer, R.K.: Fighter agility metrics. NASA Technical Paper Report No: AD-A22447 (1990)
25. Munoz, V., Ollero, A., Prado, M., Simon, A.: Mobile robot trajectory planning with dynamic and

kinematic constraints. In: 1994 IEEE International Conference on Robotics and Automation.
Proceedings, vol. 4, pp. 2802–2807 (1994)

26. Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C., Kostaras, A.N.: Evolutionary algorithm
based offline/online path planner for uav navigation. IEEE Trans. Syst. Man Cybern., Part B
33(6), 898–912 (2003)

27. Oishi, M., Tomlin, C.: Nonlinear control of a vstol aircraft. In: The Proceedings of the 38th IEEE
Conference on Decision and Control (1999)

28. Paulos, E.: On-line collision avoidance for multiple robots using b-splines. University of
California Berkeley Computer Science Division (EECS) Technical Report, (Report No.
UCB//CSD-98-977) (1998)

29. Piegl, L.A., Tiller, W.: The NURBS Book. Springer, New York (1997)
30. Song, G., Amato, N.: Randomized motion planning for car-like robots with c-prm. In: 2001

IEEE/RSJ International Conference on Intelligent Robots and Systems. Proceedings, vol. 1,
pp. 37–42 (2001)

31. Stevens, B.L., Lewis, F.L.: Aircraft Simulation and Control. Wiley, New York (2002)
32. Pappas, G.J., Koo, T.J., Sastry, S.: Modal control of systems with constraints. In: Proceedings of

the 40th IEEE Conference Decision and Control, pp. 2075–2080 (2001)
33. Feron, E., Schouwenaars, T., How, J.: Receding horizon path planning with implicit safety

guarantees. In: American Control Conference (2004)

170 J Intell Robot Syst (2010) 57:143–170

34. Ure, N.K., Inalhan, G.: Design of higher order sliding mode control laws for multi modal agile
maneuvering ucavs. In: 2nd Int. Symposium on Systems and Controls in Aerospace (2008)

35. Ure, N.K., Inalhan, G.: Design of a multi modal control framework for agile maneuvering ucavs.
In: IEEE Aerospace Conference (2009)

36. Krishnaprasad, P.S., Manikonda, V., Hendler, J.: Languages, behaviors, hybrid architectures and
motion control. Mathematical Control Theory (1998)

37. Valasek, J., Downing, D.R.: An investigation of fighter aircraft agility. NASA Technical Paper
588 (1993)

38. Vazquez, G.B., Sossa, A.H., Diaz de Leon, S.J.L.: Auto guided vehicle control using expanded
time b-splines. In: IEEE International Conference on Systems, Man, and Cybernetics, Humans,
Information and Technology, vol. 3, pp. 2786–2791 (1994)

	Integration of Path/Maneuver Planning in Complex Environments for Agile Maneuvering UCAVs
	Abstract
	Introduction
	Dynamically Feasible Path Planning Algorithm
	First Step: Connectivity Path
	Second Step: Dynamically Feasible B-Spline Algorithm

	Maneuver Planning Algorithm
	Brief Review of Multi Modal Control Framework
	Maneuver Generation Algorithm
	Maneuver Segment Identification
	Selection of Modal Inputs
	Satisfying the Sequential Constraints
	Recovering the Feasible Modal Sequence

	Simulation Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

