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Abstract In this paper we consider decentralized motion-planning in mobile co-
operative networks in the presence of realistic stochastic communication links,
including path-loss, fading and shadowing effects. We propose a communication-
aware motion-planning strategy, where each node considers the information gained
through both its sensing and communication when deciding on its next move. More
specifically, we show how each node can predict the information gained through
its communications, by online learning of link quality measures such as received
Signal to Noise Ratio (SNR) and correlation characteristics, and combine it with
the information gained through its sensing in order to build objective functions
for motion planning. We show that in the presence of path loss, our proposed
strategy can improve the performance drastically. We furthermore show that while
uncorrelated low-SNR fading channels can ruin the overall performance, the natural
randomization of uncorrelated channels can potentially help the nodes leave deep
fade spots with small movements. We finally show that highly correlated deep fades,
on the other hand, can degrade the performance drastically for a long period of time.
We then propose a randomizing motion-planning strategy that can help the nodes
leave highly correlated deep fades.

Keywords Decentralized motion-planning · Mobile cooperative networks ·
Stochastic communication links

Part of this work is presented in IPSN 2005 and ICRA 2008.

Y. Mostofi (B)
Cooperative Network Lab, Electrical and Computer Engineering Department,
University of New Mexico, Albuquerque, NM 87131, USA
e-mail: ymostofi@ece.unm.edu



234 J Intell Robot Syst (2009) 56:233–256

1 Introduction

Unmanned Autonomous Vehicles (UAVs) can play a key role in future emergency
response, surveillance and security, and battlefield operations. The vision of a
multi-agent robotic network cooperatively learning and adapting in harsh unknown
environments to achieve a common goal is closer than ever. To realize this vision,
a framework that properly addresses distributed reconfigurability in the presence
of environment uncertainty is needed. For instance, consider a group of UAVs in
charge of cooperative target tracking, perimeter defense or obstacle mapping. The
network can experience uncertainty in communication, navigation and sensing. The
objects in the environment (such as buildings) will attenuate, reflect, and refract
the transmitted waves, degrading the performance of wireless communication. The
link quality, for instance, can change drastically in a short distance due to multipath
fading, making robust motion-planning challenging. Furthermore, the environment
could be harsh and uncertain in terms of sensing and navigation due to rubble,
stairs, or blocking objects. Since the group needs to achieve the given task in a
cooperative manner, it needs to maintain good connectivity with the rest of the
nodes. At the same time, each node needs to gather direct information from its
environment. Therefore, motion decisions of each node should consider both the
information gained through direct sensing as well as communication. This will create
a multi-objective optimization problem in which optimum motion-planning decisions
considering only sensing and navigation may not be the best for communication,
resulting in communication and sensing tradeoffs. In this paper, we show how the
nodes can predict the quality of the links and build motion-planning functions that
combine both sensing and communication objectives.

Related work: Decentralized control of sensor motions has gotten considerable
attention in recent years [1–5]. In particular, active sensing for robot positioning
and trajectory generation has been explored. A survey of current work on active
sensing for robotics is provided in [3]. Most of the current research in this area,
however, assumes ideal or non-realistic communication links, considering only sens-
ing objectives. For instance, it is common to assume either perfect links or links
that are perfect within a certain radius of a node, a significant over-simplification
of communication links. Communication plays a key role in the overall performance
of mobile networks as each sensor relies on improving its estimate by processing
the information received from others. Considering the impact of communication
channels on wireless estimation/control is an emerging area of research. Authors in
[6–8] have looked at the impact of communication channels on Kalman filtering over
a wireless link and the conditions required for stability. Estimation over bandwidth-
limited channels have also been explored [9]. Authors in [10–15] have looked
at the impact of some aspects of a communication link like noise, quantization,
fading, medium access and packet loss on wireless control of a mobile sensor. In
the context of motion planning, however, communication-aware motion generation
in the presence of realistic link models, such as fading, shadowing and path loss,
has received little attention. Our work in [16] was one of the earliest to introduce
the concept of communication-aware motion-planning in non-ideal communication
environments. Author in [17] used our proposed framework of [16], with small
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modifications, which led to similar results. In [18], we extended the work of [16] for
communication-aware motion-planning in uncertain environments.

The current paper is built on our past work with the goal of establishing a
foundation for communication-aware motion planning in realistic communication
environments including effects such as fading and shadowing. By communication-
aware motion-planning, we are referring to a motion-planning strategy that takes link
quality predictions into account. We show that our proposed strategy can improve
the performance considerably in the presence of path loss. We furthermore explore
the impact of fading on the network. The main challenge of motion-planning in
fading environments is the introduced uncertainty. A link can change drastically by
traveling a very short distance or can stay highly correlated for a long period of time,
depending on the makeup of the environment, positions of the nodes and com-
munication parameters. To address this, we first provide a probabilistic modeling
framework for realistic characterization of mobile communication links, includ-
ing uncertainties such as fading and shadowing. We then propose a probabilistic
decision-making and control framework that integrates both communication and
sensing objectives based on online learning of link qualities. We show that for
uncorrelated channels, the natural randomization can help nodes leave deep fades
(locations with very low SNR). Highly correlated deep fades, on the other hand, can
degrade the performance considerably for a long period of time. We then propose
a randomizing motion-planning strategy to improve link qualities in such cases. In
summary, the contribution of the paper is threefold. First, a framework is provided
for modeling and abstraction of realistic wireless links for the purpose of cooperative
motion planning. Second, we show how each node can predict the information
gained through its communications by online monitoring of link qualities. Third,
we show how this prediction can be fused with local sensing objectives in order to
build cost functions that result in the right tradeoff between information gained
though sensing and communication. While the proposed framework is applicable
to any UAV network, we show our results in the context of a team of UAVs in
charge of cooperative target tracking. The paper is organized as follows. Section 2
describes our system model. In Section 3, we briefly summarize characterization of
mobile channels including fading and path loss. Section 4 introduces our proposed

Fig. 1 Cooperative target
tracking in the presence of
realistic communication links
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Fig. 2 (Left) A 2D measurement of the received signal strength in dBm—source at (40,30), courtesy
of Sandia National Labs, (right) A measurement across a street in San Francisco, courtesy of Mark
Smith [28]

communication-aware motion-planning strategy. Section 5 and 6 discuss the impact
of path loss and fading respectively. We conclude in Section 7.

2 System Model

Consider N Unmanned Autonomous Vehicles that are in charge of cooperative
target tracking, as is shown in Fig. 1. Each node has an estimate of the position
of the target through direct local sensing. However, since its local sensing is not
perfect, it also relies on getting the estimate of target position from other nodes in
the network. The communication between the nodes is affected by path loss, fading
and shadowing, which can impact the quality of the received information drastically.
Figure 2 shows two examples of wireless channel measurements in outdoor urban
environments. It can be seen that links are far from ideal and can change drastically
in a short distance. Therefore, to ensure that the agents can accomplish the given
task successfully and in a timely manner, realistic link models should be considered.
Furthermore, link quality should be taken into account when motion-planning so that
the units intelligently move to the locations that maximizes the overall information
gained through both direct sensing and communication. We consider a target moving
in a plane, with its state defined as its position with the following linear dynamics:

x[k + 1] = Ax[k] + w[k]. (1)

1Then x[k] ∈ �2 is a vector representing the state of the target at time k and
w[k] is the process noise. w[k] is assumed zero mean, Gaussian and white with Q
representing its covariance matrix. Let y j[k] represent the observation of the j th

mobile node at time k:

y j[k] = x[k] + v j[k]. (2)

The observation noise, v j[k], is zero mean Gaussian with R j[k] representing its
covariance matrix:

R j[k] = v j[k]vT
j [k], (3)

1The results of this paper are applicable to 3D as well.
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where “superscript T” denotes the transpose of a vector/matrix. We take R j[k] to
be a function of the positions of both the sensor and the target (as opposed to the
distance between the two), as it will be the case in realistic scenarios. Table 1 contains
a list of key variable used in this paper. Each node may use a local filter (such as a
Kalman filter) to get a better estimate of the target position. Let ỹ j[k], e j[k] and � j[k]
represent the local estimate of the j th sensor, its corresponding error and its error
covariance matrix after filtering at time step k (in the absence of a local filter, the
original measurement will be used). Each node then transmits its local measurement
and measurement error covariance to other nodes. Let ỹ j,i[k] and � j,i[k] represent
the reception of the ith node from the transmission of ỹ j[k] and � j[k] respectively.
We will have,

ỹ j,i[k] = ỹ j[k] + c j,i[k] c j, j[k] = 02×1

� j,i[k] = � j[k] + L j,i[k] L j, j[k] = 02×2, 1 ≤ i, j ≤ N, (4)

where c j,i[k] ∈ �2 and L j,i[k] ∈ �2×2 contain communication noises occurred in the
transmission of each element of ỹ j[k] and � j[k] respectively and 02×1 and 02×2 rep-
resent the zero vector and matrix respectively. Let � j,i[k] represent the covariance
matrix of c j,i[k]:

� j,i[k] = c j,i[k]cT
j,i[k] = �(SNR j,i[k]). (5)

Table 1 List of key variables

x[k] State of the network np, j,i[k] Path loss exponent on the link
(target position) at time k from node j to node i at time k

w[k] Process noise at time k �(.) Function relating communication
noise variance to SNR

Q Process noise covariance x̂ j[k] Estimate of node j after
fusion at time k

y j[k] Local sensing of j th I j[k] Information gain of
node at time k node j at time k

v j[k] Local sensing noise of Is
j[k] Info gain through local sensing

j th node at time k of node j at time k
R j[k] Sensing noise covariance Ic

i, j[k] Info gain of node j by communication
of j th node at time k with node i at time k

ỹ j[k] Local estimate of j th node Il
i, j[k] Info loss from node i to node j

(before fusion) at time k at time k due to non-ideal link
e j[k] Local estimation error of j th M j[k] Motion decision vector of

node at time k node j at time k
� j[k] Local estimation error covariance σ 2

comm,i, j[k] Comm. noise variance from node i
of j th node at time k to node j at time k

ỹ j,i[k] Reception of ith node of SNR j,i[k] SNR on the link from node j
transmission of ỹ j[k] at time k to node i at time k

c j,i[k] Comm. noise in transmission from α j,i[k] Path-loss parameter at time k
node j to node i at time k

� j,i[k] Covariance matrix of c j,i[k] d j,i[k] Distance between nodes i
at time k and j at time k

� j,i[k] Reception of ith node of transmission
of � j[k] at time k
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� j,i[k] is a function of instantaneous received Signal to Noise Ratio (SNR) from node
j to node i, as indicated by function �(.). Depending on the receiver design, the
receiver may then drop all the erroneous packets or keep some of them (see [19] for
more details). Independent of the receiver strategy, however, Eq. 5 is a measure of
reception quality. If we only consider the impact of path loss, reception quality will
be a function of the distance between two nodes. In fading environments, however,
received SNR and the resulting reception quality will not merely be a function of
the distance between the two nodes. We shall address both cases and their impact
on motion-planning in this paper. Each sensor fuses its own measurement with the
received ones to reduce its measurement uncertainty. It then makes a local decision
about where to move next in order to maximize the overall information it gains
through both direct sensing as well as communication.

2.1 Observation Model

To characterize the observation noise of each sensor, we follow the same model used
in [20, 21]:

R j = T(θ j)Dj(r j)TT(θ j), (6)

where T(θ j) is the rotation matrix:

T(θ j) =
[

cos(θ j) sin(θ j)

−sin(θ j) cos(θ j)

]
(7)

and

Dj(r j) =
[

f j(r j) 0
0 γ f j(r j)

]
, (8)

where r j is the distance of the j th sensor to the target and θ j is the corresponding angle
in the global reference frame, as illustrated in Fig. 3. The function f j, the model for
the range noise variance of the j th sensor, depends on r j and γ is a scaling constant. A
common model for f is quadratic, with the minimum achieved at a particular distance
from the target, i.e. the “sweet spot” radius [1]. This means that, in the absence of
communication constraints, the optimum position of the robot is at a distance from
the target and not necessarily at the target. The reason for this is twofold. First, most

Fig. 3 Illustration of sensor
and target positions
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sensors do not work well if they are too far or too close to the object of interest (see
[20, 21] for more details). Second, in the context of target tracking, the nodes may not
want to get too close to the target. Instead, a distance that allows for good tracking
without getting too close is optimum.

3 Physical Layer: Mobile Communications [27]

A wireless transmission is degraded by several factors, among which distance-
dependent path loss, fading and receiver thermal noise are the most critical ones. As
a result, some of the transmitted bits can be flipped which will manifest itself as noisy
reception, as indicated by Eq. 4. Most literature on motion-planning, however, do not
consider these factors. As a result, communication-aware motion-planning strategies
that can operate robustly in harsh uncertain outdoor environments are lacking, an
issue that this paper addresses. In this section, we briefly review characteristics of
realistic mobile communication links necessary for motion-planning. Readers are
referred to [26, 29] for more details.

3.1 Distance-Dependent Path Loss

In the absence of fading (for instance if a strong line of sight component exists),
channel attenuation can be modeled as a distance-dependent path loss. This means
that the received signal power is only attenuated as a function of the distance between
the two nodes. While this can not be the case all the time, due to the blocking and
scattering objects, it can be the appropriate model from time to time, and is therefore
worth exploring. In such cases, received Signal to Noise Ratio is the main parameter
for channel characterization, as discussed next.

3.1.1 Channel Signal to Noise Ratio

A fundamental parameter that characterizes the performance of a communication
channel is the received Signal to Noise Ratio, which is defined as the ratio of the
instantaneous received signal power divided by the receiver thermal noise power.
Let SNR j,i[k] represent the instantaneous received Signal to Noise Ratio at kth

transmission from node j to node i. We will have

SNR j,i[k] = |h j,i[k]|2σ 2
s

σ 2
T

, (9)

where σ 2
s = E(|s|2) is the transmitted signal power, σ 2

T = E(|nthermal|2) is the power
of the receiver thermal noise and h j,i[k] ∈ C represents the time-varying fading
coefficient of the baseband equivalent channel during the kth transmission from node
j to node i. SNR j,i[k] determines how well the transmitted bits of the kth transmission
can be retrieved. As a node moves, it will experience different channels and therefore
different received Signal to Noise Ratios. For a distance-dependent path loss, we will
have

SNR j,i,path loss[k] = α j,i[k]
d

np, j,i[k]
j,i [k]

, (10)
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where d j,i[k] is the distance between the ith and j th agents at time k and np, j,i[k] > 0
is the path loss exponent which depends on the environment. α j,i[k] ≥ 0 is a function
of the transmitted signal power, receiver noise, frequency of operation and the
communication environment [26].

3.2 Mobile Fading Channels

One of the major performance degradation factors of mobile communication is
fading. Fading is a stochastic attenuation of the transmitted signal. It can be caused,
for instance, by multiple paths arriving at the receiver (multipath fading) or block-
ing by objects such as a building (shadowing). This is in addition to the distance-
dependent attenuation (path loss), and necessitates a probabilistic approach to
channel modeling and as a result to motion-planning.

3.2.1 Channel Signal to Noise Ratio in Fading Environments

In the presence of fading, the instantaneous Signal to Noise Ratio, SNR j,i[k], is
not merely a function of the distance between the nodes, as was the case in the
previous part. Instead, it becomes a non-stationary stochastic process whose average
(averaged over both small-scale and large-scale fading), SNR j,i,ave[k], changes as a
function of the distance between the transmitter and receiver. The average of fading
is then dictated by the distance-dependent path loss. We will have,

SNR j,i,fading[k] ∼ random process with

SNR j,i,ave[k] = E(SNR j,i,fading[k]) = α j,i[k]
d

np, j,i[k]
j,i [k]

. (11)

The distribution of SNR j,i[k] is a function of the transmission environment and
the level of mobility. A common model for outdoor environments (with no Line-of-
Sight path) is to take SNR j,i to be exponentially distributed, which is the model we
will adopt (without loss of generality) in order to generate fading channels. For other
distributions as well as models for large-scale fading, see [23] and [29].

3.2.2 Channel Correlation Characteristics

Depending on the environment, communication parameters and speed of the mobile
unit, fading can have different correlation properties. For instance, small changes in
the transmission paths, caused by the movements of the receiver or transmitter, can
introduce rapid and drastic changes in the received signal quality (small-scale fading)
and affect the overall performance of cooperative target tracking considerably. On
the other hand, if a mobile node’s reception is blocked by a building, the attenuation
caused by it can stay highly correlated for as long as the node is shadowed by the
building (large-scale fading or shadowing). In this paper, we are interested in learning
channel correlation characteristics in order to move to locations that are better for
communication. For instance, if a node has measured a highly correlated but poor
quality channel for the past few receptions, it may need to change its direction. In
rich scattering environments, channel can change drastically due to multipath small-
scale fading and can get uncorrelated rapidly. In such cases, a small movement of
the node can result in a better channel (or a worse one). When the received signal
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is attenuated due to a blocking object or is experiencing a small angle of arrival
spread, on the other hand, it can take longer for the channel to get uncorrelated.
Deep fades refer to the instants of a severe drop in channel quality. For highly
correlated channels, experiencing deep fades can pose a challenge as the channel
can have a poor quality over an extended period of time with high probability.
To address this, we characterize the impact of channel correlation on the overall
performance. We furthermore propose to learn the correlation characteristics of
the channel statistically for the purpose of motion-planning. As channel correlation
increases, we can learn and predict the channel and design better motion-planning
algorithms that are aware of their impact on link qualities, as we shall explore in the
next section.

3.3 Communication Noise Variance

Poor link quality can result in some of the transmitted bits to be flipped, resulting
in the noisy reception of the transmitted positions and covariances (see Eq. 4).
Let c(1)

j,i [k] and �
(1,1)

j,i [k] represent the communication noise in the reception of the
position along the x-axis and its corresponding variance respectively. We have

�
(1,1)

j,i [k] = E
(|c(1)

j,i [k]|2|h j,i[k]), (12)

which will be a function of SNR j,i[k]:

�
(1,1)

j,i [k] = �(1,1)(SNR j,i[k]), (13)

where SNR j,i[k] is the instantaneous received Signal to Noise Ratio in the transmis-
sion from the j th agent to the ith one, and �(.) is defined for Eq. 5. More specifically, if
the channel is only experiencing path loss, we will have SNR j,i[k] = SNR j,i,path loss[k]
and if it also experiences fading, we will have SNR j,i[k] = SNR j,i,fading[k]. In the
latter, communication noise variance will become a random process through its
dependency on SNR j,i[k]. � is a non-increasing function that depends on the
transmitter and receiver design principles as well as the transmission environment.

3.3.1 Example

Consider a scenario where the observation is quantized using a uniform quantizer.
The quantized bits are then transmitted using binary modulation and Gray coding
[26]. Let q and Nb represent the quantization step size and the number of quantiza-
tion bits respectively. Then we have shown that the communication noise variance
will be [10]:

�
(1,1)

j,i [k] = q2

12
+ 4Nb − 1

3
q2 × 	(

√
SNR j,i[k]), (14)

where 	(η) = 1√
2π

∫ ∞
η

e−z2/2dz. Similar expressions can be written for the transmis-
sion of the position along y-axis and other elements of the error covariance matrix of
Eq. 4.
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3.4 Packet Drop

We saw in the previous parts that poor link quality can result in noisy reception. The
receiver can then decide to either keep the received packet or drop it. The criteria for
making this decision vary depending on the application. Data networks, for example,
are not as sensitive to delays since the application is not real time. The receiver,
therefore, can afford to drop erroneous packets and wait for retransmission. The
amount of tolerable bit error rate is therefore set on the order of 10−8, which is
considerably low [23]. Voice applications such as cellular networks, on the other
hand, are sensitive to delays. In every transmitted bit stream, there are key bits
embedded for synchronization and other crucial tasks. If these bits get corrupted,
the receiver drops the transmitted stream. However, once these bits are received
accurately, the rest of the bit error rate is either corrected through channel coding or
tolerated [22] since there is no time for retransmission. The level of tolerable bit error
rate is therefore set considerably higher, on the order of 10−3 [23]. Estimation and
control of dynamical systems over wireless links is an emerging application for which
new communication design paradigms should be developed. Control applications are
typically delay sensitive as we may be racing against the dynamics of the system under
observation (such as a moving target in our case). While optimization of packet
drop design is out of the scope of this paper (readers are referred to [19, 24] for
more details), reception quality before dropping the packets is a good measure for
communication-aware motion-planning independent of packet drop decision, as we
shall use it in this paper. Reception quality, i.e. communication noise and its variance,
translates Signal to Noise Ratio to a noise-like metric, which could then be compared
with the sensing error.

4 Communication-Aware Motion-Planning

In order to maximize the probability of robust behavior in harsh uncertain envi-
ronments, we propose communication-aware decision-making strategies that utilize
online learning of channel characteristics. Figure 4 shows our envisioned approach
for integrating local sensing and communication objectives in fading environments.
Every transmitted packet contains training bits, which every node will utilize to es-
timate received SNR (this is done in all communication receivers [23]). Probabilistic
models of wireless channels (if available) could also be used to improve channel
prediction. This information will then be used in high-level motion planning, as is
shown in the figure. For instance, each node can use this information to predict the
impact of its possible motion movements on link qualities, as we will explore in more
details in this section.

On the sensing side, each agent improves its learning of the environment through
sensing and exploration. Finally each agent builds a cost function that reflects both
sensing and communication costs and chooses a motion decision that minimizes it.
The main challenge in building an appropriate cost function is for each node to
predict the information it will gain through direct sensing and communication as
a function of the next move. Furthermore, each agent’s motion affects the quality
of its communication to all the other agents as well as its sensing quality, resulting
in a multi-objective optimization problem. We are also interested in decentralized
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Fig. 4 Integration of
communication & local
sensing objectives in
motion planning
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solutions, where every agent makes a local decision on where to go next, without
having any knowledge of where others would go. These issues make achieving
optimal solutions challenging. In the next few subsections, we discuss our proposed
strategies to address these challenges.

4.1 Communication-Aware Data Fusion

Each node constantly receives local estimation information of others. The received
data is corrupted by process noise, observation noise and communication noise
(see Eq. 4). We will have the following for the reception of the j th node from the
transmission of the ith one,

ỹi, j[k] = x[k] + ei[k]︸︷︷︸
function of local sensing quality

+ ci, j[k]︸ ︷︷ ︸
function of comm. link qualities

, (15)

where the position of the target is corrupted by both the Kalman Filter error (which
reflects the impact of both observation and process noises) and the communication
noise. Note that considering reception quality before potential dropping allows us
to quantify the impact of communication links (in the form of the communication
noise covariance) in such a way that can be compared with sensing quality. Let x̂ j[k]
represent the estimate of the j th node of the position of the target after fusing the
received and local information at time step k. Then the following represents the
Best Linear Unbiased Estimator (BLUE) of target position based on the received
information [25]:

x̂ j[k] =
N∑

i=1

ρi, j[k]ỹi, j[k] (16)

where ρi, j[k] = arg min E|x̂ j[k] − x[k]|2 (17)

such that Ex̂ j[k] = x[k]. (18)
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We will have

x̂ j[k] =
( N∑

i=1

P̂−1
i, j [k]

)−1 N∑
i=1

P̂−1
i, j [k]ỹi, j[k], (19)

where

Pi, j[k] = �i[k] + �i, j[k]. (20)

Then P̂i, j[k] represents the estimate of Pi, j[k] based on the received information,
i.e. by replacing �i[k] by �i, j[k] and estimating �i, j[k] based on the measurement
of the received SNR. Since the exact knowledge of Pi, j[k] is not available at the
j th node, due to the corruption of �i[k] by the communication noise, the overall
fusion performance differs from a typical BLUE estimator and can be proved to be
as follows:

E{(x̂ j[k] − x[k])(x̂ j[k] − x[k])T} =
( ∑N

i=1
P̂−1

i, j [k]
)−1

×
∑N

i=1
P̂−1

i, j [k]Pi, j[k]P̂−1
i, j [k]

×
(∑N

i=1
P̂−1

i, j [k]
)−1

. (21)

4.2 Decentralized Communication-Aware Motion-Planning

Consider the overall estimation error covariance of the j th node, as indicated by
Eq. 21. Consider the case that the j th node could perfectly estimate Pi, j of Eq. 21,
i.e. P̂i, j = Pi, j (we will relax this assumption). Then the information gain matrix can
be defined as follows for the j th node:

I j[k] = Is
j[k]︸ ︷︷ ︸

information gained through local sensing

+
∑
i 	= j

Ic
i, j[k]︸ ︷︷ ︸

information gained through communication from node i

,

(22)

where I j[k] = [E{(x̂ j[k] − x[k])(x̂ j[k] − x[k])T}]−1 represents the overall information
gain (through its relationship with Fisher information),

Is
j[k] = �−1

j [k] (23)

represents the information gained through direct local sensing and

Ic
i, j[k] = [

(Is
i [k])−1 + �i, j[k]]−1

(24)

denotes the information gained through communication from the ith node. By assum-
ing that the communication noises in the transmissions of different elements of vector
yi, j are i.i.d (this will be the case for several communication environments/parameters
[26]), we will have �i, j[k] = σ 2

comm,i, j[k]I, where I denotes the identity matrix and
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σ 2
comm,i, j[k] represents communication noise variance per element (or per reception

from node i to node j). We have,

Ic
i, j[k] =

[
(Is

i [k])−1 + σ 2
comm,i, j[k]I

]−1

= Is
i [k] − σ 2

comm,i, j[k]Is
i [k]

(
I + σ 2

comm,i, j[k]Is
i [k]

)−1
Is

i [k]
= Is

i [k]︸ ︷︷ ︸
information gained by node i through local sensing

− Us
i [k]

⎡
⎣

(λs
i,1[k]σcomm,i, j[k])2

1+(λs
i,1[k]σcomm,i, j[k])2 0

0
(λs

i,2[k]σcomm,i, j[k])2

1+(λs
i,2[k]σcomm,i, j[k])2

⎤
⎦ (Us

i [k])T

︸ ︷︷ ︸
Il

i, j[k]: information loss due to non-ideal link from node i to node j

(25)

where Us
i [k] is a matrix whose columns are the eigenvectors of Is

i [k] with λs
i,1[k] and

λs
i,2[k] representing the corresponding eigenvalues. I l

i, j[k] of Eq. 25 quantifies the loss
of information incurred due to non-ideal communication links. Therefore, the overall
information is reduced compared to the case of ideal communication, as expected,
and is lower bounded by the local information gain:

Is
j[k] 
 I j[k] 


∑
i

Is
i [k], (26)

where 
 denotes matrix inequality. Figure 5 shows the overall information gained
by the j th node and its components, i.e. the information gained through its local
sensing as well as through its communications with other nodes. Let M j[k] denote
the motion vector of the j th node at time step k. Then M j[k] should be chosen such
that I j[k + 1] is minimized. Since the j th node can not exactly calculate I j[k + 1] for

Fig. 5 An illustration of
the information gained
through direct sensing and
communications for node
j—transfer of information
over wireless links results
in an information loss

UAV j

UAV 1

+
I [k]j

s

I [k]1
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I [k] j

+
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I  [k]N

s

-I  [k]1,j

 l
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the possible set of motions, it will predict it based on online learning of link qualities.
Then the j th node will form the following optimization problem:

M∗
j [k] = arg max �

(
Î j

[
k + 1,M j[k]]) , (27)

where Î j
[
k + 1,M j[k]] represents the prediction of the j th node of its information

gain at time step k + 1, as a result of motion decision M j[k]. Function � maps the
predicted information gain matrix to a scalar value. Possible choices are determinant,
spectral norm, Frobenius norm and trace, as discussed in [3]. M j[k] belongs to a finite
set of possible motion vectors at time step k. For instance, in the absence of obstacles,
possible motion set could consist of a number of vectors with constant amplitude but
different phases that are equally distributed between 0 and 2π . We have the following
information gain prediction:

Î j
[
k + 1,M j[k]] = Îs

j

[
k + 1,M j[k]] +

∑
i 	= j

Îc
i, j

[
k + 1,M j[k]]

= Îs
j

[
k+1,M j[k]]+∑

i 	= j

(
Îs

i

[
k+1,M j[k]]−Î l

i, j

[
k+1,M j[k]]) ,

(28)

where Îs
j

[
k + 1,M j[k]] and Îs

i

[
k + 1,M j[k]] for i 	= j represent the prediction of

the j th node of its own local error covariance and the local error covariance of
the ith node respectively and can be obtained by propagating the corresponding
Kalman filters one step ahead. Furthermore, the j th node can use x̂ j[k] as well
as any information available on the dynamics of target movement (such as Eq. 1)
to predict the next state of the target. Î l

i, j

[
k + 1,M j[k]] denotes prediction of the

j th node of the information loss that will occur in communication from the ith

node and will be formed by predicting σcomm,i, j
[
k + 1,M j[k]]. The j th node can

predict σcomm,i, j
[
k + 1,M j[k]] using the estimates available on the positions of other

nodes, channel correlation and SNR properties. By incorporating a measure of
link qualities in the overall cost function, we build a communication-aware motion-
planning strategy that constantly guides the nodes to positions that will maximize
the overall information gain. We will show the performance of the proposed strategy
with an emphasis on the impact of communication imperfections such as path loss
and fading.

5 Impact of Distance-Dependent Path Loss

In this section, we first consider the impact of path loss (no fading) on decentralized
motion-planning and show the performance of the proposed communication-aware
motion-planning strategy. Before doing so, it would be of interest to characterize the
optimum network configuration from a global perspective for the sake of compari-
son. In [1], it was shown that for the case of perfect communication, in the absence of
a local Kalman filter and for a fixed target position, the optimum configuration of the
nodes is on the sweet spot radius (assuming that the nodes have the same f function)
and with the angle difference of kπ

N for k = 1, . . . , N − 1. In the presence of imperfect
communication links, however, finding the optimum configuration analytically is not
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Table 2 System parameters Sensing parameters
f 0.0008(r − 15.625)2 + 0.1528
γ 5
Q .01I2

Communication parameters
q 0.0018
Nb 15
np 2

feasible. In [16], we characterized the optimum configuration in the presence of
path-loss and for two UAVs with np = 2, through a brute-force search. For the
system parameters of Table 2, Table 3 summarizes the results, where �opt represents
the angle difference between the two UAVs and α is as defined in Section 3.1 (note
that the optimum radius will still be the sweet spot radius). The table shows the angle
for different link qualities, i.e. different αs. We will use this result as a benchmark to
compare the performance of a decentralized network.

5.1 Performance without a Communication-Aware Motion-Planning Approach

To see the performance without having a communication-aware motion-planning
strategy, Fig. 6 shows sensor trajectories for N = 2, system parameters of Table 2,
α = 5700 and for 50 time steps (target is almost stationary). In this case, the motion
planner of each UAV assumes that the links are perfect, while they are not. As can
be seen, the algorithm does not converge to the corresponding angle indicated in
Table 2. The sensors are acting independently as if N = 1, which means that they
will traverse the sweet spot radius, without finding the optimum angle [16].

5.2 Performance of the Proposed Communication-Aware Motion-Planning Strategy

Next we consider the performance of the proposed communication-aware motion-
planning approach of Section 4 in path-loss (no fading) environments in order to
motivate motion planning in fading environments (see [16] for more details on
performance in path-loss environments). In this case, link qualities are taken into
account when predicting the overall information gain of Eq. 28. Figures 7, 8 show
the performance of the proposed algorithm in the presence of path loss but with
no fading and for the parameters of Table 2 (almost stationary target). Figure 7
shows sensor trajectories for 50 time steps, N = 2 and α = 570. After 50 time steps,
we have �[50] = 13.5◦, r1[50] = 16 and r2[50] = 16.1. Comparing these values with
the corresponding optimal ones in Table 3 shows convergence of the decentralized
algorithm to the optimal locations. It should be noted that the optimum distance
from the target is defined by function f in Table 2 and is not zero. The sweet spot

Table 3 Optimal angle for the case of two UAVs experiencing path-loss (no fading) [16]

Perfect comm Distance-dependent path loss

α = 570 α = 5700 α = 57000

�opt 90◦ 18◦ 70.56◦ 90◦
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Fig. 6 Performance of
motion planning in a path-loss
environment when link
qualities are not taken into
account, UAVS move on the
sweet spot radius without
finding the optimum
angle—N = 2 and
α = 5700 [16]
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radius is 15.625 in this case, which is the distance the nodes have from the target
in Fig. 7. We can see that by learning and accounting for communication links in
the decision-making process, we improve the performance considerably. Figure 8
shows the determinant of the error covariance of one of the sensors (after fusion)
as a function of time, for two different channels and for N = 5. For comparison,
performance with perfect communication links is also plotted. We can see that for
α = 5700, the error stays very close to that of the ideal communication from the
beginning. For α = 570, the sensors start out acting individually but can find the

Fig. 7 Performance of the
proposed communication-
aware motion-planning
algorithm in the presence
of path-loss, N = 2, α = 570;
the nodes achieve the
optimum configuration
which is on the sweet spot
radius with an angle of 18◦
(see [16] for more details)
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Fig. 8 Performance of the
proposed communication-
aware motion-planning
algorithm in the presence of
path-loss, N = 5
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optimum configuration quickly resulting in the error reaching very close to that of
the ideal communication case after a few time steps. The convergence gets faster as
the quality of the link improves. Convergence time is also a function of the initial
positions of the UAVs and may be different for different nodes of the network. The
error is always bounded by that of a single sensor case, independent of the quality of
the links, since the proposed strategy properly weigh the communicated data based
on estimating link qualities.

To see the performance of the proposed algorithm when the target is moving
faster, consider the performance for A = .7I, Q = .1I (I denotes the identity matrix)

Fig. 9 Performance of the
proposed communication-
aware motion-planning
algorithm in the presence of
path-loss—case of a fast
moving target, N = 2
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and with the rest of the parameters as summarized in Table 2 (target is initialized far
from the origin). Figure 9 shows how the UAVs track the target for N = 2, α = 570
and 50 time steps. Performance curve of this case is similar to Fig. 8.

6 Communication-Aware Motion Planning in Fading Environments

In the previous section we showed that the proposed communication-aware motion
planning approach works robustly in the presence of path loss. In fading envi-
ronments, channels can behave more sporadically which makes designing robust
decentralized cooperative networks more challenging. In particular, prediction of
link qualities and as a result the information loss terms of Eq. 28 becomes more
challenging. In this section we consider decentralized motion-planning in fading
environments using the proposed communication-aware information-gain approach
of the previous section. We furthermore propose to utilize channel correlation
properties in order to predict link qualities and as a result the overall information
gain of Eq. 28 more accurately. We emphasize the importance of channel correlation
properties and discuss two cases of uncorrelated and highly-correlated channels. It
was shown in Section 5.1 that the already existing motion-planning strategies (with
no communication-aware approach) perform considerably poorly in the presence of
path loss. It should be noted that they perform even worse with fading.

6.1 Uncorrelated Fading

By uncorrelated fading channels, we refer to channels that get uncorrelated
from one transmission to the next. Consider Eq. 25. σ 2

comm,i, j[k] is a function of
SNRi, j[k]: σ 2

comm,i, j[k] = ψ(SNRi, j[k]), where function ψ(.) denotes the dependency
of σ 2

comm,i, j[k] on SNRi, j[k]. In fading environments, SNRi, j[k] is a random process
with SNRi, j,ave[k] denoting its average, as described in Section 3.2. Then σ 2

comm,i, j[k]
and as a result Ic

i, j[k] become random processes. To see the impact of fading
on cooperative target tracking of a team of UAVs, consider a network of three
UAVs that are tracking a target. Figure 10 shows the performance of the proposed
communication-aware motion-planning algorithm when the channels change rapidly
and get uncorrelated from one transmission to the next. The figure shows the overall
average norm (Frobenius norm2) of the estimation error covariance matrix for
60 time steps for N = 3, system parameters of Table 2 and for different αs (see
Section 3.2 for details of fading channels). The target is almost stationary in this case.
We consider faster target motions later in this section. The channel is an exponen-
tially distributed random process (a common distribution in outdoor environments)
whose average is time-varying and distance-dependent as modeled in Section 3.2.
The best channel has α = 57000 (see Eq. 10), which corresponds to a fading channel
with the average SNR of 27 dB at a distance of 10 m, whereas α = 5700 corresponds
to an average SNR of 17 dB at the same distance (all realistic scenarios). For
comparison, the performance for perfect communication is also plotted.

2Similar results are seen with other measures such as determinant or trace.
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Fig. 10 Performance of the proposed communication-aware motion-planning approach for uncorre-
lated fading channels, N = 3

It can be seen that the higher average SNR is, the closer the performance is to the
perfect case. As the channel quality gets worse, however, the performance degrades.
For instance, for α = 5700, the performance gets closer to the N = 1 case, which
means that the nodes can not benefit from cooperation. It should, however, be noted
that any already-existing motion-planning strategy that is not aware of its impact
on link qualities would have performed considerably worse. Compared to the case
with only path loss, the network will perform considerably better for channels with
no fading but the same distance-dependent path-loss, as expected. It should also
be noted that these curves are averaged over several random sequences of channel
realizations. For one sequence, the performance will lie between the curves for N = 1
and the perfect N = 3. This is due to the fact that an uncorrelated channel can
change drastically from one transmission to the next. However, since the channel gets
uncorrelated in the next transmission, there is always a chance of recovery from deep
fades by having a better channel. This is what we refer to as the natural randomization
introduced by an uncorrelated channel, which can help the nodes leave low SNR
spots with little effort (small movement).

6.2 Highly-Correlated Fading

By a highly-correlated channel, we refer to a channel that stays correlated over
several transmissions. Highly correlated fading has a different impact on the overall
performance. A highly correlated good quality channel will pose no problem for a
cooperative mobile network. However, a highly correlated channel in deep fade (see
Section 3.2) can pose serious challenges as the information flow in the network can
be interrupted for a long period of time (high information loss terms in Eq. 25).
To see this, Fig. 11 shows one run of the norm of the average estimation error
covariance of all the three nodes. The channels have different qualities but each
channel stays highly correlated in the duration of simulation. In particular, channels
from node 2 and 3 to node 1 are experiencing highly correlated deep fades (note that
wireless channels are not necessarily symmetric as transmissions occur in different
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Fig. 11 Impact of highly correlated channels on motion planning—node 1 is experiencing highly-
correlated low-SNR channels from nodes 2 and 3, which degrades its performance

frequencies). It can be seen that the overall performance is degraded considerably
as node 1 can not reduce its error beyond N = 1 case and has to rely on itself. Such
scenarios can be catastrophic to the robustness of cooperative mobile networks. To
address this, we next propose an adaptive motion-planning algorithm to mitigate
effects of highly correlated deep fades.

6.3 Randomization through Adaptive Motion-Planning

In Fig. 11, we showed how correlated deep fading can ruin the performance of a
cooperative network considerably. If a channel gets uncorrelated from one trans-
mission to the next, it naturally creates a randomization in the channel quality.
This can be taken advantage of if the link is currently in a deep fade. However,
for highly correlated channels, this can be more challenging as the channel can
stay in a deep fade for several steps (for instance when a node’s communication is
blocked by a building for several movements). In such cases, we propose to introduce
randomization by taking larger steps. Increasing the step size (i.e. increasing the
amplitude of vector M j[k] of Section 4.2), in general, has its advantages (potential
higher speed of convergence) and disadvantages (potential lower search resolution
and higher energy cost). Adapting the step size, on the other hand, can keep the
benefits of both smaller and larger step sizes as it only increases the step size if
needed. In fading environments, adapting the step size can potentially help mitigate
the impact of highly correlated deep fades. We propose to adapt the step size when
highly correlated deep fades are experienced. If a UAV experiences low SNR links
from majority of the UAVs for a longer than a predefined period of time, it will then
try to enforce randomization of link qualities by increasing its step size. Increasing
its step size can decrease channel correlation, which can help leave deep fade spots.
It should be noted, however, that due to the random and complex nature of wave
propagation, there is no guarantee that a considerable performance improvement
will be achieved all the time. But it will increase the probability of it. The idea of
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Fig. 12 Performance of the proposed adaptive communication-aware motion-planning strategy for
highly correlated low SNR channels of Fig. 11, step size is doubled in the event of correlated
deep fade

enforcing time-variations in link qualities has also been used in the context of Digital
Audio Broadcasting [27] when encountering stop signs that are in deep fade.

To see the performance of our proposed communication-aware adaptive motion-
planning, Fig. 12 shows the performance improvement gained through adaptation
for the system parameters and channel initial conditions of Fig. 11 (at the beginning,
node 1 is experiencing highly correlated poor-quality links from nodes 2 and 3). For
this result, if a node experiences SNR below a threshold (10dB here) for three con-
secutive receptions from the other two nodes, then it will double its step size (it will
go back to normal step size once this condition is not met anymore). It can be seen
that proper adaptation to link qualities can enhance the performance considerably
(compare the performance of node 1 with that of Fig. 11). Figure 13 shows similar
results when adapting the step size by tripling it. To see the performance for a case
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Fig. 13 Performance of the proposed adaptive communication-aware motion-planning strategy
for highly correlated low SNR channels of Fig. 11, step size is tripled in the event of correlated
deep fade
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Fig. 14 Case of a fast moving target—Performance of both non-adaptive and adaptive algorithms
for highly correlated low SNR channels—for the adaptive case, step size is tripled in the event of
correlated deep fade

of a mobile target, Fig. 14 shows the performance for A =
[

0.7 0
0 0.7

]
and Q = 0.05I

(target is initialized far from the origin and the UAVs). The figure shows a case
where node 1 is experiencing highly correlated low SNR channels from nodes 2 and
3 and can not improve its performance beyond N = 1 case (without adaptation). It
also shows the performance gained through adaptation.

7 Summary and Further Extensions

In this paper we considered decentralized motion planning and decision making for
a team of Unmanned Autonomous Vehicles that are in charge of cooperative target
tracking in realistic communication environments. We proposed a communication-
aware motion-planning strategy, where each node considers the information gained
through both its sensing and communication when deciding on its next move. More
specifically, we showed how each node can predict the information gained through
its communications, by online learning of link quality measures such as received
Signal to Noise Ratio (SNR) and correlation characteristics, and combine it with the
information gained through its local sensing in order to assess its overall information
gain. We then showed the impact of path loss and fading on the performance of
cooperative target tracking. We furthermore showed that as channel correlation
decreases from one transmission to the next in fading environments, the network can
potentially benefit from the natural randomization of link qualities to leave low SNR
spots. On the other hand, for highly correlated channels, a node can be in a deep fade
for a long period of time, which can ruin the performance considerably. To address
this, we proposed a motion-planning strategy that adapts the step size according to
channel correlation properties in order to enforce randomization of link qualities.
Our simulation results showed the superior performance of the proposed approach
in realistic communication environments. While we did not explicitly discuss large-
size networks, the proposed framework can be applied in a network of an arbitrary
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size in order to ensure that each UAV is connected to a minimum number of nodes
or in order to maintain connectivity with neighbors.
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