
J Intell Robot Syst (2009) 55:299–321
DOI 10.1007/s10846-008-9304-8

Visual 3-D SLAM from UAVs

Jorge Artieda · José M. Sebastian · Pascual Campoy ·
Juan F. Correa · Iván F. Mondragón · Carol Martínez ·
Miguel Olivares

Received: 30 May 2008 / Accepted: 1 December 2008 / Published online: 15 January 2009
© Springer Science + Business Media B.V. 2009

Abstract The aim of the paper is to present, test and discuss the implementation of
Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs)
outdoors, in partially structured environments. Every issue of the whole process is
discussed in order to obtain more accurate localization and mapping from UAVs
flights. Firstly, the issues related to the visual features of objects in the scene, their
distance to the UAV, and the related image acquisition system and their calibration
are evaluated for improving the whole process. Other important, considered issues
are related to the image processing techniques, such as interest point detection, the
matching procedure and the scaling factor. The whole system has been tested using
the COLIBRI mini UAV in partially structured environments. The results that have
been obtained for localization, tested against the GPS information of the flights, show
that Visual SLAM delivers reliable localization and mapping that makes it suitable
for some outdoors applications when flying UAVs.

J. Artieda · J. M. Sebastian · P. Campoy · J. F. Correa ·
I. F. Mondragón (B) · C. Martínez · M. Olivares
Computer Vision Group, U.P.M., C/ José Gutiérrez Abascal, 2. 28006 Madrid, Spain
e-mail: imondragon@etsii.upm.es

J. Artieda
e-mail: jatrigueros@argongra.com

J. M. Sebastian
e-mail: jose.sebastian@upm.es

P. Campoy
e-mail: pascual.campoy@upm.es

J. F. Correa
e-mail: jfcorrea@etsii.upm.es

C. Martínez
e-mail: carol.martinez@upm.es

M. Olivares
e-mail: mig_olivares@hotmail.com

300 J Intell Robot Syst (2009) 55:299–321

Keywords Computer vision · Visual SLAM · Unmanned aerial vehicles (UAV) ·
3D SLAM

1 Introduction

Vision is the richest source of information from our environment, and that is the
reason why SLAM algorithms have also begun to be used with visual information.
The information provided by vision systems consists on a vaste amount of data per
time that requires to be processed in order to provide SLAM algorithms with useful
information. Hence, image processing algorithms have to precede SLAM algorithms
and they highly determine the results and successfulness of the whole visual SLAM
process.

This paper tackles the whole process of visual SLAM by rotary wings UAVs in
outdoor environments, from the image acquisition to the final UAV localization and
environment mapping. The obtained results are shown to be a useful information
source that complements, and in some applications can replace, other onboard sen-
sors as GPS or inertial ones. The information provided by visual SLAM is related to
actual objects present in the environment, constructing a map of them and localizing
the UAV relatively to these objects. This information can not be provided by GPS
or other onboard sensors, which can only localize the UAV without any relative
localization to external objects that can be verified by actual, external data, as visual
SLAM does. Visual SLAM can also be useful in cases of GPS signal drop-off. Finally
Visual SLAM can also be used for sensor fusion, providing the complementary
advantages of diverse and complementary sources.

Visual SLAM techniques can be first classified in Stereo and Monocular. The
first includes also more than two cameras approaches. There are many successful
implementations of visual slam with stereo cameras [1, 2]. Monocular approaches
where started by Davison et al. [3] who used only one camera to reconstruct indoor
environments. Successful results have been obtained using Visual SLAM indoors
also by [4], Kim and Oh in [5] and Choi and Oh in [6].

With monocular vision the initialization of features is a difficult problem. The
approach given by Davison et al. [3] used a delayed initialization algorithm. This
algorithm waits until the camera position has parallax enough to determine the
position of a feature and then includes it on the filter. This approach needs a depth
interval in which we expect to find the features and therefore is not suitable for
outdoor uses where very near features and very far features can coexist. Montiel
et al. [7] proposes a solution to the aforementioned estimation problem by using the
so called inverse parametrization, which is also used in our approaches and tests. This
technique allows the application of the algorithm to outdoor scenes. Nonetheless, as a
drawback that increases the computational cost, which is also augmented in our case
due to the big amount of key points in non-structured outdoors 3D environments.

Another problem of SLAM in outdoor environments is the high number of
features and the long displacement between loop-closings. The most impressive
application for outdoor SLAM algorithms is [8]. Here the authors use a SLAM
algorithm based on 3D laser profiles and uses a vision based algorithm to detect loop-
closure after a very long loop. Other approaches like Lemaire et al. [9] uses a feature
database jointly with a strong detection algorithms based on the feature topology.

J Intell Robot Syst (2009) 55:299–321 301

There are two main filters used in the SLAM problem: Extended Kalman Filter,
EKF, and Rao-Backwellized Particle Filter, RBPF. Particle filters are not widely used
because it needs a very high number of particles when the state dimension is high, so
the RBPF is used instead of this. Examples of implementations of Visual Slam with
RBPF are [1, 2, 10]. Approaches using EKF are [3, 7].

Visual SLAM implementations mainly use point features in contrast with the
implementations of 2D laser based SLAM which are based on occupancy grids.
Occupancy grids are not exclusive of non visual systems as shown in [1]. Several
algorithms have been used for interest point detection and visual features extraction
[11, 12], as well as for their matching in consecutive images [13], or not consecutive
[8]. Other approaches use other geometry entities as features, like Dailey in [10]
which uses lines.

The use of visual SLAM onboard UAV is no yet very spread although there
are some successful implementations like: [9, 14–16]. The system presented by
Törnqvist et al. [14] uses a FastSLAM offline algorithm that is fussed with the
Rao-Blackwellized particle filter in order to get 2D information that is necessary
to estimate the position and the altitude of the UAV. Good results concerning the
position estimation have been obtained but, on the contrary, not so good results
have been achieved in relation to altitude estimation. Another work in the same
field was presented by Kim and Sukkarieh [15] where vision, a Radar device and
an high-quality Inertial Measurement Unit (IMU) are used for a 2D inertial-SLAM
in order to get better results. Yet they are still shown in 2D SLAM, which means
there is not three dimensional reconstruction of the environment. In Miniature Air
Vehicle (MAV) platform, the research made by McLain et al. [16] was based on a
camera positioning device that estimates the position and altitude of the MAV and
the pixel location of the target in an image. Its results can localize the target in world
coordinates using different techniques so as to reduce the localization error. N. Aouf
et al., on the other hand, developed in [17] an airbone SLAM algorithm with Inertial
Navigation System (INS) and Visual system by implementing an Extended Kalman
Filter (EKF). They proposed a solution to remove the landmarks from the EKF, a
methodology based on circle intersections, and gave results with virtual images taken
from a downward looking virtual camera.

Therefore, we have implemented an EKF version that takes into account our
specific UAV application in order to optimize the computational time, not letting
it increase oversize, as detailed in Section 4. Below we present in this paper the
results of applying Visual 3D SLAM techniques onboard an UAV. Those results
will be compared with the flight information delivered by the GPS and IMU.
These results are presented in Section 5 and they demonstrate that robust and
coherent positioning and mapping are obtained,which make them suitable for being
used in UAV applications where the visual information regarding its environments
plays an important role, such as outdoors civilian infrastructures visual inspection,
environmental events detection and tracking, and visual security applications.

2 System Description

The COLIBRI testbed [18], is based on a gas powered industrial twin helicopter
with a two stroke engine 52 cc and 8 hp (Fig. 1) capable to carry up to 12 kg

302 J Intell Robot Syst (2009) 55:299–321

Fig. 1 UPM-COLIBRI I Helicopter platform used for Visual SLAM tests

payload. The platform is equipped with a xscale-based flight computer augmented
with sensors (GPS, IMU, Magnetometer, etc fused with a Kalman filter for state
estimation). Additionally it includes a Pan Tilt servo controlled platform for many
different cameras and sensors. On the other hand, in order to enable it to perform
vision processing, it has a VIA mini-ITX 1.25 GHz onboard computer with 1 Gb
RAM, a wireless interface and support for many Firewire cameras including Mono
(BW), RAW Bayer, color, and stereo head for images acquisition. Additionally, it is
possible to use IP cameras and analog cameras as well.

The system runs in a client-server architecture using TCP/UDP messages. Com-
puters run Linux OS working in a multi-client wireless 802.11g ad-hoc network,
allowing the integration of vision system and visual tasks with the flight control.
This architecture allows embedded applications to run onboard the autonomous
helicopter while it interacts with external processes through a high level switching
layer. The visual control system and additional external processes are integrated
with the flight control through this layer using TCP/UDP messages [19]. The layer
is based on a communication API where all the messages and data types are defined.
The helicopter’s low-level controller is based on simple PID control loops to ensure
its stability.The higher level controller uses various sensing mechanisms such as
GPS and/or vision to perform tasks such as navigation, landing, visual tracking,
etc. Several applications based on visual control have been achieved employing the
control architecture [20, 21].

3 Interest Points Detection and Matching

The selection of interest points that can be tracked along an image sequence is a key
step in the visual SLAM algorithm because it ensures the stability of the Kalman
filter. Since this step needs to be a reliable process it is important to have a measure
of the reliability of an extracted feature, in order to choose the most important and
robust one. There are some alternatives to find robust features that can be identified

J Intell Robot Syst (2009) 55:299–321 303

and characterized with a descriptor like the SURF [22] or SIFT [23]. For example, in
[24] Danesi et al. they use SIFT for a wheeled vehicle visual servoing. Other detectors
like the Harris Corner Detector [25] find corner features that are very common in
semi-structured environments, like in [26], where García-García et al. used the Harris
Detector with RANSAC for a robust position estimation. Based on previous work
that evaluates the performance of interest point detectors for the SLAM problem
[27] and [13], the most appropriate choices are the Harris detector, SIFT and SURF,
but since it is a well known fact that SURF computation is faster than SIFT’s and
their behaviors are similar SIFT is not consider in the work.

Two alternatives are presented in this section; Harris Detector with a reliability
measure (plus cross-correlation) and the SURF feature. The subsequent matching
algorithm is also described for each type of feature too.

3.1 Harris Corner Detection and a Reliability Index

The Harris detector is a well known detector that is widely used in a large amount
of applications. It extracts many corners very quickly based on the magnitude of
the eigenvalues of the autocorrelation matrix. However, it is not enough to use this
procedure to ensure the robustness of the extracted corner. The aim that is sought is
to increase the probability to find it again in the next image and to match it correctly.
For that purpose a quality measure has been defined and some procedures have been
implemented in order to achieve the extraction of good features to track.

Due to the noise in the images caused by the sensor itself and vibration of the
UAV, it is important to filter the image with a mean filter and a median filter. Then,
the gradient G of the image is calculated, and only pixels with a norm of the gradient
above a value are considered to be processed. Afterward the Canny edge detector
[28] algorithm is used in the previously selected pixels keeping pixels laying on well
define edges. This reduces the number of extracted features. After this process is
completed, the corners are extracted with the standard version of the Harris detector.
Next, the sub-pixel precision version of the detector is applied [29] shifting the
window over three iteration. Based on the results of those two algorithms a stability
measure is calculated to determine the maximum position variation es. Finally, the
size of the detector window is increased from 5×5 to 7×7, to prove and test the
stability of the position of the extracted corners, and a measure of this variation is
calculated, named ew based on a “maximum difference allowed” criteria. All those
measures are integrated into a function Q (1) that returns a global value of the quality
and robustness of the extracted corner using the product of the eigenvalues λ1 and
λ2, the norm of the gradient ‖G‖ of the interest point and the measures described
above.

Q(λ1, λ2, ‖G‖, es, ew) = λ1λ2‖G‖
(1 + es)(1 + ew)

(1)

The global value calculated for each point is used to reject false corners using each
one of the 5×5 windows and considering only the corners with the maximum value
of Q index. Also it is used to classify the extracted features into three groups. This
distinction between the corners is going to drive the matching process: each group
represents a level of quality of a corner. This allows one to make the assumption that
good corners are going to appear in the next image, and to suppose that they are
going to be found in one of the next levels in case they degrade. Figure 2 illustrates

304 J Intell Robot Syst (2009) 55:299–321

Fig. 2 Extracted corner features classified into three levels. Red corners are the most stable ones and
belong to level 1 group. Green corners are classified as level 2 and blue ones as level 3

the three levels of classification of the corners and how the extraction method
keeps features that are on structured parts of the scene none of which belongs to
the landscape. Another advantage of this classification resides in the possibility to
include new features into the Kalman Filter of the SLAM process only if they belong
to the level 1 group.

3.2 SURF Features

Speeded Up Robust Feature algorithm extracts features from an image which can be
tracked over multiple views. The algorithm also generates a descriptor for each fea-
ture that can be used to identify it. SURF features descriptor are scale and rotation
invariant. Extracted features are blob like features. Ollero et al. used this method in
[30] for position and motion estimation from multiple planar homographies taken
from different UAVs. The kinds of extracted features are shown in Fig. 3 on a
structured scene. Tests were also carried out with unstructured scenes such as the
ones shown in Fig. 4.

Scale invariance is attained using different amplitude gaussian filters. The appli-
cation of this filter results in an image pyramid. The level of the stack from which
the feature is extracted assigns the feature to a scale. This relation provides scale
invariance. The next step is to assign a repeatable orientation to the feature. The
angle is calculated through the horizontal and vertical Haar wavelet responses in
a circular domain around the feature. The angle calculated in this way provides
a repeatable orientation to the feature. As with the scale invariance the angle
invariance is attained using this relationship.

SURF descriptor is a 64 element vector. This vector is calculated in a domain ori-
ented with the assigned angle and sized according to the scale of the feature. De-
scriptor is estimated using horizontal and vertical response histograms calculated in
a 4 by 4 grid. There are two variants to this descriptor: the first provides a 32 element
vector and the other one a 128 element vector. The algorithm uses integral images to
implement the filters. This technique makes the algorithm very efficient.

J Intell Robot Syst (2009) 55:299–321 305

Fig. 3 SURF features tested
on semi-structured scenes

3.3 Corner Features Matching

Once corner features are extracted the next step is to correctly match the features
of the current image with as many features of the previous image as possible. Since
the corners are divided into levels, the first matching attempt is made using the level
1 corners of the current image against the 1st and 2nd levels of the previous image.
Then a matrix containing the result of a similarity function is calculated for all the
possible match pairs for this set of corners. The similarity function is the normalized
cross-correlation of the context of the corners, which in this case is a 9×9 patch
centered at the position of the feature in pixel resolution. However, other similarity
functions can be used as, for example sum of squared differences or the Earth Mover

Fig. 4 SURF features tested
on unstructured scenes

306 J Intell Robot Syst (2009) 55:299–321

distance. The next step is to find each and every possible set of matches that maximize
a cost function which can be defined as follows:

– Cost function rewards high cross-correlation.
– Cost function penalizes matching pairs whose distance differs from the average

displacement of the set of matched features, based on the fact that most of them
will move in solidarity.

– Cost function rewards the number of attained matches.

If Ik is the kth image, and Lk
q is a corner in that image, lets define ι as the match

between a corner in the kth and (k-1)th image like a 2-tuple ι = (Lk−1
p , Lk

q), and
lets define Ω = ι1, ι2, ..., ιi, ..., ιn as the set of matches between the corners of those
two images. Given those definitions and the considerations described above, the cost
function is:

J(Ω) = n
∑

i ci

1 +
∑

i

√
(dxi−d̄x)2+(dyi−d̄y)2√

(d̄x)2+(d̄y)2

(2)

where i is the ith match of Ω , ci is the cross-correlation of ith matched features, dxi

and dyi are the position difference of the Lk
q corner in each axis from the matched

corner Lk−1
p in sub-pixel precision, n is the number of matched features, and d̄x and

d̄y are the mean of those differences of position of the set of matches Ω .
To find all possible sets of matches, including the case there is no match for some

of the current corners, a recursive algorithm is used to explore possible combinations.
Yet, the amount of combinations is too large to calculate the cost function for every
single possibility. The way to avoid unnecessary calculation can be found in the
criteria used to formulate the cost function. A corner is consider to be matched with
other if their correlation is higher than an umbral and if the difference in position
is lower than a maximum displacement. These conditions reduce the number of
possible sets to a more reasonable amount of possible sets to be calculated. In order
to exploit the assumption that the matching will be done on consecutive images
captured at a reasonable frame rate like 30 fps, empirically we have found that cross-
correlation higher than 0.98, and a search radius of 100 pixels, works fine for this
first step of the matching procedure. The size of this radius of search depends on the
frame rate, the angular and lineal velocity of the UAV and the distance of the objects
in the scene. This procedure results in the definition of a global motion parameter
of the corners of the current image compared with the ones in the previous frame.
Using the information of the best found match, the procedure is repeated with the
unmatched corners of the 1st level and 2nd level corners of the current image. But
this time candidate corners of the current image are translated (−d̄x,−d̄y) to match
them with the unmatched features of the previous image in a radius of 4 pixels. Only
matching pairs with a cross-correlation higher than 0.96 are considered. To find the
best set of matches in this second step the cost function is

∑
ci.

Finally, in the third phase, the algorithm tries to match features in the previous
image that were matched before. All unmatched features of the current and previous
images, including 3rd level corners are matched using the same procedure of the
second matching attempt, allowing matched pairs with a cross-correlation higher
than 0.96 to remain only if they were matched before. Some results of the entire

J Intell Robot Syst (2009) 55:299–321 307

Table 1 Results attained with
the matching algorithm
described in Section 3.3 for
corner features

Image 1 2 3 4 5 6 7

Level 1 corners 15 15 15 15 15 15 15
Level 2 corners 20 20 20 20 20 20 20
Level 3 corners 52 53 55 47 43 46 46
Total corners 87 88 90 82 78 81 81
Matched on phase 1 0 11 11 10 10 13 10
Matched on phase 2 0 3 0 0 9 9 0
Matched on phase 3 0 11 5 3 9 20 6
Correct matches 0 25 16 11 24 38 14
Wrong matches 0 0 0 2 4 4 2
Tracked corners 0 0 9 8 10 16 12

stages of the matching process are summarized in Table 1, while Fig. 5 shows the
attained matching graphically.

3.4 SURF Features Matching

The procedure to match SURF features is based on the descriptor associated to the
extracted interest point. An interest point in the current image is compared to an
interest point in the previous one by calculating the Euclidean distance between
their descriptor vectors. A matching pair is detected if its distance is closer than
0.9 times the distance of the second nearest neighbor and the SSD error between
the two descriptors is less than 150000. The procedure for a sequence of images
begins with the extraction of all features in the first image. Thirty interest points well
distributed all over the image are selected to become the initial database. Extracted
SURF features in the next image are compared to the database using the Euclidean

Fig. 5 Corner features are matched using the procedure described in Section 3.3. Red lines show
matches obtained in phase 1, while green lines represent the matches of phase 2 and the blue lines
depict the ones made in phase 3

308 J Intell Robot Syst (2009) 55:299–321

Table 2 Comparison between semi-structured and unstructured scenes for SURF algorithm

Scene Total features Matched features Ratio

Semi-structured 1559 884 56%
Unstructured 3590 1518 42%

distance as described above. This reduces the computational cost of matching all
the possible features between frames and allows to track a constant set of features
along a high number of frames. If the matching of the thirty features in the set is not
possible, new features are added to this set using the same procedure employed for
the first thirty. To avoid the insertion of features during short periods of no-detection
of features, new features are inserted only when the number of matched features is
below ten.

SURF features extraction and matching have been tested with semi-structured
and unstructured scenes to use different techniques depending on the scenes and to
achieve better performance in SLAM algorithms. SURF features behave similarly in
both cases. Table 2 summarizes the behavior of SURF. The results of Harris detector
indicate that it finds features that almost in all cases belong to structured objects of
the scene. For this reason, the SURF features are used on unstructured scenes.

4 Visual SLAM

This section presents the implementation of a visual SLAM algorithm with monoc-
ular information. No prior information of the scene is needed for the proposed
formulation. In this approach, no extra absolute or relative information, GPS or
odometry are used. First, the formulation of the problem will be described. Then, the
details of the Kalman filter are explained. Finally, the particularities of this approach
are addressed.

4.1 Formulation of the Problem

The problem is formulated using state variables to describe and model the system.
The state of the system is described by the vector:

X = [x, s1, s2, s3, ...] (3)

where x denotes the state of the camera and si represents the state of each feature.
The camera state has 12 variables. The First six variables represent the position
of the vehicle in iteration k and in the previous iteration. The Next six variables,
vector [p, q, r], represent the rotation at the iteration k and k − 1. Rotation is
expressed using Rodrigues notation. This expresses a rotation around a vector with
the direction of ω = [p, q, r] of an angle θ = √

p2 + q2 + r2. The rotation matrix is
calculated from this representation using

eω̃θ = I + ω̃sin(θ) + ω̃2(1 − cos(θ)) (4)

J Intell Robot Syst (2009) 55:299–321 309

where I is the 3×3 identity matrix and ω̃ denotes the antisymmetric matrix with
entries

ω̃ =
⎡

⎣
0 −r q
r 0 −p

−q p 0

⎤

⎦ (5)

Therefore the state of the camera, not including the features, is composed by the
following 12 variables,

x = [xk, xk−1, yk, yk−1, zk, zk−1, pk, pk−1, qk, qk−1, rk, rk−1] (6)

Other implementations of monocular SLAM uses quaternion to express the rotation
[7]. The use of Rodrigues notation, instead of quaternion, allows to reduce the
dimension of the problem using only three variables to represent the rotation.

Rodrigues representation avoids the singularities of other three-parameter repre-
sentations but has a discontinuity at rotations of 180 degrees. This parametrization is
chosen instead of quaternions since quaternions force the introduction of a unit norm
restriction. This restriction is difficult to handle in the context of a conventional EKF.
It can even lead to singularities in the Kalman filter matrices [31] although noise and
system imperfections help to avoid this situation.

Using a discrete system storing the states at instant k and k-1 instead of consider-
ing a state composed of position and velocities at instant k helps the introduction of
angular representations that are not linear with angular velocities. It also allows the
introduction of movement models without many changes in the algorithm structure.
Both formulations are equivalent mathematically.

Each feature is represented as a vector [si] of dimension 6 using the inverse
depth parametrization proposed by Javier Civera in [7]. This parametrization uses six
parameters to define the position of a feature in a 3Dimensional space. Each feature
is defined by the position of a point, the direction of a line based on the point and the
inverse distance form the point to the feature along the line. This parametrization
is shown in Fig. 6. This reference system allows the initialization of the features
without any prior knowledge about the scene. This is important in exterior scenes
where features with very different depths can coexist.

si = [x0, y0, z0, θ, φ, ρ] (7)

This parametrization is converted to 3D world coordinates using

m(θ, φ) =
⎡

⎣
cos(θ)sin(φ)

−sin(θ)

cos(θ)cos(φ)

⎤

⎦

[
xw, yw, zw

] = [xo, yo, zo] + 1

ρ
· m(θ, φ) (8)

4.2 Prediction and Correction Stages

The algorithm’s main loop has two stages: prediction and correction. In the pre-
diction stage, uncertainty is propagated using the movement model. The correction
stage uses real measurements and predicted measurements to compute a correction

310 J Intell Robot Syst (2009) 55:299–321

Fig. 6 Inverse depth
parametrization. The position
xw of a feature si is given by
the position of a point xo, the
direction of a line, θ, φ, and
the inverse of the distance
from the point xo to the
feature xw . The state vector is
completed by the position of
the camera and its rotation

to the prediction stage. Both stages need a precise description of the stochastic
variables involved in the system.

There are mainly two approaches to implement this filter: extended Kalman
filter and particle filter (FastSLAM). Both filters use the same formulation of the
problem but have different approaches to the solution. The advantages of the
Kalman filter are the direct estimation of the covariance matrix and the fact that it
is a closed mathematical solution. Its disadvantages are the increasing computational
requirements with the number of features, the need of linearization of the model and
the assumption of gaussian noise. On the other hand, particle filters can deal with
non-linear, non-gaussian models but the solution they provide depends on an initial
random set of particles which can differ in each execution.

Given the previous facts, the Kalman filter has thus been chosen since its results
can be traced back and experiments are repeatable. The Extended Kalman filter
allows the use of non-linear models through equation linearization.

The prediction stage is formulated using linear equations

X̂k+1 = A · Xk + B · Uk

P̂k+1 = A · Pk · AT + Q
(9)

where A is the transition matrix, B is the control matrix and Q is the model covari-
ance. Camera movement is modeled using a constant velocity model. Accelerations
are included in a random noise component. For a variable n which represents any of
the position components (x, y, z) or the rotation components (p, q, r) we have:

nk+1 = nk + vk · Δt (10)

J Intell Robot Syst (2009) 55:299–321 311

Where vk is the derivative of n or speed. We can estimate vk as the differences in
position,

nk+1 = nk +
(

nk − nk−1

Δt

)

Δt = 2nk − xn−1 (11)

Feature movement is considered constant and therefore is modeled by an identity
matrix. Now full state model can be constructed

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xk+1

xk

yk+1

yk

zk+1

zk

rk+1

rk

pk+1

pk

qk+1

qk

s1,k+1

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1
1 0

2 −1
1 0

2 −1
1 0

2 −1
1 0

2 −1
1 0

2 −1
1 0

I
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xk

xk−1

yk

yk−1

zk

zk−1

rk

rk−1

pk

pk−1

qk

qk−1

s1,k

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)

The correction stage uses a non-linear measurement model. This model is the
pin-hole camera model. The formulation of the Extended Kalman Filter in this
scenario is

Kk = P̂k · JT(J · P · JT + R)−1

Xk = X̂k + Kk · (Zk − H(X̂k)) (13)

Pk = P̂k − Kk · J · P̂k

Where Zk is the measurement vector, H(X) is the non-linear camera model, J is the
jacobian of the camera model and Kk is the Kalman gain.

The movement of the system is modeled as a solid with constant motion. Accel-
eration is considered a perturbation to the movement. A pin-hole camera model is
used as a measurement model.

⎡

⎣
nu
nv

n

⎤

⎦ =
⎡

⎣
f 0 0
0 f 0
0 0 1

⎤

⎦ · [R|T] ·

⎡

⎢
⎢
⎣

xw

yw

zw

1

⎤

⎥
⎥
⎦ (14)

where u and v are the projected feature central coordinates. Distortion is considered
using a four parameters model (k1, k2, k3, k4)

r2 = u2 + v2

Cdist = 1 + k0r2 + k1r4

xd = u · Cdist + k2(2u · v) + k3(r2 + 2u2)

yd = v · Cdist + k2(r2 + 2v2) + k3(2u · v)

(15)

312 J Intell Robot Syst (2009) 55:299–321

The state error covariance matrix is initialized in a two part process. First,
elements related to the position and orientation of the camera, x, are initialized as
zero or as a diagonal matrix with very small values. This represents that the position
is known, at the first instant, with very low uncertainty. The initialization of the values
related to the features, si, must be done for each feature seen for the first time. This
initialization is done using the results from [7]:

Pnew
k|k = J

⎡

⎣
Pk|k

Ri

σ 2
ρ

⎤

⎦ JT (16)

Where

J =
⎡

⎣
I 0 0

∂s
∂xyz

∂s
∂pqr

0 0 · · · ∂s
∂xd, yd

∂s
∂ρ0

⎤

⎦ (17)

∂s
∂xyz

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; ∂s
∂pqr

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0
∂θ
∂p

∂θ
∂q

∂θ
∂r

∂φ

∂p
∂φ

∂q
∂φ

∂r
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; ∂s
∂xd, yd

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 0
0 0
∂θ
∂xd

∂θ
∂yd

∂φ

∂xd

∂φ

∂yd

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; ∂s
∂ρ0

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(18)

Robust feature tracking and detection is a key element in the system. In order to
improve the robustness of the feature matching process a Mahalanobis test is used.
The filter is implemented using Mahalanobis distance between the predicted feature
measurement and the real measurement. Mahalanobis distance weighs Euclidean

Fig. 7 Mahalanobis distance
representation

J Intell Robot Syst (2009) 55:299–321 313

distance with the covariance matrix. Figure 7 shows a representation of Mahalanobis
distance. This distance is the input to a χ2 test which rejects false matches.

(Z − J · X)t · C−1(Z − J · X) > χ2
n (19)

where

C = H · P · HT + R (20)

The scale of the reconstruction is an unobservable system state. This problem is
covered in [32] by Javier Civera. The use of inverse depth parametrization avoids
the use of initialization features of a known 3D position. This allows the use of the
algorithm in any video sequence. Without these initialization features, the problem
becomes dimensionless. The scale of the system can be recovered using the distance
between two points or the position of the camera and one point. Computational cost
is dependant on the number of features in the scene, and so the increasing scene
complexity affects processing time in a negative way. Robust feature selection and
matching is very important to the stability of the filter to achieve a correct mapping.

Fig. 8 3D flight trajectory and camera position reconstruction, obtained using the flightlog data. The
blue line depicts the translational movement and the red arrows represent the heading direction of
the camera (pitch and yaw angles). Superimposed Images show the different perspectives obtained
during the flight sequence around the semi-structured scene

314 J Intell Robot Syst (2009) 55:299–321

5 Results

Several tests have been made using the Colibri I testbed. In this test, a series
of trajectories around a 3D scene were performed flying in autonomous mode
navigation based on way points and desired heading values. The scene is composed of
many objects, including a grandstand, a van and many other elements, and also of
a series of marks feasible for features and corners detection. For each flight test a
30 f.p.s. image sequence of the scene was obtained, associating the U.A.V. attitude

Fig. 9 Semi-structured scene
reconstruction. The upper
figure shows reconstructed
points from the scene shown in
the lower figure. Points are
linked manually with lines to
ease the interpretation of the
figure. All the reconstruction is
done dimensionless to show
the original results. To recover
the scale at least two points
must have known coordinates

−0.3

−0.2

−0.1

0

0.1

−0.25

−0.2

−0.15

−0.1

−0.05

0

−1.02

−1

−0.98

−0.96

−0.94

−0.92

−0.9

−0.88

J Intell Robot Syst (2009) 55:299–321 315

information for each one. That includes the GPS position, IMU data (Heading, body
frame angles and displacement velocities) and the helicopter position estimated by
controller Kalman Filter, on the local plane with reference to the takeoff point.

Using the flightlog it is possible to reconstruct the 3D trajectory of the vehicle and
the camera and/or helicopter pointing direction. Figure 8 shows a reconstruction of
one flight around the test scene.

Tests have been made with semi-structured scenes and un-structured scenes. Also,
very different distances to the features have been used. The implementation of
inverse depth parameterized features and of dimensionless reconstruction allows the
use of the algorithm in relation to different kind of scenarios.

5.1 Semi-structured Scene

Results for tests using a tracking algorithm for structured elements are shown on
Fig. 9. Reconstructed features are shown as crosses. In the figure some references
planes were added by hand in order to help with the interpretation. Figure 9 shows
an image from the sequence used in this test.

Results show that the reconstruction has a coherent structure but that the scale of
the reconstruction is function of the initialization values. The scale can be recovered
using the distance between two points or the positions of one point and the camera.

The uncertainty of the features is reduced if observations of better known features
are used. Figure 10 shows the variance of the features. Uncertainty is represented as
a point cloud around the reconstructed position. Ellipsoids are not an appropriate
form of representation due to the inverse depth parametrization. The figure shows

−19.81
−19.8

−19.79

−0.04
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

−19.82
−19.81

−19.8
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

Fig. 10 Covariance matrix evolution. In this figure, uncertainty is represented as a point cloud. The
figure on the right shows the reduction of uncertainty after a few observations. The uncertainty in
depth direction is still hight due to low parallax in this short movement

316 J Intell Robot Syst (2009) 55:299–321

how uncertainty is reduced in sequential observation. It can also be seen how depth
uncertainty is much greater than uncertainty of other directions.

Uncertainty point cloud is represented in Fig. 11 as a group of small points.
Numbers represent the detected features. The sequence shows the evolution of the
features position and their uncertainty.

Finally the camera movement relative to the first image is compared with the
real flight trajectory. For this the (x, y, z) axis on the camera plane are rotated to
be coincident with the world reference plane used by the UAV. The Heading or
Yaw angle (ψ) and the Pitch angle (θ) of the helicopter in the first image of SLAM
sequence, define the rotational matrix used to align the camera and UAV frames.
The Rotation Matrix is defined by:

R(ψ, θ) =
⎡

⎣
cos(ψ) sin(ψ) 0

cos(θ) sin(ψ) cos(θ) cos(ψ) −sin(θ)

sin(θ) sin(ψ) sin(θ) cos(ψ) cos(θ)

⎤

⎦ (21)

The displacement values obtained using SLAM, are rotated and then scaled to
be compared with the real UAV trajectory. Figure 12 shows the UAV and SLAM
trajectories and the medium square error (MSE) between real flight and SLAM
displacement, for each axe. In X and Y axes, the trajectory adjusts better to the real
flight as soon as the features reduce theirs uncertainty, as soon as more images are

Fig. 11 Covariance evolution. The uncertainty represented as a cloud of small points (red) decreases
with sequential observations. Numbers show the predicted and observed features position

J Intell Robot Syst (2009) 55:299–321 317

−15
−10

−5
0

−5
0

1

1

2
3

−1

−0.5

0

0.5

1

Y axis (m)

a.

X axis (m)

Z
 a

xi
s

(m
)

0 5 10 15 20 25 30 35
−12

−10

−8

−6

−4

−2

0

2

4
b.

Time (seg)

N
or

ht
in

g
m

ov
em

en
t (

m
)

M.S.E.=2.038

U.A.V. trajectory
Reconstructed Trajectory

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

1.5

2

2.5

M.S.E.=1.90

Time (seg)

E
as

tin
g

m
ov

em
en

t (
m

)

c.

0 5 10 15 20 25 30 35
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

M.S.E.=0.1481

Time (seg)

U
p

m
ov

em
en

t (
m

)

d.

Fig. 12 SLAM reconstructed trajectory vs. UAV trajectory. a 3D flight. b North axis in meters, c East
axis in meters, c Altitude in meters. The reconstructed trajectory on X and Y axes, adjusts better to
the real flight as soon as more images are processed and the uncertainty of the features is reduced.
Altitude measurement has a precision of ± 2 m causing that Z axis results can’t be compared. The
initial altitude of the test is 6.88 m

Fig. 13 Scene and tracked
features during a non
structured visual flight. Video
sequence was taken by a
manned helicopter traveling
along a rectilinear trajectory
for several hundred meters.
The scene contains mainly
non manmade features.
Results are satisfactory
although vibrations and image
quality made the feature
matching a difficult task

318 J Intell Robot Syst (2009) 55:299–321

Fig. 14 Feature and track reconstruction. The figure shows the reconstruction of the helicopter
position by visual SLAM, shown as a blue line on top of the figure. On the lower parts, in red, are
the reconstructions of the observed features. The main direction of the movement is coherent with
the movement along a straight line done by the vehicle. Below, the features are reconstructed over
a horizontal surface. In this test the reconstructed trajectory shows big amplitude movements due to
the vibrations, which make fast image changes not well modeled by the system. All the reconstruction
is done dimensionless to show the original results. To recover the scale at least two points must have
known coordinates

processed. However, in Z axis it doesn’t look to have a good adjustment compared
with the ground-truth but it has to be noticed that altitude values measured using the
GPS on the UAV have precision of ± 2 m and that changes from initial altitude of
6.8 m are not significant.

5.2 Unstructured Scene

Another test was made using images from a manned helicopter. This scene has fewer
structured elements and has been recorded from a greater distance. This Fig. 13
shows a frame of the image sequence. The results of the reconstruction of the features
and the track of the camera are shown in Fig. 14.

This test has two results. The first one is the successful application in unstructured
environments, which is shown by the great number of features tracked. The second
result is the performance of the algorithm in a scene with features that are very far
from each other. All the reconstruction was made using the same parameters as in
the previously described test. Inverse depth parametrization and the dimensionless
formulation allow the application of the algorithm in outdoor scenes without prior
knowledge of the scene and without specific adjustments.

6 Conclusions

This paper shows that it is possible to obtain robust and coherent results using Visual
SLAM for 3D mapping and positioning in vague structured outdoor scenes from

J Intell Robot Syst (2009) 55:299–321 319

a mini UAV. In order to obtain these results, several stages of the whole process
need to be solved, starting with image acquisition, going on with image processing,
interest point detection, features extraction and matching, and finishing with the
SLAM algorithm itself, EKF prediction and correction matrix model estimation,
state definition and distance parametrization.

The quality, resolution and frame rate of the images should be enough to detect
interest points that have to be tracked in several consecutive frames. The best
results in this paper have been obtained using a RAW Bayer non-interlaced camera,
640×480 pixels at 30 frames per second (FPS), with a 6 mm. optic, while the coher-
ently mapped environment has been in the range of 5 to 50 m. The video sequence is
proceeded off-line at an average of 12 FPS.

Interest points’ detection and features to be tracked have been found based
on two different approaches, Harris corner detection and SURF invariant feature
extraction. The approach based on Harris is very quick and selective, therefore very
convenient for this computational intensive application, but it needs to be improved
with an exhaustive and robust corner descriptor, as the one proposed in Section 3.1,
that enables robust matching and tracking of the detected points over time. Harris
based detectors have shown to be very efficient for scenes with significant structure
objects, such as houses, vans, cars and, generally human made structures. Scenes with
significant structures have strong and stable contours that give reliable edges to fix
Harris points.

The SURF based feature extractors are on the contrary, more efficient when the
scene is basically made up of non-structured objects, which is the case of natural
environments, among others. In those cases, the SURF based algorithms have the
advantage that they calculate a vast amount of features in the image, many of
which vanish in following images, but a significant amount of them still remain in
the following ones. That is the key point to match and track them for an efficient
SLAM. SURF based algorithm also provide in those cases, an exhaustive enough,
scale invariant feature descriptor that accomplishes the matching requirements for
its tracking.

The use of an extended descriptor for Harris based corner detection and the
scale invariant SURF features enable the sorting of the interest points into different
clusters (three chosen clusters in this paper) dependant on their relevance. That
allows the search of matching pairs in different stages according to the points
relevance and the number of matched points necessary for the SLAM algorithm (ten
in the presented results), according to the procedure described in Section 3.3, that
reduces the computational effort. The criterium for matching two interest points in
consecutive images evaluates both, the features correlation and the deviation of the
distance from the evaluated pair to the average distance between of other matched
pairs.

SLAM algorithm has been implemented using only visual information without
considering any odometric or GPS information (which have been used afterwards
to compare and evaluate the obtained results). The state of the system comprises
a 12 variable array (position, orientation and their rates), where the inverse depth
parametrization has been used in order to avoid the initialization of the distances
to the detected visual features, that otherwise becomes a drawback when using
SLAM outdoors in unknown environments. The rest of the state array is made
up of the tracked features, with ten being the minimum allowed number. The
prediction stage in EKF has been modeled considering constant velocity for both,

320 J Intell Robot Syst (2009) 55:299–321

the position-orientation coordinates and the feature movements in the image plane.
The correlation stage in the EKF uses a non-linear camera model that includes a pin-
hole distortion model for the sake of more accurate results. Within the implemented
SLAM algorithm, the Mahalanobis distance is used to disregard far away matched
pairs that can otherwise distort the results.

The whole described procedure has been tested in several 3D semi-structured
environments from a camera situated onboard an unmanned operated mini-UAV.
The previous results show that the detected features covariance matrix decreases
over time and that the structure made up by joining these detected features is
coherent with the objects in the scene, with the absolute distance being a free
parameter that has to be solved out by knowing the real distance between two known
3D points in the scene.

The performed flights were not closed loops, so that the UAV didn’t come
back to previous positions. Therefore the position-orientation correlation is always
increasing in performed flights, even though the 3D position calculated by the SLAM
has been compared with the GPS position and it is made clear that the horizontal
positioning of the UAV is performed quite well by the SLAM in our experiments,
where the flights had a dominant horizontal movement. The obtained MSE of the
differences between the SLAM and the GPS horizontal coordinates decreases over
time and has an approximate average value of 2m2 in our experiments. The altitude
estimation doesn’t show such a good correlation, due to the limited range of this
movement during the flights, and for the same reason it has a lower MSE that is of
around 0.14m2.

Acknowledgements The work reported in this paper is the consecution of several research stages at
the Computer Vision Group—Universidad Politécnica de Madrid. The authors would like to thank
Jorge Leon for supporting with the flight trials and I.A. Institute—CSIC for collaborating in the
flights consecution. This work has been sponsored by the Spanish Science and Technology Ministry
under the grant CICYT DPI2007-66156 by Comunidad Autónoma de Madrid under the grant SLAM
visual 3D.

References

1. Se, S., Barfoot, T., Jasiobedzki, P.: Visual motion estimation and terrain modeling for planetary
rovers. In: Proceedings of ISAIRAS (1995)

2. Sim, R., Elinas, P., Griffin, M., Little, J.J.: Vision-based SLAM using the Rao-Blackwellised
particle filter. In: IJCAI Workshop on Reasoning with Uncertainty in Robotics (RUR) (2005)

3. Davison, A.J., Reid, I., Molton, N., Stasse, O.: MonoSLAM: real-time single camera SLAM.
IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

4. Munguia, R., Grau, A.: Monocular slam for visual odometry. In: IEEE International Symposium
on Intelligent Signal Processing, 2007. WISP 2007, pp. 1–6. IEEE, Piscataway (2007)

5. Kim, S., Oh, S.-Y.: Slam in indoor environments using omni-directional vertical and horizontal
line features. J. Intell. Robot. Syst. 51(1), 31–43 (2008)

6. Choi, Y.-H., Oh, S.-Y.: Grid-based visual slam in complex environments. J. Intell. Robot. Syst.
50(3), 241–255 (2007)

7. Montiel, J.M.M., Civera, J., Davison, A.J.: Unified inverse depth parametrization for monocular
slam. In: Robotics: Science and Systems (2006)

8. Ho, K.L., Newman, P.: Detecting loop closure with scene sequences. Int. J. Comput. Vis. 74(3),
261–286 (2007)

9. Lemaire, T., Berger, C., Jung, I., Lacroix, S.: Vision-based SLAM: stereo and monocular
approaches. Int. J. Comput. Vis. 74(3), 343–364 (2007)

J Intell Robot Syst (2009) 55:299–321 321

10. Dailey, M., Parnichkun, M.: Simultaneous localization and mapping with stereo vision. In: Pro-
ceedings of the IEEE International Conference on Automation, Robotics, and Computer Vision
(ICARCV) (2006)

11. Klippenstein, J., Zhang, H.: Quantitative evaluation of feature extractors for visual slam. In:
Fourth Canadian Conference on Computer and Robot Vision, 2007. CRV ’07., pp. 157–164
(2007)

12. Lee, Y.-J., Song, J.-B.: Autonomous selection, registration, and recognition of objects for visual
slam in indoor environments. In: Fourth Canadian Conference on Computer and Robot Vision,
2007. CRV ’07., pp. 668–673 (2007)

13. Mikolajczyk, M., Smid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern
Anal. Mach. Intell. 27(10), 1615–1630 (2005)

14. Törnqvist, D., Conte, G., Kärlsson, R., Schon, T.B., Gustafsson, F.: Utilizing model structure
for efficient simultaneous localization and mapping for a uav application. In: Proceeding of the
IEEE Aerospace Conference (2008)

15. Kim, J., Sukkarieh, S.: Real-time implementation of airborne inertial-slam. Robot. Auton. Syst.
55(1), 62–71 (2007)

16. McLain, T.W., Beard, R.W., Barber, D.B., Redding, J.D., Taylor, C.N.: Vision-based target geo-
location using a fixed-wing miniature air vehicle. J. Intell. Robot. Syst. 47(4), 361–382 (2006)

17. Tsourdos, A., Aouf, N., Sazdovski, V., White, B.: Low altitude airbone slam with ins aided vision
system. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head,
South Carolina, AIAA (2007)

18. Mejías, L., Mondragón, I., Correa, J.F., Campoy, P.: Colibri: vision-guided helicopter for sur-
veillance and visual inspection. In: Video Proceedings of IEEE International Conference on
Robotics and Automation, Rome, April 2007

19. Mejias, L.: Control visual de un vehiculo aereo autonomo usando detección y seguimiento
de características en espacios exteriores. Ph.D. thesis, Escuela Técnica Superior de Ingenieros
Industriales. Universidad Politécnica de Madrid, Madrid, December 2006

20. Mejias, L., Saripalli, S., Campoy, P., Sukhatme, G.: Visual servoing of an autonomous helicopter
in urban areas using feature tracking. J. Field Robot. 23(3–4), 185–199 (2006)

21. Mejias, L., Campoy, P., Mondragon, I., Doherty, P.: Stereo visual system for autonomous air
vehicle navigation. In: 6th IFAC Symposium on Intelligent Autonomous Vehicles (IAV 07),
Toulouse, September 2007

22. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Proceedings of the
Ninth European Conference on Computer Vision, May (2006)

23. Lowe, D.G.: Distintive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2),
91–110 (2004)

24. Fontanelli, D., Danesi, A., Bicchi, A.: Visual servoing on image maps. In: Springer Tracts in
Advanced Robotics. Experimental Robotics, vol. 39. Springer, New York (2008)

25. Harris, C.G., Stephens, M.: A combined corner and edge detection. In: Proceedings of the 4th
Alvey Vision Conference, pp. 147–151 (1988)

26. Parra, I., Fernández, D., Naranjo, J.E., García-García, R., Sotelo, M.A., Gavilán, M.: 3d visual
odometry for road vehicles. J. Intell. Robot. Syst. 51(1), 113–134 (2008)

27. Mozos, O.M., Gil, A., Ballesta, M., Reinoso, O.: In: Lecture Notes in Computer Science, Current
Topics in Artificial Intelligence, Chapter Interest Point Detectors for Visual SLAM, vol. 4788,
pp. 170–179. Springer, Berlin (2008)

28. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell.
8(6), 679–698 (1986)

29. OpenCV: Open Source Computer Vision Library OpenCV. http://www.intel.com/research/
mrl/research/opencv/ (2001)

30. Wiklund, J., Caballero, F., Moe, A., De Dios, J.R.M., Forssen, P.-E., Nordberg, K., Ollero, A.,
Merino, L.: Vision-based multi-uav position estimation. In: Robotics And Automation Magazine,
vol. 13, September 2006

31. Carmi, A., Oshman, Y.: On the covariance singularity of quaternion estimators. In: AIAA
Guidance, Navigation and Control Conference, Hilton Head, South Carolina (Paper No. AIAA-
2007-6814), 20–23 August 2007

32. Civera, J., Davison, A.J., Montiel, J.M.M.: Dimensionless monocular slam. In: IbPRIA,
pp. 412–419 (2007)

http://www.intel.com/research/mrl/research/opencv/
http://www.intel.com/research/mrl/research/opencv/

	Visual 3-D SLAM from UAVs
	Abstract
	Introduction
	System Description
	Interest Points Detection and Matching
	Harris Corner Detection and a Reliability Index
	SURF Features
	Corner Features Matching
	SURF Features Matching

	Visual SLAM
	Formulation of the Problem
	Prediction and Correction Stages

	Results
	Semi-structured Scene
	Unstructured Scene

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

