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Abstract In this paper, we present feedback control laws for an autonomous vehicle
with rigidly mounted range sensors to track a desired curve. In particular, we consider
a vehicle that has a group of rays around two center rays that are perpendicular to
the velocity of the vehicle. Under such a sensor configuration, singularities are bound
to occur in the curve tracking feedback control law when tracking concave curves.
To overcome this singularity, we derive a hybrid strategy of switching between
control laws when the vehicle gets close to singularities. Rigorous proof and extensive
simulation results verify the validity of the proposed feedback control law.

Keywords Autonomous vehicle · Curve tracking · Switching systems

1 Introduction

Curve tracking control is fundamental for autonomous vehicles following desired
paths, e.g., staying in lanes or avoiding obstacles. An example in which this becomes
relevant is when an autonomous vehicle is to follow the curb or the lane markings.
Figure 1 shows the autonomous vehicle Sting-I that represented Georgia Tech in the
DARPA Urban Grand Challenge in 2007. As one of this vehicle’s lane perception
strategies, two rigidly mounted range sensors (lidars) were installed on both sides of
the vehicle. At each instant of time, the vehicle emits a group of laser rays around
the center ray forming a fixed angle with the velocity of the vehicle. When the center
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Fig. 1 The Sting-1 vehicle
at Georgia Tech

ray intersects a lane, it detects a point on the lane. From the distance measurements
taken by the rays around the center ray, the autonomous vehicle is able to estimate
the curvature of the lane at the point, the distance from the point, and the angle
between the heading vector of the vehicle and the tangent vector to the lane.

In this paper, we design a curve tracking control law that uses these measurements
as feedback to create the desired lane-following behavior to be used as a component
in the Georgia Tech urban grand challenge system. It should be noted that our
results can be applied to other types of autonomous vehicles with similar range sensor
configurations.

The literature is abundant with papers on curve tracking for autonomous vehicles.
For example, in [1], a reference point moves along the reference trajectory while
the vehicle follows it, and the reference point might stop to wait for the vehicle. In
[2] and [3], a gyroscopic feedback law was used to control the model that describes
the interaction between the vehicle with an image particle representing the closest
point on a closed curve bounding an obstacle. This controller design method was
extended to set up cooperative motion patterns on closed curves for multiple vehicles
in [4–6] and generalized to the design of tracking laws in three dimensions in [7] and
[8]. The closest point is also used for path following in [9]. In [10], vehicles collect
measurements at multiple fixed points in front of the vehicle and a recursive spline
is updated and followed by feedback control. Similarly, the problem of tracking a
ground curve is formulated as controlling the shape of the curve in the image plane
in [11]. A biologically plausible feedback law that achieves motion camouflage that
is related to curve tracking is shown in [12]. The authors of [13] determined bounds
for the sampling intervals so that the vehicle stays in the lane with limited sensing
rate. A feedback linearization approach and Lyapunov-oriented control designs were
presented to make a mobile vehicle converge to a predefined path in [14]. Curve
tracking for an atomic force microscope was considered in [15]. The authors of
[16] presented a decentralized coordination algorithm for multiple vehicles to locate
and track a dynamic perimeter. In addition, vision-based path following methods
could be found in [17–21]. Various other path planning methods were introduced in
[22–28].

In the literature reviewed above, curve tracking control usually have difficulties
when the curve is concave, i.e., curving towards the vehicle. In this paper, we follow
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a similar procedure as in [2] to develop the curve tracking control laws for both
convex and concave curves based on Lyapunov functions. However, our results are
significantly different and, hence, complementary to those in [2]. First, information
of the closest point is used in [2], which requires wide-aperture scanning sensors. The
methods in this paper only require two narrow-aperture range sensors pointing to a
fixed direction relative to the moving direction of the vehicle to gather information
at the detected points. Using detected points not only makes the tracking dynamics
more complicated, but it also causes singularities in control laws when tracking
concave curves. We show that these singularities cannot be avoided by changing the
shape of the Lyapunov function used in [2]. Therefore, to overcome singularities of
the Lyapunov function-based control laws, we develop switching controllers to make
the system asymptotically stable. The switching strategy that achieves curve tracking
with narrow-aperture-range sensors is our main contribution in this paper, which has
not been achieved in the references.

The proof of the convergence of our switching control laws is inspired by con-
vergence results for switching systems in the literature. Conditions for nonlinear
switching systems to be asymptotically stable were presented in [29]. In [30–32],
multiple Lyapunov functions were used to prove stability. In [33], the authors
proposed control laws that switch between an approximate control when the system
is near a singularity and an exact control when the system is bounded away from the
singularity.

This paper is organized as follows: In Section 2, we present a system model for
curve tracking with rigidly mounted sensors. In Section 3, we select a Lyapunov func-
tion for the convergence analysis and derive a feedback control law to asymptotically
stabilize this system. Furthermore, to avoid the singularity where the denominator
of the feedback control law is zero, switching control laws are developed with
provable convergence. In Section 4, simulation results are presented. A summary
and directions for future research are discussed in Section 5.

2 Boundary-Following Model with Rigidly Mounted Range Sensors

Consider a vehicle with two range sensors that emit center rays forming a fixed
angle α with the velocity of the vehicle. When a boundary curve is presented in the
plane, the center ray will intersect the boundary and detect a point �r2, which will be
called the detected point. Here, �r1 is the position of the vehicle. Hence, the relative
position between the vehicle and the detected point is �rα = �r2 − �r1, and φ is the angle
measured counterclockwise from the tangent vector �x2 at the detected point to the
heading direction of the vehicle �x1.

We first establish two Frenet–Serret frames [18]: one at the vehicle, the other at
the detected point, as shown in Fig. 2. These two frames satisfy the Frenet–Serret
equations:

�̇r1 = v1�x1

�̇x1 = v1u�y1

�̇y1 = −v1u�x1 (1)
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Fig. 2 A vehicle with a rigidly
mounted sensor at angle
α and a boundary curve
in its environment

�̇r2 = ṡ�x2

�̇x2 = ṡκ �y2

�̇y2 = −ṡκ �x2, (2)

where v1 is the speed control and u is the steering (i.e., curvature) control we apply
to avoid colliding with the obstacle and to achieve boundary following. In addition,
κ is the curvature of the curve at the detected point obtained using a group of rays
around the center ray, and s is the arc-length parameter of the curve. We may choose
the positive direction of the boundary curve such that

�x1 · �x2 = cos(φ) > 0. (3)

When the curve is convex, i.e., curving away from the vehicle, we have κ < 0. When
the curve is concave, i.e., curving towards the vehicle, the curvature κ > 0. The
above settings for the interaction between the vehicle and the boundary curve were
introduced in [2].

The key idea of curve tracking control is to control the relative motion between
the vehicle and the detected point. For this purpose, we develop a set of equations
that govern the relative motion.

The relative position between the vehicle and the detected point is (�rα = �r2 − �r1).
In Fig. 2, α is defined as the angle formed by �rα and �x1. Also, let rα = ‖�rα‖. Then,

�rα · �x1 = cos(α)rα. (4)

To derive the relative motion equations, we need to find ṙα , ṡ, and φ̇.
We first obtain an equation linking ṙα with ṡ. Take the time derivative of �rα using

Eqs. 1 and 2 to get

�̇rα = ṡ�x2 − v1�x1. (5)

Differentiating Eq. 4 with respect to time on both sides, we obtain

�̇rα · �x1 + �rα · �̇x1 = cos(α)ṙα. (6)

Then, replacing �̇x1 by v1u�y1, we get

�̇rα · �x1 + �rα · v1u�y1 = cos(α)ṙα. (7)

Replacing �̇rα in Eq. 7 by Eq. 5, we obtain

(ṡ�x2 − v1�x1) · �x1 + �rα · v1u�y1 = cos(α)ṙα. (8)
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We observe that, in Fig. 2, the angle formed by �x1 and �x2 is φ, and the angle formed
by �rα and �y1 is ( π

2 + α). Therefore, since �x1 · �x2 = cos φ and �rα · �y1 = − sin α, we get
from Eq. 8

ṡ cos(φ) = v1(1 + sin(α)rαu) + cos(α)ṙα. (9)

Now, noticing that

r2
α = ‖�rα‖2 = �rα · ( �r2 − �r1

)
, (10)

an equation linking ṙα with ṡ can be established. We differentiate Eq. 10 with respect
to time on both sides to obtain

2rα ṙα = 2
(
ṡ�rα · �x2 − v1�rα · �x1

)
, (11)

where we have used Eq. 5. Then, ṙα is

ṙα = ṡ
�rα

rα

· �x2 − v1 cos(α), (12)

where we used the fact that, in Fig. 2, the angle formed by �rα and �x1 is α. We also
observe that the angle formed by �rα and �x2 is (α − φ). Hence,

�rα

rα

· �x2 = cos(α − φ). (13)

Replacing the term �rα

rα
· �x2 in Eq. 12 by Eq. 13 gives

ṙα = ṡ cos(α − φ) − v1 cos(α). (14)

We can now find ṙα and ṡ. Substituting the term ṙα in Eq. 9 for Eq. 14, we obtain

ṡ cos(φ) = v1(1 + sin(α)rαu)

+ cos(α)(ṡ cos(α − φ) − v1 cos(α)). (15)

Therefore, we obtain the time derivative of arc-length ṡ as

ṡ = v1(rαu + sin(α))

sin(α − φ)
. (16)

The term ṡ in Eq. 14 can be replaced by ṡ in Eq. 16 to get ṙα as follows:

ṙα = v1
sin(φ) + rαu cos(α − φ)

sin(α − φ)
. (17)

Now, let us find the equation for φ̇. From Fig. 2, we can see that the angle between
�x1 and �y2 is ( π

2 − φ); hence,

sin(φ) = �x1 · �y2. (18)

Also, in Fig. 2, the angle formed by �rα and �y2 is ( π
2 + α − φ) so that

�rα · �y2 = −rα sin(α − φ). (19)
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Differentiating Eq. 13 with respect to time on both sides obtains

sin(α − φ) · φ̇ = ṡ − v1 cos(φ)

rα

− ṡ cos(α − φ) − v1 cos(α)

rα

· cos(α − φ) − ṡκ sin(α − φ), (20)

where we have used Eqs. 2, 5, 13, 14, and 19. Therefore, the equation for φ̇ is

φ̇ = v1

(
− κ sin(α)

sin(α − φ)
+ u

(
1 − rακ

sin(α − φ)

))
, (21)

where Eq. 16 is also used.
For the Sting-I autonomous vehicle, the sensor on each side of the vehicle is

installed such that α = π
2 . In this case, Eq. 16 is simplified to

ṡ = v1(rαu + 1)

cos(φ)
, (22)

Eq. 17 is simplified to

ṙα = v1 tan(φ)(1 + rαu), (23)

and Eq. 21 is simplified to

φ̇ = v1

(
− κ

cos(φ)
+ u

(
1 − rακ

cos(φ)

))
. (24)

The system equations are significantly different from the equations for the closest
point in [2].

3 Controller Design and Convergence Analysis

3.1 Lyapunov Function

Consider the Lyapunov function candidate:

V1 = − ln(cos(φ)) + h(rα), (25)

where h(rα) satisfies the following conditions:

1. dh/drα = f (rα), where f (rα) is a Lipschitz continuous function on (0,∞), so that
h(rα) is continuously differentiable on (0,∞).

2. lim
rα→0

f (rα) = −∞, which leads to lim
rα→0

h(rα) = ∞. This is needed to blow up V1 as

the moving vehicle approaches collision with the boundary curve.
3. f (rα) vanishes at a point where rα = r0 and h(rα) assume a local minimum in

order for the moving vehicle to converge to the desired relative position at a
distance from the boundary curve given by rα = r0.

4. lim
rα→∞ h(rα) = ∞. This condition and the form of V1 suggest that V1 is radially

unbounded (i.e., V1 → ∞ as ‖φ‖ → π/2, as rα → 0, or as rα → ∞).
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Observe that V1, given by Eq. 25, is continuously differentiable because of Eq. 3.
The term ln(cos(φ)) penalizes misalignment between the velocity vector of the
moving vehicle with the tangent vector to the boundary curve at the detected point.
The term h(rα) in Eq. 25 deals with the separation between the moving vehicle and
the boundary curve. In short, V1 is designed to make a vehicle converge to the
relative position where rα = r0 and φ = 0. This form of Lyapunov function has also
been used in curve tracking using the closest point information in [2] and [6].

For the point detected by the fixed center ray at an angle α = π/2, our candidate
f (rα) satisfying these conditions is

f (rα) = −1

rα

+ 1

r0
. (26)

Further, the corresponding h(rα) is

h(rα) = − ln(rα) + rα

r0
+ ln(r0) − 1, (27)

which satisfies the conditions for h(rα).
The time derivative of V1 is now

V̇1 = v1 tan(φ)

[
u

(
1 − rακ

cos(φ)
+ f (rα)rα

)
− κ

cos(φ)
+ f (rα)

]
, (28)

where we have used Eqs. 23, 24, and 25. We now assume that the speed v1 > 0 is a
constant and design steering control u so that V̇1 ≤ 0.

3.2 Tracking Control for Convex Curves

We first consider the case when the curve is convex and curving away from the
vehicle. In this case, we have κ < 0.

One choice of u that leads to V̇1 ≤ 0 is

u1 = v1κ − cos(φ)(v1 f (rα) + μ sin(φ))

v1(cos(φ) + f (rα)rα cos(φ) − rακ)
, (29)

where μ > 0 is a constant. The time derivative of V1 in Eq. 28 with u given by
Eq. 29 is

V̇1 = −μ
sin2(φ)

cos(φ)
≤ 0, (30)

where Eq. 3 is used. Thus, V̇1 ≤ 0 and V̇1 = 0 if and only if sin(φ) = 0. However, by
Eq. 3, we see that V̇1 = 0 if and only if φ = 0.

From now on, we refer to the case where the denominator of a control law is zero
as the singular case of the controller. It seems possible that the control law given by
Eq. 29 is singular when cos(φ) = rακ

1+ f (rα)rα
. Using Eq. 26, we have

cos(φ) = rακ

1 + f (rα)rα

= r0κ. (31)

Therefore, in the case where the curvature of the lane at the detected point κ is equal
to or smaller than zero in Eq. 31, the denominator of the control law in Eq. 29 will
never be zero since cos(φ) > 0.
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Theorem 1 Consider the case where the boundary curve is convex, i.e., κ < 0. Then,
using the steering control law in Eq. 29, the vehicle satisfying Eq. 3 with constant speed
v1 > 0 tracks the curve at a distance r0 without collision.

Proof For each trajectory that initially satisfies Eq. 3 and rα > 0, there exists a
compact sublevel set � of V1 such that the trajectory remains in � for all future time.
Then, by LaSalle’s Invariance Principle [34], the trajectory converges to the largest
invariant set M within the set E that contains all points in � where V̇1 = 0. The set E
in this case is the set of all points in � such that φ = 0. Note that φ = 0 implies ṙα = 0
using Eq. 23. Thus, at any point in E, the dynamics may be expressed as

ṙα = 0. (32)

Since the trajectory converges to the maximum invariant set M within the set E
where φ = 0, then φ̇ → 0. Therefore, replacing the term φ̇ in Eq. 24 by 0 gives

v1u1 − v1(rαu1 + 1)κ = 0. (33)

On the set E, the control input u1 is

u1 = κ

1 − rακ
. (34)

When we substitute φ in Eq. 29 for 0, the corresponding control input is

u1 = κ − f (rα)

1 + f (rα)rα − rακ
. (35)

u1 in Eq. 35 should be equal to u1 in Eq. 34, because both u1 are control inputs on
the invariant set. Thus, we obtain

κ

1 − rακ
= κ − f (rα)

1 + f (rα)rα − rακ
, (36)

which implies

(κ − f (rα))(1 − rακ) = κ + f (rα)rακ − rακ2. (37)

Therefore, f (rα) must satisfy

f (rα) = 0. (38)

The moving vehicle converges to the position at a distance from the boundary curve
given by the zero of the function f (·). Therefore, the largest invariant set contained
in E may be expressed as

M = {(rα, φ)|φ = 0, f (rα) = 0}. (39)

Thus, we can conclude that (rα, φ) converges to the equilibrium where rα = r0

and φ = 0. ��

3.3 Control Laws for Concave Curve with Bounded Curvature

We consider the case when the curve is concave, i.e., curving towards the vehicle. In
this case, we have κ > 0. It is possible that the control law given by Eq. 29 is singular
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Fig. 3 Comparison of
1 + f (rα)rα and rακ . Control
law given by Eq. 29 is singular
when cos(φ) = rακ

1+ f (rα)rα
. We

argue that singular case cannot
be removed by choosing f (rα)

if the curvature κ is upper
bounded

when the denominator of u1 equals zero, i.e., cos(φ) = rακ

1+ f (rα)rα
. However, in the case

where the curvature of the lane at the detected point κ is bigger than 1
r0

in Eq. 31, no
singularity happens because | cos φ| ≤ 1.

In the real experimental environment, it is necessary for the vehicle to follow a
concave curve whose curvature is small. We argue that, in this case, singularity exists
regardless of the choice of f (rα). Figure 3 shows possible graphs of 1 + f (rα)rα and
rακ , respectively. When Eq. 26 is used as f (rα), we get 1 + f (rα)rα = rα

r0
. Therefore,

the straight line connecting the origin and (r0,1) represents 1 + f (rα)rα when Eq. 26
is used as f (rα). In Fig. 3, regardless of f (rα), 1 + f (rα)rα is a continuous function
that is equal to 1 when rα = r0. Also, regardless of the decreasing rate of f (rα) as
rα → 0, we can assure that limrα→0 1 + f (rα)rα ≤ 1. As rα ↓ r0, we see that f (rα) and
rα both decrease to make (1 + f (rα)rα) decrease for any choice of f (rα). Meanwhile,
the possible rακ are plotted as the straight lines. If the curvature κ is upper bounded
by 1

r0
, then these straight lines will be below the curve that represents (1 + f (rα)rα),

regardless of what f (rα) is. Therefore, rακ

1+ f (rα)rα
< 1 and cos φ = rακ

1+ f (rα)rα
always have

a solution for φ. This singularity cannot be removed by changing f (rα).

3.4 The Safety Zone

Due to Eq. 31, if |φ| < arccos(r0κM), where κM is the upper bound of κ , then cos φ >

r0κ implies that the singular case will never happen. Thus, we define the set

U = {(rα, φ)|V1(rα, φ) < − ln(|r0κM|)} (40)

as the safety zone. Note that we assume κMr0 < 1 since, otherwise, the desired
distance is too far away from the curve, which makes tracking meaningless. The
controller Eq. 29 is used inside the safety zone. Since this controller yields V̇1 ≤ 0, we
conclude that, once the vehicle under control enters the safety zone U , it will never
leave. Therefore, according to Theorem 1, the curve tracking behavior is stabilized
without collision if the vehicle starts inside the safety zone.
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3.5 Switching Control that Aims for the Safety Zone

When the vehicle is initially out of the safety zone but, during its movements, it will
come close to the set where cos(φ) = r0κ , control law Eq. 29 cannot be applied due to
singularity. The singular cases when sin(φ) < 0 are plotted in Fig. 4. The singularities
occur when the vehicle is positioned on the line l, and the angle φ satisfies cos(φ) =
r0κ . The angle φ < 0 is measured counterclockwise from �x2 at the detected point p to
the heading direction of the vehicle �x1. Hence, when φ > 0, the vehicle will be at the
same position but heading away from the boundary curve. In Fig. 4, rk denotes the
radius of the osculating circle at the point p so that rk = 1/κ . The vehicle’s desired
curve is plotted as d that has r0 distance from the boundary curve. In the illustrated
case, the controller design problem should be reconsidered because the goal of the
controller now is to steer into the safety zone. Intuitively, this means to steer away
from the boundary curve promptly, which is a natural behavior when we drive our
cars on a collision course to a concave wall. Therefore, we now design controllers so
that the vehicle enters the safety zone U in finite time.

We develop a switching system as depicted in Fig. 5 to steer the system into the
safety zone in finite time. Four cases are distinguished, which correspond to four sets
G1, G2, G3, and G4 defined as follows:

G1 = {(rα, φ)|‖ cos(φ) − r0κ‖ > ε but (rα, φ) /∈ U}
G2 = {(rα, φ)|ε2 < ‖ cos(φ) − r0κ‖ ≤ ε}
G3 = {(rα, φ)|‖ cos(φ) − r0κ‖ ≤ ε2}
G4 = U, (41)

where ε2 < ε.
Three control laws are designed for these four cases. When the system states are

in G1 or G4, we use u1 in Eq. 29. When the states enter G2 from G1, we switch to u2,
which is

u2 = v1κ − cos(φ)(v1 f (rα) + μ2 sin(φ))

v1(cos(φ) + f (rα)rα cos(φ) − rακ)
, (42)

Fig. 4 The positions of a
vehicle when singularities
occur and φ < 0. Here, the
vehicle’s desired curve is
plotted as d that has r0
distance from the boundary
curve. The singularities occur
when the vehicle is positioned
on the line l, and the angle φ

satisfies cos(φ) = r0κ
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Fig. 5 The switching control
strategy used to enter the
safety zone. u1 in Eq. 29 is
used in normal situations, i.e.,
when the states are in G1 or
G4. We switch to u2 in Eq. 42
when the states enter G2 and
switch to u3 in Eq. 44 when
the states enter G3

where the only difference between u1 and u2 is that μ2 is much bigger than μ. The
time derivative of V1 under control u given by Eq. 42 is

V̇1 = −μ2
sin2(φ)

cos(φ)
≤ 0. (43)

When the states of the system enter G3 from G2, we switch to controller u3:

u3 = −μ3 sin(φ) + κv1rα

v1rα(cos(φ) − rακ)
, (44)

where μ3 > 0 is a constant. Under this controller, we have

φ̇ = −μ3 tan(φ)

rα

. (45)

Hence, φ → 0 as t → ∞. This implies that the system states will get out of G3 and
then out of G2 in finite time. We switch back to controller u1 after the states enter
either G1 or G4. Note that, by Theorem 1, once the states enter G4, they will stay in
G4 and converge to the desired values.

We now prove convergence of the system under the switching control laws
illustrated in Fig. 5. The idea is that the value of the Lyapunov function V1 may be
increasing under controller u3, but such increase will be compensated by controller
u2. Hence, the overall effect is that the Lyapunov function decreases until the system
reaches G4. Some notations and technical conditions are needed to rigorously state
and prove the results.
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It is uninteresting if the states never enter the set G3. In this case, V1 would be
decreasing until G4 is reached. Therefore, we discuss the most general case, i.e., the
states of the system enter G3 for a number of times. In order to enter G3, the system
must enter G2 first. We use the notations ti

1 to indicate the time when the system
enters G2, ti

2 to indicate the time when the system enters G3, and ti
3 to indicate the

time when the system leaves G2. The index i is used to distinguish multiple entries. If
the states enter G3 and later leave G2, then ti

1, ti
2, and ti

3 happen in sequence.
The following technical assumptions are needed:

(A1) The curvature κ is bounded above by κM > 0.
(A2) The desired distance r0 satisfies that r0κM < 1.
(A3) Define

ζ = v1‖ − arccos(κMr0 + ε) + arccos(κMr0 − ε2)‖ + ε3,

where ε3 > 0 is a constant. The gain μ2 and μ3 in controllers u2 and u3 satisfy
μ2μ3(ti

2 − ti
1) >

ζr0κM
1−(r0κM)2 for all i.

Assumptions A1 and A2 put mild constraints on the curve to follow. Assumption A3
is the key technical assumption. This assumption is satisfied when ti

2 − ti
1 �= 0 and if

we use sufficiently large gains μ2 or μ3.

Theorem 2 Consider the system defined by Eqs. 23 and 24 governing the relative
distance and heading angle between the vehicle and the detected point. Suppose the
vehicle travels at constant speed v1. Under the switching strategy in Fig. 5, with
assumptions A1–A3 satisfied, the states of the closed loop system enter G4 in finite
time.

Proof We organize our proofs in two steps:

1. Show that, when u3 is used, V1 will increase a finite amount bounded above.
2. Show that, when u2 is used, V1 will decrease more than the upper bound for its

increase under u3.

1. Estimate the upper bound for the increase of V1 under u3.
The time derivative of V1 under u3 is

V̇1 = − tan(φ)

[
u3

(
v1rακ

cos(φ)
− v1

rα

r0

)
+ v1

cos(φ)
κ − v1

(−1

rα

+ 1

r0

)]
, (46)

where Eq. 26 is used as f (rα). Notice that u3 is used only in the small neighbor-
hood of cos(φ) = κr0. Replacing cos(φ) in Eq. 46 by κr0, we get

V̇1 = − tan(φ)
v1

rα

. (47)

If sin(φ) ≥ 0, then V̇1 ≤ 0 is guaranteed. This implies that V1 decreases while u3

is used. This case is uninteresting.
The case that V1 may increase is shown in Fig. 4. We now estimate the increase
of V1 while u3 is used as the control law.

V1(ti
3) − V1(ti

2) = −v1

∫ ti
3

ti
2

tan(φ(t))
rα(t)

dt. (48)
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We can change Eq. 48 to integration with respect to φ as

V1(ti
3) − V1(ti

2) = v1

μ3

∫ φ(ti
3)

φ(ti
2)

dφ = v1

μ3

(
φ

(
ti
3

) − φ
(
ti
2

))
, (49)

where Eq. 45 is used. The controller u3 is applied from the instant when | cos(φ) −
κr0| = ε2 to the instant when | cos(φ) − κr0| = ε, where ε2 < ε. Therefore, we
get | cos(φ(ti

2)) − κr0| = ε2 and | cos(φ(ti
3)) − κr0| = ε. Thus, when φ < 0, possible

values of φ can be listed as follows:

φ
(
ti
2

) = − arccos(κr0 ± ε2) < 0

φ
(
ti
3

) = − arccos(κr0 ± ε) < 0. (50)

We plot these possible values on Fig. 6. Within the interval of −π/2 < φ < 0,
cos(φ) increases as φ increases. Thus, we get − arccos(κr0 + ε) > − arccos(κr0 −
ε), and − arccos(κr0 + ε2) > − arccos(κr0 − ε2). Therefore, we conclude that

φ
(
ti
3

) − φ
(
ti
2

) ≤ max
(
φ

(
ti
3

)) − min
(
φ

(
ti
2

))

= − arccos(κr0 + ε)

+ arccos(κr0 − ε2). (51)

Figure 6 compares between

− arccos(κr0 + ε) + arccos(κr0 − ε2)

and

− arccos(κMr0 + ε) + arccos(κMr0 − ε2).

The slope of cos(φ) with respect to φ is d cos(φ)

dφ
= − sin(φ). It monotonously

decreases to zero as φ goes to zero in the interval of −π/2 < φ < 0. Thus, as
seen in Fig. 6, we get

− arccos(κr0 + ε) + arccos(κr0 − ε2)

≤ − arccos(κMr0 + ε) + arccos(κMr0 − ε2).

Fig. 6 Comparison of
− arccos(κr0 + ε) +
arccos(κr0 − ε2) and
− arccos(κMr0 + ε) +
arccos(κMr0 − ε2). The slope
of cos(φ) with respect to φ,
which is d cos(φ)

dφ
= − sin(φ),

monotonously decreases to
zero as φ goes to zero in the
interval of −π/2 < φ < 0.
Therefore, as seen on this
figure, we get − arccos(κr0 +
ε) + arccos(κr0 − ε2) ≤
− arccos(κMr0 + ε) +
arccos(κMr0 − ε2)
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According to Eq. 51, we deduce that

φ
(
ti
3

) − φ
(
ti
2

) ≤ − arccos(κMr0 + ε) + arccos(κMr0 − ε2). (52)

Now, using Eqs. 49 and 52, we can derive the upper bound for the increase of V1

while u3 is used.

V1
(
ti
3

) − V1
(
ti
2

) ≤ v1

μ3
(− arccos(κMr0 + ε) + arccos(κMr0 − ε2)) <

ζ

μ3
, (53)

where ζ is defined in assumption A3.
2. We show that, under assumption A3, the decrease of V1 under u2 is larger than

the upper bound of the increase of V1 under u3.
We compute the required length of the time interval when u2 is used so that V1

decreases more than ζ/μ3. In other words,

V1
(
ti
2

) − V1
(
ti
1

) =
∫ ti

2

ti
1

V̇1dt < − ζ

μ3
, (54)

where ti
1 and ti

2 represent the beginning and the end of the interval when u2 is
used, respectively. Hence, using Eq. 43, we require that

∫ ti
2

ti
1

μ2 sin2(φ)

cos(φ)
dt = (

ti
2 − ti

1

) μ2 sin2(φ(τ ))

cos(φ(τ ))
>

ζ

μ3
, (55)

where τ ∈ [ti
1, ti

2] and the mean value theorem are applied. Further, we get the
required length of the interval when u2 is used so that V1 decreases more than
ζ/μ3 as

(
ti
2 − ti

1

)
>

ζ cos(φ(τ ))

μ2μ3 sin2(φ(τ ))
. (56)

As seen in Fig. 5, u2 is used in the near-singular state. Thus, we can see that
cos(φ(τ )) ≈ r0κ ≤ r0κM < 1 using assumption A2. Therefore, we get

sin2(φ(τ ))

cos(φ(τ ))
= 1

cos(φ(τ ))
− cos(φ(τ ))

≥ 1

r0κM
− r0κM > 0. (57)

This is equivalent to

cos(φ(τ ))

sin2(φ(τ ))
≤ r0κM(

1 − (r0κM)2
) . (58)

Multiplying both sides of Eq. 58 by ζ

μ2μ3
, we derive

ζ cos(φ(τ ))

μ2μ3 sin2(φ(τ ))
≤ ζr0κM

μ2μ3
(
1 − (r0κM)2

) . (59)

Therefore, using Eqs. 56 and 59, if

(
ti
2 − ti

1

)
>

ζr0κM

μ2μ3
(
1 − (r0κM)2

) , (60)
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Fig. 7 Lyapunov function V1
in a typical case of switching
control. u1 in Eq. 29 is used
from 0 to ti1, u2 in Eq. 42 is
used from ti1 to ti2, u3 in Eq. 44
is used from ti2 to ti3, and u1

is used from ti3 to final time

we can guarantee that the decrease of V1 under controller u2 is greater than the
increase of V1 under controller u3 by an amount of ε3/μ3. We can then conclude
that switching among u1, u2, and u3 will make the system enter the safety zone in
finite time. ��

In Fig. 7, a typical switching process is plotted. Controller u1 is used from 0 to ti
1, u2

is used from ti
1 to ti

2, u3 is used from ti
2 to ti

3, and u1 is used again after ti
3. In assumption

A3, we used arbitrarily large μ2 or μ3 so that the interval of using u2 is long enough
to overcome the increase of V1 inside the interval when u3 is used. Therefore, V1

always decreases more than it increases.
In the case where rα = r0 and cos(φ) = r0κ , we have singular cases of u1, u2, and

u3 at the same time. This is the common singular case that occurs when the vehicle is
at point S in Fig. 4. As seen in Fig. 4, the heading direction �x1 of the vehicle at S is
normal to the desired curve d. This singular case will not happen if the vehicle is in
the safety zone. Since it happens only at point S and the vehicle has constant speed,
we conclude that the vehicle will not likely be in this state unless it starts initially
in this state. The authors of [2] also mentioned that the moving vehicle should not
be initially heading directly toward the boundary curve when control laws based on
closest point information are applied.

4 Simulation Results

We implement our feedback control law in MATLAB, as well as in the three-
dimensional simulation program used in the Georgia Tech urban grand challenge
system. Our three-dimensional simulation program is based on Player, Stage, and
Gazebo, which are three pieces of software developed for robotic simulation projects.
We simulate the case that a vehicle tracks a boundary curve in the clockwise
direction.

4.1 MATLAB Simulation Results

Figure 8 shows a vehicle following a closed boundary curve in a clockwise direction
starting from multiple initial conditions. We vary the vehicle’s initial x coordinate
from −8 to 8, and y coordinate from −6 to 6, with initial orientation 3π/4 measured
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Fig. 8 MATLAB simulation
result showing clockwise
circling of a lane-shaped curve
starting from multiple initial
conditions. We vary the
vehicle’s initial x coordinate
from −8 to 8, and y coordinate
from −6 to 6, with initial
orientation 3π/4 measured
counterclockwise from
the x axis
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counterclockwise from the x axis. The desired separation between the vehicle and
the boundary curve is set to 0.5 distance unit, and velocity of the vehicle v1 is 0.5
distance unit per unit time.

Figure 9 is a simulation showing the result of using the switched controller to
overcome singularity. In order to compare with Fig. 4, the vehicle moves toward a
concave curve initially, the curvature of which is 1. Also, the desired curve has 0.5
distance unit from the obstacle. Initial position and heading angle of a vehicle are
the same as the vehicle’s position E in Fig. 4. We can find that, using this switched
controller strategy, the autonomous vehicle converges to the desired curve very
smoothly, as expected.

Fig. 9 MATLAB simulation
showing the result of using
the switched controller to
overcome singularity. The
initial position and heading
angle of the vehicle are the
same as the vehicle’s position
E in Fig. 4. Switching occurs at
the near-singular case, and the
vehicle is steered away from
the boundary curve promptly
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4.2 Results Using the Three-Dimensional Simulation Program

Our feedback control law is verified using the three-dimensional simulation program
developed for the Georgia Tech urban grand challenge system. To estimate the
curvature at the detected point using a group of rays around the center ray, we use
the following estimation method.

Let Pn represent the detected point. Further, Pn−w, Pn+w denote two points on
the boundary curve detected using two rays around the center ray with window size
w. Estimate of curvature was proposed in [35] as follows. Let a = ‖Pn − Pn−w‖, b =
‖Pn+w − Pn‖, c = ‖Pn+w − Pn−w‖, and s = (a + b + c)/2. We draw the unique circle
passing all three points. By applying Heron’s formula, the curvature of such a
circle is

‖κ̂(s)‖ = 4
√

s(s − a)(s − b)(s − c)
abc

. (61)

In [35], it was proved that κ̂ is a good estimate of κ when the difference (a − b) is
sufficiently small. We refer to this estimate as the geometric estimate of curvature. In
[3], the authors derived the extended version of this geometric curvature estimate.
For example,

κ̄(n) = 1

3

9∑

w=7

κ̂(Pn−w, Pn, Pn+w), (62)

where κ̂(Pn−w, Pn, Pn+w) denotes the geometric estimate of curvature obtained at
the Pn with window size w. In [3], it was shown that using a larger window size
eliminates the need for Gaussian filtering. In our simulation experiment, Eq. 62 is
taken as a method to estimate the curvature of the lane at the detected point Pn.

Figures 10, 11, 12, 13, 14 show the simulation results using this three-dimensional
simulation program. The desired distance r0 is set to 10 distance units, and the
vehicle’s velocity v1 is set to six distance units per second.

In Fig. 10, on the right side of the initial position of the vehicle, we constructed a
cylinder-shaped obstacle. The diameter and the height of the obstacle are set to 40
distance units and 20 distance units, respectively. Figure 11 shows that the vehicle
converges to the position where the relative distance from the obstacle rα is almost
10 distance units, as we desired. Figure 12 shows that rα converges to the desired r0.

Fig. 10 Initial position of
the vehicle in the three-
dimensional simulation. On
the right side of the vehicle, we
can find a cylinder-shaped
obstacle. The diameter and the
height of the obstacle are set
to 40 distance units and 20
distance units, respectively
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Fig. 11 Final position of
the vehicle in the three-
dimensional simulation. The
vehicle converges to the
position where the relative
distance from the obstacle (rα)
is almost 10 distance units,
as we desired

Fig. 12 The vehicle’s relative
distance (rα) with respect
to time
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Fig. 13 The vehicle’s relative
heading angle (φ) converges
to almost 0 as time goes on
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Fig. 14 Displayed values on
the control panel of the
simulation at ending time. The
desired distance(r0) is set
to 10 distance units, and the
vehicle’s velocity (v1) is set to
six distance units per second.
Accordingly, we can see
relative distance (rα = 10.0
distance units), relative angle
(φ = −1.0 degree), and vehicle
speed (v1 = 6.0 distance units
per second) on the left side of
this control panel. On the right
side of the panel, the planar
trajectory of the vehicle is
displayed as a circle, since
we have a cylinder-shaped
obstacle

Figure 13 shows that the vehicle’s relative heading angle φ converges to 0 as time
goes on. The overshoot of the initial relative heading angle is large since switched
control laws are used to overcome the singularity caused by the error in the curvature
estimate using Eq. 62. Figure 14 displays the values on the control panel at the ending
time. On the right side of the panel, the trajectory of the vehicle projected to the
plane is displayed.

5 Summary and Future Work

In this paper, we design a curve tracking control law that uses information from
rigidly mounted, narrow-aperture-range sensors. The key idea is to control the
relative motion between the vehicle and the detected point and to switch controllers
to prevent singularities.

Several improvements of the current control strategy can be expected. Since
we have derived the tracking model for mounting angle α, an extension for the
controller from α = π/2 to the general case is underway. We estimate the curvature
of the curve at the detected point based on range measurements. We observe from
simulation that such estimate contains noise that may cause unnecessary switching
that affects the tracking performance. Hence, a filtering algorithm for curvature
estimation can be developed to reduce the noise. In addition, multiple vehicles with
rigidly mounted sensors can be coordinated, similar to [36] and [37], for dynamic
boundary estimation.
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