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Abstract In this paper, we present a discrete-time optimization framework for target
tracking with multi-agent systems. The “target tracking” problem is formulated as a
generic semidefinite program (SDP) that when paired with an appropriate objective
yields an optimal robot configuration over a given time step. The framework affords
impressive performance guarantees to include full target coverage (i.e. each target
is tracked by at least a single team member) as well as maintenance of network
connectivity across the formation. Key to this work is the result from spectral graph
theory that states the second-smallest eigenvalue—x,—of a weighted graph’s Lapla-
cian (i.e. its inter-connectivity matrix) is a measure of connectivity for the associated
graph. Our approach allows us to articulate agent-target coverage and inter-agent
communication constraints as linear-matrix inequalities (LMIs). Additionally, we
present two key extensions to the framework by considering alternate tracking
problem formulations. The first allows us to guarantee k-coverage of targets, where
each target is tracked by k or more agents. In the second, we consider a relaxed
formulation for the case when network connectivity constraints are superfluous. The
problem is modeled as a second-order cone program (SOCP) that can be solved
significantly more efficiently than its SDP counterpart—making it suitable for large-
scale teams (e.g. 100’s of nodes in real-time). Methods for enforcing inter-agent
proximity constraints for collision avoidance are also presented as well as simulation
results for multi-agent systems tracking mobile targets in both R? and R3.
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1 Introduction

We are interested in developing robot teams for use in surveillance and monitoring
applications. The idea of using teams of small, inexpensive robotic agents to accom-
plish various tasks is one that has gained increasing interest as embedded processors
and sensors become smaller, more capable, and less expensive. To this point, much
of the work in multi-robot coordination has focused on control and perception. It
has generally been assumed that each team member has the ability to communicate
with any other member with little to no consideration for the quality of the wireless
communication network. Such an assumption, although valid in certain situations,
does not generally hold—especially when a team is operating in a highly dynamic
environment.

Our previous work in target tracking made similar simplifying assumptions, as
no constraints were placed on sensing and communication ranges [1]. This allowed
target coverage and network connectivity requirements to be ignored in order to
simplify the proposed optimization process. In this paper, however, we consider
controlling the configuration of a team of mobile agents for target tracking under
target coverage and inter-agent communication constraints. Our methodology is based
on the graph theoretic result where the second smallest eigenvalue of the inter—
connection graph Laplacian matrix is a measure for the connectivity of the graph.
Recent system and control literature has shown that the maximization of the second
smallest eigenvalue for a state dependent graph Laplacian matrix can be formulated
as a semidefinite program [2]. We apply these results to the target tracking task and
obtain a coordination strategy that maintains target coverage and network connec-
tivity while minimizing a given objective function over some time step. Specifically,
robot-target assignments and inter-agent communication constraints are respectively
embedded in sensor visibility and network connectivity graphs. The target tracking
problem is then formulated as a SDP where said constraints are modeled as linear-
matrix inequalities (LMIs).

An important advantage of this formulation is that it is agnostic to the quality
metric being minimized. If the objective function is convex and constraints can be
expressed in linear, quadratic, or semidefinite form, the resulting problem will be
convex. Convexity ensures that any solution will be globally optimal and attainable
in polynomial time with respect to the number of robots and observation targets.

2 Related Work

In recent years, increased attention has been focused on the effects of communication
networks in multi-agent systems. Earlier works generally assumed static communi-
cation ranges, [3], and/or relied on coordination strategies that require direct line-of-
sight, [4]. In [5] and [6] decentralized controllers were used for concurrently moving
toward goal destinations while satisfying communication constraints by maintaining
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line-of-sight and assuming static communication/sensor ranges respectively. Coordi-
nation strategies based on inter-agent signal strength include [7, 8], and [9]. In [10],
low-level reactive controllers capable of responding to changes in signal strength or
estimated available bandwidth are used to constrain robots’ movements in surveil-
lance and reconnaissance tasks. Although much of the recent works have focused
on the effects of communication maintenance on navigation, few have addressed
the issue of communication maintenance in tasks such as collaborative/collective
localization and data fusion where team connectivity is essential to the team’s ability
to achieve its goals.

Previous works in collaborative target localization include [11, 12], and [13] where
strategies such as maintaining visibility constraints and determining optimal sensor
placement are considered. More recent works include [14] where artificial potential
functions are used to coordinate a team of mobile agents to track multiple moving
targets. Jung [15] addresses the same problem by formulating it as two sub-problems:
target tracking for a single robot and on-line motion coordination strategy for a
team of robots. In [16], the authors consider a motion coordination strategy to
enable a team of mobile sensors to detect multiple targets within a given region.
[17] analyses the accuracy of cooperative localization and target tracking in a team
of mobile robots using an Extended Kalman Filter (EKF) formulation and provide
upper bounds for the position uncertainty obtained by the team. In [18], a distributed
control strategy is used to maintain a team of mobile agents in a mesh formation to
enable tracking of a discrete or diffused target. In [1], the authors employ particle
filters to minimize the expected error in tracking mobile target(s) for a team of
mobile robots without the use of explicit switching rules, while [19] employs an
Extended Kalman Filter (EKF) approach to minimize the position covariance of the
targets.

Lastly, maximizing the second smallest eigenvalue (i.e. A,) of a state-dependent
Laplacian matrix associated with a network graph has been considered in both [2]
and [20]. The former is perhaps most related to our work where the problem of
finding optimal node positions is formulated as a SDP. Leveraging these results, the
latter formulates a fully distributed framework for approximating A,.

In contrast to these efforts, we propose a SDP formulation for controlling
the configuration of a team of mobile agents for tracking moving targets while
maintaining sensing and communication constraints and optimizing an additional
tracking objective over a discrete-time step. Furthermore, in situations where one
is willing to forgo communication maintenance to ensure complete coverage of all
targets, we show how our formulation can be simplified into a SOCP that guarantees
each target is tracked by at least a single team member. This is relevant when
communication with other team members must be sacrificed to ensure all targets
are monitored or when communication ranges far exceed those of on-board sensing
modalities.

3 Problem Statement

The objective of this paper is to provide a general framework that facilitates
optimal target tracking with performance guarantees. More precisely, we consider
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minimizing some convex objective function, ¥ : R¥ — R, over a given time step
while ensuring

1. Full target coverage (i.e. each target is tracked by at least a single team member)
2. Network connectivity across the robot formation

n
R3" denoting the concatenated positions of the robot team with x¢ € R? representing

the location of agent i with respect to some world frame V. Additionally, we assume
a fully actuated motion model for each team member, i.e. where

. . . . . T
In this context, ¥ is as a function of our decision variable X = (x{,x5,...,x%)" €

i=u,ucld CR3 (1)

Initially, we avoid discussion of ¥ and instead focus on formulating a sufficient
constraint set to ensure our desired performance guarantees.

3.1 A State-dependent Graph Representation

Towards this end, we begin by exploiting the fact that a team of robots and the
targets they track collectively define a finite, weighted graph where an agent—target
edge corresponds to a single point-to-point sensor track. More precisely, letting 4 =
{ay,az,...,a,} and O = {0y, 0,,...,0,} respectively denote the full set of agents
and the full set of observation targets, we define the graph Gy(Vy, Ey) where
Vy=AUQ and &y = {e: e € A x (AU O)}. We refer to this graph as the visibility
graph and associate with its edges a mapping fy: &y — R*.

Letting x; € R denote the position of observation target o; in world coordinate

j
frame W, we define

fi (I =54 12) . y = @ e Ax A

@)
£ (15 = 1) v = @, 0) € Ax O

fv(y) =

where 0 < fy(x{, x9), fi,(x{, x}) < 1. In other words, the weights of the correspond-
ing edges are a direct functional of the relative Euclidean distance separating an
agent from some other observable entity. Notice that this also implicitly makes Gy
a function of the positional state vector X, and as such, we accordingly denote it
Gy (X). Figure 1 illustrates the visibility graph for a team of three agents tracking a
single target in R

3.2 Guaranteeing Full Target Coverage

Given the definition of Gy (X), observe that all targets in the system are tracked
whenever the graph itself is connected as this implies edges between all targets and
at least one member of the agent team. Accordingly, we would like our constraint set
to capture this notion of connectivity when determining the optimal state vector X.
With this in mind, we turn our attention to recent results from spectral graph
theory regarding the connectivity of an arbitrary graph G(V, ). In particular, we
note that the constraint A, (L(G)) > 0is both a necessary and sufficient condition for
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Fig. 1 The weighted visibility
graph, Gy (Vy, €y), for a team
of three robots observing a
single target in R2. In our
formulation, respective

edge weights are a function

of the team’s positional state
vector, X

guaranteeing the connectivity of G [21], where 1,(L(G)) denotes the second smallest
eigenvalue of the weighted graph Laplacian L(G) given by

—wij, L#]
[L(G)]ij =Y wi, i=j (3)
i#k

with w;; being the weight associated with the edge shared between vertices i and j.
In light of these observations, we can now pose the following initial formulation
for the target tracking problem

min ¥ (X)
s.t. )\z(Lv(X)) >0 (4)

where Ly (X) denotes the state-dependent Laplacian of the visibility graph Gy (X).
Noting the results of [2], we see that

M(Ly(X) >0 < PLLy(X)Py >0 5)

where Py € RO+Wx0t+m=1 comprises an orthonormal basis for an n +m — 1 dimen-
sional subspace such that Vx € span(Py), 17x = 0. As such, we can further solidify
the problem statement by reposing (4) as follows

min ¥ (X) )
s.t. PLLy(X)Py > 0

In this formulation, we adopt the standard Lowner ordering. Additionally, we

highlight that solving this problem minimizes the chosen objective while ensuring that
all specified targets are tracked by at least a single team member.
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3.3 Enforcing Network Connectivity Constraints

Although solving (6) yields a positional configuration that will ensure all targets are
tracked by at least a single agent, it makes no guarantees regarding the underlying
network connectivity over the resulting formation. The ability to ensure a connected
network graph while performing such a task is often desirable as it facilitates —
among other things — distributed sensor fusion. To address this, we extend our
formulation by introducing a network proximity graph Gn(Vy, Ey) where Vy = A
and Ey = {e: e € A x A}. Similar to the previous graph formulation, we associate a
weight function fy: Ey — RT that is a direct functional of the Euclidean distance
between network peers. For our purposes, fy will be modeled to reflect the quality
of a communication link shared between said nodes.

Given this definition, we can augment (6) accordingly to yield the following
problem statement

min ¥ (X)
st. PLLy(X)Py > 0 (7)
PLLN(X)Py =0

Solving this problem, will yield an optimal positional configuration for the team that
maintains both network connectivity as well as complete target coverage. However, it
should be noted that (7) is not necessarily a convex optimization problem. As we
shall see, this does not prevent us from formulating the target tracking problem as a
discrete-time process whereby during each iteration a convex form of (7) is solved.

4 Defining Interactive Control Functions

Given this formulation, we now consider appropriate definitions of f{,, f{,, and fy.
The choice of these functions is critical as they inherently govern the behavior of
the team. As these functions dictate the relationship between one node and another
as well as any observation targets, we see that at the highest level that they can be
considered interactive control functions. With this in mind, we now consider appro-
priate choices for a simple target tracking scenario.

Momentarily neglecting discussion of f},, we focus instead on characterizing the
desirable properties of weight function fj,, which governs the interactions of systems
agents and respective targets. In an ideal tracking scenario the team will have
an optimal number of tracks while each agent maintains a safe standoff distance
between itself and its targets. In other words, letting r;; denote the desired distance
between agent a; and target o;, we would like f{, to promote the team to behave
such that

|rij — il < dij < [rij + €

Vi j )
where dj; 2| x4 — x'; [l> and efj, € € RT dictate the acceptable lower/upper bound
tolerances for any tracks between agent a; and observation target o;. When the right-
hand inequality holds, we define the track as being active.

Seeking inspiration from the motion-planning community, we opt to consider a
formulation of f{, modeled after common potential functions. For our purposes,
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we consider the case ef/ = ¢;; and model fj, using a symmetric Gaussian potential —
noting that the subsequent analysis can easily be adapted for an alternate (symmetric
or non-symmetric) potential function formulation. That stated, we consider the

following definition

), |di; —ri| < e

fo (1) = 9)

e
0, otherwise

where y is a “strictness” parameter defined as function of e—e.g. we’ve used y =
\/2 . Figure 2 (Left) illustrates this function for an instance with r;; = 10 and € = 4.

Our choice of f{, has two primary motivations. The first is the differentiability
properties of the Gaussian which facilitates problem formulation. The second relates
to our operational objectives for tracking. In many sensor systems, position tracking
errors are proportional to the standoff distance. For example, in stereo vision the
propagation of errors in disparity measurements is proportional to the square of
the scene depth. When fusing bearing measurements from a pair of cameras on two
different agents, the error is directly proportional to the standoff distances [22]. Thus,
we desire each agent to be as close to the target as possible to enhance tracking
accuracy, while still maintaining a sufficient standoff distance to avoid detection
and/or collision. This desired behavior is implicitly captured in our choice of fj,.

Regarding f},, which governs inter-agent tracking behaviors, we see its definition
is not as obvious since a variety of formulations may lead to favorable results
depending upon the chosen application and mission objectives. For instance, we
can choose fj; =1 which has the effect of removing any inter-agent observability
requirements as it essentially says that no matter what the positional state of the
team, the inter-agent links are connected or are observable everywhere. Whether
this is feasibly possible given the agents’ respective sensor suites is inconsequential
for the task at hand, as in choosing the weights this way we are only concerned with
ensuring complete target coverage. Another reasonable choice for f}, is a potential
function that behaves similarly to that used to define f{,. This definition would be

1 1

09} 0.9
08} { o8
07t |l o7
08} : E { o6 . 5
r. 7£" r vro4eY Qi q, N

05| it i V% 051 9min Imax:
041 0.4
03} 0.3
02} 0.2
01} {1 o1
0 : : 0 : :

4 6 8 10 12 14 16 9 10 11 12 13 14 15 16

Fig. 2 (Left) An instance of fj, where r;j = 10 and efi = el‘; =4, Vi, j. For our purposes, a simple
symmetric Gaussian was utilized to govern agent-target interactions; however, a different potential
function could have just as easily been used. (Right) An instance of a simple exponential-decay model
for RF links with g;uin = 10 and gax = 15
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useful in a scenario where team members rely upon local observations of their peers
for such things as localization. In this paper, we adopt the former definition.

In a similar manner, we can now address the issue of weighting the network
links in Gy (X). The weights of these links are very easily characterized, and such
a formulation has been addressed in recent literature [2, 20]. For our purposes as
well as for the sake of further discussion, we consider the exponential decay model
posed by [20]. Doing so yields the following formulation for fy

1, d? < qmi
ij = qmin
=5 dmin)
a a\ __ ij
fN (xi 5 xj) = Y e e imin | Gin < d?]_ < Qmax (10)
a
0, dj; > qmax

Figure 2 (Right) shows a single instance of fy for ¢,,;; = 10 and ¢, = 15.

5 Defining a Discrete Semi-definite Approach

In this section, we consider formulating our problem as a discrete—time process
whereby the agent team collectively observes the relative positions of the observation
targets and then accordingly adjusts their respective trajectories so as to minimize
the given objective. As the targets are assumed dynamic and control is inherently a
discrete-time process, we see that at best the team can only optimize ¥ over the
period At representing the rate at which they are able to effectively sample the
environment and issue control signals. Although this approach does not guarantee
optimally-convergent behavior for the team, it does ensure that the solution obtained
will yield a trajectory that is optimal with respect to ¥ over that time step.

5.1 Problem Formulation

With this in mind, we leverage the results of [2] who considered a discrete-time
process for maximizing network connectivity in multi-agent teams. Following suit,
we perform a simple differentiation with respect to time and then apply Euler’s first-
order discretization method. Doing so reveals the following discrete-time represen-
tation of f},

T
fo (e, x5) e+ 1) = fiy(xf, x5) (k) = 7, {x?(k) - x’/} Ax?

2 a k _ vl —rji (11)
v (sz( ) x]”Z rl) f{,(xj‘(k),x’,)

r o
VT T o - 2

where VI, a; € A, we have Ax} = x{(k+ 1) — x{ (k).
Similarly for fx, we obtain

T
(e, )k + 1) — fa(x x4 (k) = T, {xf‘(k) —x‘;.(k)} [Axf - Ax‘;]

B 5 fn(xf (k), x5 (k)
(qmax - Qmin) ”Xf(k) - X? (k) ”2

TN, =
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Given (11) and (5.1) and recalling fy, is chosen constant (i.e. fy(x{, x})(k+1) —
foxd, x’;)(k) = 0), we can now define the discretized state-dependent Laplacians
with respect to both the visibility graph Gy (X) and the network proximity graph
G n(X). For the former, we obtain

v yo)(k), u#v

[Lve+ D], =1 Y frGu v K, u=v (12)
u#s

where y, and y, are defined such that

xf, l<n=|A

Y= ¢
Xy < [

Similarly for Gx(X), we are able to define

—fn (x4, x4) (k), u#v

[Ln(k+ 1)]141) TNV v xE) k), u=v (13)
u#s

Putting this all together, we arrive at a discrete-time formulation for optimal target
tracking. At time step k, we aim to solve the following problem
min¥ (X (k + 1))
st xf(k+1) —x/(k) [.<viAt, i=1,...,n
P‘CLv(k—F I)PV =0
PLLN(k+ 1Py =0

(14)

where v; denotes the translational velocity of agent a;.

It should be noted that we have augmented the problem with n second-order
conic inequalities constraining the distance each agent can travel in a single step.
These constraints are essential as they serve to reduce the effects of the lineariza-
tion process. Additionally, they can be used to model velocity constraints on the
individual robots. Noting that ¥ (X (k + 1)) is assumed convex and our feasible set
is characterized by LMIs and second-order conic inequalities, we see that (14) is a
semidefinite program and can be efficiently solved using interior-point methods for
convex analysis [21].

5.2 Choosing an Appropriate Objective

Until this point, we have avoided any detailed discussion regarding the statement
of our convex objective, ¥. In fact, in the context of target tracking there are many
useful candidate functions that fit well within this framework. One possibility is to
choose ¥ as the trace of the covariance representing the uncertainty in measured
target positions [23]. As such, (14) would yield a position vector that minimizes the
uncertainty in the estimated target positions while ensuring full target coverage and
network connectivity.

In this paper, we instead choose ¥ (X) = —Xx,(Ly(X)). Given this function, we
can then maximize the second smallest eigenvalue of the state-dependent graph
Laplacian associated with our visibility graph over a given time step. Choosing ¥
this way aims to maximize the visibility of observation targets. Such an objective may
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be quite useful in surveillance applications where each member of the mobile team
is outfitted with a low-grade sensor suite. In such a case, maximizing visibility while
observing network connectivity will provide maximal redundancy in the observation
network.

Other appropriate objective functions (e.g. weighted least-squares) could be
imagined. However, what is important to note is the generality of our approach. So
long as the objective function is convex, and can be expressed in terms of linear,
quadratic, or semidefinite constraints, the resulting problem will be a semidefinite
program.

5.3 Simulation Results

In an effort to validate our discrete-time framework, we implemented our paradigm
in Matlab using SeDuMi 1.1R3 [24] via YALMIP [25]. Figure 3 illustrates the results
from one such trial in which the objective was to maximize connectivity in the
visibility graph, i.e. ¥ (X) = —A,(Ly(X)). In this scenario, eight networked agents
were responsible for tracking five mobile targets while maintaining a desired standoff
distance r;; = 0.10. The minimal desired agent-target proximity bound for active
tracks was set at 0.06 with a maximum of 0.14. In this case, each agent was modeled
using as its a primary sensor an omnidirectional camera system, and the network was
modeled to experience exponential decay between 0.08 and 0.18 units. The maximal
translational velocity of respective team members was 1.4 times that of the targets.
Given the contrived trajectories of the targets, the team ultimately converges to an
optimal configuration—yielding ¥ (X) ~ 0.6972.

Figure 4 reveals the progression of both A,(Ly (X)) and A,(Ly(X)) as the team
employs our discrete-time framework. In this plot, we highlight the monotonically
increasing behavior of the objective while noting that 1,(L (X)) remains positive
for the entire run. In other words, the team effectively optimizes its objective over
each time step while maintaining network connectivity across the formation.

6 Guaranteeing k-Coverage of Observation Targets

In Section 3, we formulated the tracking problem to ensure that each target is tracked
by at least a single agent; however, there are many scenarios in which it would be
desirable to enforce a lower-bound k; € Z* on the number of agents tracking each
target o;. For instance, teams of low-cost robots may employ sensors incapable of
directly estimating the target’s positions without additional constraints—e.g. a mini-
mum of two bearing sensors such as cameras are needed to estimate a target’s pose.

6.1 Considering an Alternate Formulation

Towards this end, we propose an alternate formulation of (14) by introducing a
separate state-dependent visibility graph, Gy, (X), for each o;. Unlike the visibility
graph presented in Section 3.1, the vertices of Gy,(X) correspond to the full set
of g = (nfz'/_ +1) agent combinations (denoted C; = {A, ..., A,}) with an additional
vertex corresponding to o;. At first glance, this choice seems unintuitive; however—
as we shall see—it is in defining the vertices this way that facilitates this key result.
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Fig. 3 (Top) The initial
visibility and network
proximity graphs for a team
of eight agents in R? charged
with tracking five mobile
targets. In this case, each
agent was modeled as using
an on-board omnidirectional
camera system with the team’s
objective being to maximize
the total number of active
tracks—i.e. ¥ (X) =

) (LV (X)) (Middle) The
trajectories of the respective
team members as they obtain
an optimal configuration.
(Bottom) The resulting
visibility and network graphs
for the team after convergence
(P (X) ~ 0.6972)
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Fig. 4 The progression of 1 T T T T T T T
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corresponding to the run
illustrated in Fig. 3. In this

case, the objective was to 08r |
maximize the number of 07k
active tracks in the agent
configuration over each 0.6
time step—i.e. ¥(X) =
—(Ly(X)). Given the <05f
contrived target trajectories,
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¥ (X) ~ 0.6972
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Momentarily deferring discussion of this point, we now define the correspond-
ing edge set £y, = C; x {0;} and associate with each edge a weight function f(,‘}“:
(A;, 0j) - R*. For our purposes, f(;}" is a direct functional of the Euclidean distance
separating o, from each agent in the i combination .4;. If some agent in .4; is able to
observe the target o; (i.e. it is proximal to the target location), we require f(,‘}” > 0.If
all agents in .4; are unable to observe the target (i.e. none are proximal), we require
f{,‘}" = 0 to indicate the corresponding edge is disconnected.

Taking the given vertex and edge sets as well as the chosen weighting functions,
we have provided a general definition of Gy, (X). To solidify our formulation, we

{aaza;} {a,a,a,)

{a,a,a, laya,a,

Fig. 5 The visibility graph, Gy f (X), for a team of four agents A = {ay, ..., as} tasked with maintain-
ing at least k; = 2 coverage of target o;. The vertex set s given by of the full set of agent combinations

i.e. C;) with an additional vertex for o ;. Each edge is associated with a weight function Af. Observe
i j g g V;

that when f{fj’ >0,i=1,...,4 the graph is connected (i.e. 22(Gy;) > 0) implying that at least two
agents are observing the target
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present Fig. 5. This figure illustrates Gy, (X) for a team of four agents tasked with
ensuring k; =2 coverage of target o;. Notice that when f{,‘}” >0,i=1,...,4 the

graph is connected implying that at least two agents are observing the target.
Having presented Fig. 5, we now generalize this result with Theorem 1.

Theorem 1 Let Gy, (X) denote the state-dependent visibility graph associated with

target o as previously formulated. Assume fé" >0,i=1,....( ). (i.e. assume

n
n—kj+1
Gy, (X) is connected) then at least k; € 7" agents are tracking observation target o ;.

Noting that the Gy,(X) is connected, it is implied that at least a single agent from

each of the (n_ 0 +1) combinations in Cj is able to observe o;. Furthermore, observing
/

that agent a; € A appears in exactly (::kl]) combinations in C;, we see that no more
than this number of edges can be affected by ;s ability to observe target o;. As a
result, proving our minimal coverage bound is equivalent to showing that the ratio of
total agent combinations to the number of combinations containing g; is greater than

or equal to k;. More precisely, proving the following implicitly establishes Theorem 1:

(n—kj+1) < kj (15)

n—1 -
(n—kj)
In light of this observation, we now offer the following proof of (15):

Proof By contradiction. Assuming contrary to (15), we see

bosod) . n(n — k),
(") T (= k4 Dk — Di(n —1)!

n—k;

<kj

nk;
TR
=>n<n—kj+1
=k;<1
=kj¢Z*

This yields a contradiction from which we conclude that our assumption is false. 0O

Having established our minimal coverage bound, we now turn our attention
to defining an appropriate set of weighting functions for Gy,(X) that satisfy our
previously stated criteria. Although there are a variety of functions that we can
consider, we opt to extend our previous results and define edge weights as follows

n—kj+l

> frex)
fAi= s=1
Vi I’l—kj—l—l

where x{ and x[,- respectively denote the positions of a; € A; and target o;.
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Observe that when target o is being actively tracked by all agents in .4; with each
agent observing its desired standoff distance, we have f(,‘}" = 1. Similarly, when no
agent in A; is engaging the target, we have f(,‘t’ =0.

Accordingly, we now restate (7) as follows

min ¥ (X)
st. Py Ly (X)Py, =0, i=1,....,m (16)
PLLN(X)Py >~ 0

where Ly, (X) is the state-dependent graph Laplacian associated with Gy, (X), Py, €
RO=ki+2)xn=ki+) comprises an orthonormal basis for an n —k;+ 1 dimensional
subspace such that Vx € span(Py,), 17x = 0, and Py is as previously defined in (7).

Taking this formulation and applying a first-order Euler discretization with
respect to time yields the following:

min ¥ (X (k + 1))

s.tf|xk+1) —xf(k)|, <vat, i=1,....n
Pl Ly, (k+1)Py, >0, j=1,....m
PLLn(k+1)Py >0

(17)

Once again, we’ve transformed the problem into a SDP yielding a convex formu-
lation that guarantees each target is observed by a desired minimal number of agents
and that the communication network remains connected across the team formation
over the given time step. However, it should be noted that the utility of this approach
is hindered by the fact that it introduces m graphs—each having a combinatoric
number of edges. As a result, this method is best suited for problems featuring
modest k-coverage requirements or a small to moderate number of system agents
and targets. However, for multi-agent systems employing cameras or range sensors
where 2-coverage is required for tracking, the approach can still be run in real-time.

6.2 Simulation Results

In an effort to validate this approach, we implemented our paradigm in Matlab for
a team of four agents charged with tracking two diverging targets while ensuring
each is covered by at least kj; ,; = 2 team members at a requested standoff. Each
agent was modeled as having an omnidirectional camera allowing it to track within
0.11 units with the requested standoff distance being 0.07 units. Figure 6 (Left)
shows the resulting trajectories for the team. In this example, the objective was to
maximize the minimum connectivity of each of the visibility graphs—i.e. ¥ (X) =
jg{llig}{—kz(Lv,(X))}-

Figure 6 (Right,Top) shows the progression of A, (Ly, (X)) with respect to time. As
A (Ly, (X)) > 0, we see that o) is guaranteed to be tracked by at least k; = 2 agents.
Figure 6 (Right, Bottom) shows the approximate agent-target distances (i.e. d},, d,)
with respect to time. In this example, both agents readily maintain their active tracks
at the requested standoff. The agent velocities were set at 1.125 times that of the
observation target velocities, which were assumed equal.
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Fig. 6 (Left) A team of four agents tracks two diverging targets while ensuring each target is
observed by at least k{,2) = 2 team members. In this scenario, the objective was to maximize the
minimal connectivity of each of the visibility graphs. (Right, Top) The algebraic connectivity of the
Gy, (X) increases monotonically until reaching the value of 1, (Ly, (X)) ~ 0.3333. (Right, Bottom)
The relative agent-target distances (i.e. d‘I 1 d’2]) yielded from maximizing 2> (Ly, (X))—both agents
maintain the desired standoff of 0.07 units

7 Integrating Inter-agent Collision Avoidance

Until this point, we’ve made no mention on how to effectively guard against inter-
agent collisions. As it turns out, embedding said constraints into our framework
is fairly straight—forward. One approach is to follow the lead of [2], who utilized
a Euclidean Distance Matrix (EDM) to ultimately enforce the non-convex con-
straints || x{ —x§ > >, i=1,...,(n—1), j=(@+1),...,n This matrix captures
the squares of the distances separating each system agent. Through linearization it
can be used as part of an LMI to enforce said bounds. This is the technique we
employed in enforcing our inter-agent proximity constraints when generating the
results that yielded Fig. 6.

An alternate approach is to incorporate an inter-agent proximity graph Gp(Vp, Ep)
where Vp = A and Ep = {e: e € {A x A} /{(a;, a;): a; € A}}. Similar to the previous
graph formulations, we can associate a weight function fp: Ep — R* that is also a
direct functional of the Euclidean distance separating the system agents. In this case,
fr should be used to approximate an indicator function—showing an edge between
two vertices to be connected if and only if the associated agents are “safely” apart.

8 A SOCP Relaxation for Large-scale Teams

In some cases, it may be beneficial to sacrifice connectivity of the underlying network
proximity graph in order to ensure each target is tracked. In others, the range of
communication links may far exceed the sensing range of the mobile robot team.
In such scenarios, the constraint P;,L ~N(X) Py > 0 is superfluous and can be safely
eliminated from the problem statement. In doing so, we obtain the original problem
formulation presented in (6), which we claim can be effectively relaxed as a SOCP.
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8.1 Considering A Relaxed Formulation

The key to obtaining this result is observing that the constraint PTL(X)P > 0
reduces to a single non-linear inequality when the graph in question features
only a single pair of nodes. As such, we consider a relaxed formulation of the
tracking problem whereby we associate with each target o; a single bi-nodal graph
Gy, (V;, €)) with one vertex serving to represent the agent team (i.e. A) and the other
representing the target itself. By enforcing the connectivity of each of these graphs in
our problem formulation, we ensure at least a single active track to each observation
target.

Implicit in this statement is that an appropriate weight function can be formulated
for Gy,(X) that fully captures the level of connectivity between the agent team and
target o;. Although a variety of functions can be considered, we extend upon our
previous analysis and propose the following

Foy (e a8, ) = S (18)

Notice that by this definition, when target o; is being actively tracked by all network
agents with each agent observing its desired standoff distance, we have fy, = 1.
Similarly, when no agent is actively engaging the target, we have fy, = 0.

In light of these results, we restate (6) in the following relaxed form

min ¥ (X)

19
st. PTLy (X)P>0,j=1,....m (19)
where P =[1, —1]7.

Once again applying Euler’s first-order discretization method, we obtain the
following discrete—time formulation

min ¥ (X (k + 1))
stxfk+1) —xik)|, <vidr, i=1,....n (20)
P'Ly(k+1)P >0, j=1,....m

This is a standard SOCP constrained by n second-order conic inequalities along
with m linear inequalities. It is readily solvable using standard SOCP techniques that
are significantly more efficient than SDP approaches [21].

8.2 Simulation Results

To illustrate the effectiveness of this novel extension, we implemented the discrete-
time SOCP in simulation. Figure 7 (Left) shows the results of one trial where a
team of three robots operating in R? breaks an initial path formation in order to
successfully track three evading targets. Although contrived, this example serves to
highlight the governing behavior of our paradigm. By ensuring the connectivity of the
m = 3 bi-nodal visibility graphs, we see the team is able to ensure full target coverage.
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Fig. 7 (Left) A team of three agents initially deployed in a path break formation to ensure active
tracks of three mobile targets. Connectivity of the state-dependent visibility graph, Gy (X), is
ensured by using the proposed SOCP relaxation. (Right, Top) CPU time obtained from solving both
the SDP formulation and SOCP relaxation via SeDuMi for teams having up to 150 agents tracking
3 targets in R2. (Right, Bottom) CPU time trends for solving the relaxed problem using both a non-
industrial (SeDuMi) and industrial solver (MOSEK)

In this case, the objective was to maximize the minimal respective connectivity of
these graphs with r;; = 0.06, and efj =€;=0.04,Vi, J.

Performance in Practice 1In an effort to gauge the comparative difference in com-
plexity between the two approaches, we solved instances of (14) and (20) for team
sizes up to 150 nodes operating in R2. In our SDP implementation, we considered
the objective ¥ (X) = —X,(Ly (X)) and maintained fj, = 1. In the SOCP implemen-
tation, we considered maximizing the minimal connectivity among the m = 3 bi-
nodal visibility graphs. In both cases, SeDuMi was used as the underlying solver. All
computations were done on a standard desktop computer having a 2.4 GHz Core 2
Duo Pentium Processor with 2 GB RAM. Figure 7 (Right, Top) shows the results of
these trials where each data point corresponds to the mean utilization time obtained
from solving ten random problem instances.

Not surprisingly, the computational overhead associated with solving the SDP
formulation scales cubicly in time. In contrast, the computational load incurred
by solving our SOCP relaxation exhibits highly linear growth (r> = 0.9205). Using
SeDuMi, which is a non-industrial grade solver, we see that solving a single iteration
of (20) for a team of 150 agents requires 174 ms. In practice, however, it is far more
likely that an industrial grade solver will actually be used. As such, we also solved our
SOCEP relaxation considering the same random problem instances using the MOSEK
industrial solver package [26]. The results of these trials are shown in Fig. 7 (Right,
Bottom). Again, the computational overhead exhibits an approximately linear trend
(in this case, r* = 0.7435). However, what is perhaps more impressive is that solving
a single iteration of (20) for a team of 150 nodes requires only 33 ms!
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9 Towards Characterizing Optimality

As mentioned earlier, the proposed framework guarantees optimal solutions for
a given time step. Such a paradigm is ideal for operating in highly dynamic en-
vironments where a team can at best optimize over the time it takes for it to
sense its surroundings and issue corresponding control signals. However, we are
also interested in characterizing the performance of our discrete-time approach in
scenarios featuring static target placements. Specifically, we aim to address whether
the team will exhibit convergence to global optimality in such cases. Key to this
analysis is the realization that each iteration of our process provides a desired descent
direction and an implicit step-length towards some optimal team configuration with
respect to the current target arrangement. Accordingly, we consider a contrived pair
of static target arrangements that allow global solutions to be computed offline given
geometric constraints. Although results presented in this section are preliminary,
they do highlight the ability of our framework to “seek” a level of optimality
extending beyond the current time step.

In the first scenario, a team of ten agents was charged with observing a single target
in R? while maximizing connectivity of the visibility graph (i.e. ¥ (X) = —A,(Ly (X))
subject to network connectivity constraints. Initial agent positions were randomly
chosen with x{ ~ N(0, oy = 0, = 0.15) centered around the target’s location. Such
a scenario mimics a surveillance team being deployed to a region based upon
the believed position of the observation target. As the desired standoff distance
for each member was 0.30 units (with efj = ¢; = 0.15,Vi, ), any globally optimal
configuration was required to lie on the circle having that radius centered at the
target. A total of ten trials were run with each ultimately converging to a globally
optimal configuration—yielding ¥ (X) =~ 1. Network links were modeled to expe-
rience exponential decay between 0.05 and 0.45 units. In our implementation, the
process terminated when AW (X) = ¥ (X (k+ 1)) — ¥ (X (k)) < 1 x 107°. Figure 8
(Left) illustrates the convergent behavior exhibited during one of the random trials.

In the second scenario, a team of four agents was charged with tracking five targets
arranged in a static “cross” formation. Once again, the objective was to maximize
target visibility. In this configuration, each target was separated by 0.35 units along
the x and y axes of the coordinate frame. Given the desired standoff distance of 0.175
units (with efj = ¢;; = 0.125, Vi, j), the globally optimal configuration corresponded to
the midpoints along the adjoining line segments of the cross. Initial agent positions
were chosen according to the random model employed for the first scenario with
the mean corresponding to the center of the target arrangement. Both the same
network model and termination criteria were utilized for these trials as well. Of the
ten instances, eight resulted in convergence to global optimality—yielding ¥ (X) ~
0.382. In the remaining cases, locally optimal configurations were attained. This local
convergence can be attributed to initial arrangements that placed a majority of the
team in close proximity to a single periphery target—Ileaving one target well-beyond
sensing range. Such behavior is intuitive as the control functions governing agent—
target behaviors are likely to have reduced influence on an agent’s position when
the target lies outside the exponential well that models sensor visibility. Figure 8
(Right) illustrates the globally convergent behavior attained from one of these trials.
Expanding these preliminary results to include more diverse scenarios as well as to
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Fig. 8 (Left) A team of ten agents charged with observing a static target converge to a globally
optimal arrangement in R2. In this scenario, the desired standoff distance was 0.30 units with ef/ =
e}‘j = 0.15, Vi, j. (Right) A team of four agents also converge to a globally optimal arrangement while
observing five static targets. In this case, the desired standoff distance was 0.175 units with efj = e;‘j =
0.125, Vi, j. In both scenarios, ¥ (X) = —Ax(Ly (X))

explore the effects of the interactive control functions on convergence is the focus of
continued research on this topic.

10 Conclusions and Future Work

In this paper, we considered an optimization framework for dynamic target tracking
with performance guarantees for multi-agent systems. To realize this framework, we
introduced the notion of a weighted visibility graph to capture the state of active
target tracks as a function of the team’s state positional vector, X. Noting that
dynamic target tracking lends itself well to a discrete-time framework, we employed
standard linearization techniques to define an iterative SDP approach for solving
the target tracking problem subject to network connectivity constraints. We also
considered a framework extension that ensures a minimal cardinality coverage for
each of the observation targets. In cases where communication constraints can be
relaxed, we presented a novel SOCP relaxation to the target tracking problem
that ensures connectivity of the state-dependent visibility graph while providing a
tremendous reduction in computational cost when compared to a standard SDP
formulation. In solving said relaxation, the resulting configuration guarantees at least
a single team member is tracking each target at all times. Additionally, we included a
brief discussion on enforcing inter-agent proximity constraints, which can be readily
done using a state-dependent LMI. Lastly, we presented preliminary results on the
convergence properties of our discrete-time paradigm with respect to static target
arrangements.
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It should also be mentioned that the performance of the proposed framework
is independent of the agent-—target ratio. So long as the team can feasibly track
the target set given visibility (e.g. coverage) and network constraints, the resulting
problem formulation is guaranteed to yield optimal results over some time step. This
highlights the tremendous flexibility of the framework for a diverse range of tracking
scenarios.

As a final note, there are obvious areas where this work can be improved. For
instance, in some applications, a simple Gaussian potential may not fully capture
the desired behavior for agent-target interactions. To address this issue, we are
currently considering alternate non-symmetric weight functions. Another obvious
improvement to this framework is a bit more challenging. In ensuring k-coverage,
we introduce m graphs—each having a combinatoric number of edges. Clearly, such
a formulation does not lend itself well to large-scale problems. Formulating a more
efficient approach for enforcing said constraints is also a topic of significant interest
and will be explored.
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