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Abstract This paper proposes vision-based techniques for localizing an unmanned
aerial vehicle (UAV) by means of an on-board camera. Only natural landmarks
provided by a feature tracking algorithm will be considered, without the help of
visual beacons or landmarks with known positions. First, it is described a monocular
visual odometer which could be used as a backup system when the accuracy of GPS
is reduced to critical levels. Homography-based techniques are used to compute
the UAV relative translation and rotation by means of the images gathered by an
onboard camera. The analysis of the problem takes into account the stochastic nature
of the estimation and practical implementation issues. The visual odometer is then
integrated into a simultaneous localization and mapping (SLAM) scheme in order
to reduce the impact of cumulative errors in odometry-based position estimation
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approaches. Novel prediction and landmark initialization for SLAM in UAVs are
presented. The paper is supported by an extensive experimental work where the
proposed algorithms have been tested and validated using real UAVs.

Keywords Visual odometry · Homography · Unmanned aerial vehicles ·
Simultaneous localization and mapping · Computer vision

1 Introduction

Outdoor robotics applications in natural environments sometimes require different
accessibility capabilities than the capabilities provided by existing ground robotic
vehicles. In fact, in spite of the progress in the development of unmanned ground
vehicles along the last 20 years, navigating in unstructured natural environments still
poses significant challenges. The existing ground vehicles have inherent limitations
to reach the desired locations in many applications. The characteristics of the terrain
and the presence of obstacles, together with the requirement of fast response, may
represent a major drawback to the use of any ground locomotion system. Thus, in
many cases, the use unmanned aerial vehicles (UAVs) is the only effective way to
reach the target to get information or to deploy instrumentation.

In the last ten years UAVs have improved their autonomy both in energy and
information processing. Significant achievements have been obtained in autonomous
positioning and tracking. These improvements are based on modern satellite-based
position technologies, inertial navigation systems, communication and control tech-
nologies, and image processing. Furthermore, new sensing and processing capabil-
ities have been implemented on-board the UAVs. Thus, today we can consider
some UAVs as intelligent robotic systems integrating perception, learning, real-time
control, situation assessment, reasoning, decision-making and planning capabilities
for evolving and operating in complex environments.

In most cases, UAVs use the global position system (GPS) to determine their posi-
tion. As pointed out in the Volpe Report [42], the accuracy of this estimation directly
depends on the number of satellites used to compute the position and the quality of
the signals received by the device; radio effects like multi-path propagation could
cause the degradation in the estimation. In addition, radio frequency interferences
with coexisting devices or jamming could make the position estimation unfeasible.

These problems are well known in robotics. Thus, odometry is commonly used in
terrestrial robots as a backup positioning system or in sensor data fusion approaches.
This local estimation allows temporally managing GPS faults or degradations. How-
ever, the lack of odometry systems in most aerial vehicles can lead to catastrophic
consequences under GPS errors; incoherent control actions could be commanded
to the UAV, leading to crash and the loss of valuable hardware. Moreover, if full
autonomy in GPS-less environments is considered, then the problem of simultaneous
localization and mapping (SLAM) should be addressed.

If small UAVs are considered, their low payload represents a hard restriction on
the variety of devices to be used for odometry. Sensors like 3D or 2D laser scanners
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are too heavy and have an important dependence to the UAV distance to the ground.
Although there exist small devices for depth sensing, their range is usually shorter
than 15 m. Stereo vision systems have been successfully applied to low/medium size
UAVs due to its low weight and versatility [4, 9, 18], but the rigid distance between
the two cameras limits the useful altitude range.

Monocular vision seems to offer a good solution in terms of weight, accuracy
and scalability. This paper proposes a monocular visual odometer and vision-based
localization methods to act as backup systems when the accuracy of GPS is reduced
to critical levels. The objective is the development of computer vision techniques
for the computation of the relative translation and rotation, and for the localization
of the vehicle based on the images gathered by a camera on-board the UAV. The
analysis of the problem takes into account the stochastic nature of the estimation
and practical implementation issues.

The paper is structured as follows. First, related work in vision based localization
for UAVs is detailed. Then, a visual odometer based on frame-to-frame homogra-
phies is described, together with a robust method for homography computation.
Later, the homography-based odometry is included in a SLAM scheme in order to
overcome the error accumulation present in odometric approaches. The proposed
SLAM approach uses the information provided by the odometer as main prediction
hypothesis and for landmark initialization. Finally, conclusions and lessons learned
are described.

1.1 Related Work

One of the first researches on vision applied to UAV position estimation starts
in the nineties at the Carnegie-Mellon University (CMU). In [1], it is described
a vision-based odometer that allowed to lock the UAV to ground objects and
sense relative helicopter position and velocity in real time by means of stereo
vision. The same visual tracking techniques, combined with inertial sensors, were
applied to autonomous take off, following a prescribed trajectory and landing. The
CMU autonomous helicopter also demonstrated autonomous tracking capabilities of
moving objects by using only on-board specialized hardware.

The topic of vision-based autonomous landing of airborne systems has been
actively researched [30]. In the early nineties, Dickmanns and Schell [13] presented
some results of the possible use of vision for landing an airplane. Systems based on
artificial beacons and structured light are presented [44, 45]. The BEAR project at
Berkeley is a good example of vision systems for autonomous landing of UAVs.
In this project, vision-based pose estimation relative to a planar landing target and
vision-based landing of an aerial vehicle on a moving deck have been researched
[36, 40]. A technique based on multiple view geometry is used to compute the real
motion of one UAV with respect to a planar landing target. An artificial target allows
to establish quick matches and to solve the scale problem.

Computer vision has also been proposed for safe landing. Thus, in [15], a strategy
and an algorithm relying on image processing to search the ground for a safe landing
spot is presented. Vision-based techniques for landing on a artificial helipad of known
shape are also presented in [34, 35], where the case of landing on a slow moving
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helipad is considered. In [37], the landing strategies of bees are used to devise a vision
system based on optical flow for UAVs.

Corke et. al [9] have analyzed the use of stereo vision for height estimation in
small size helicopters. In Georgia Tech, vision-based aided navigation for UAVs
has been considered. Thus, in [43] the authors present an Extended Kalman Filter
approach that combines GPS measurements with image features obtained from a
known artificial target for helicopter position estimation.

In a previous work [5], the authors present a visual odometer for aerial vehicles
using monocular image sequences, but no error estimation is provided by the
algorithm, and the approach is limited to planar scenes. In [6], it is shown how
a mosaic can be used in aerial vehicles to partially correct the drift associated to
odometric approaches. This technique is extended in [7] with a minimization process
that allows to improve the spatial consistency of the online built mosaic. Recently,
in [8] the authors propose a visual odometer to compensate GPS failures. Image
matching with geo-referenced aerial imagery is proposed to compensate the drift
associated to odometry.

Although vision-based SLAM has been widely used in ground robots and has
demonstrated its feasibility for consistent perception of the environment and po-
sition of the robot, only a few applications have been implemented on UAVs.
The researches carried out in the LAAS laboratory in France and the Centre
for Autonomous Systems in Australia can be highlighted. The first of them has
developed an stereo vision system designed for the KARMA blimp [18, 21], where
interest point matching and Kalman filtering techniques are used for simultaneous
localization and mapping with very good results. However, this approach is not
suitable for helicopters, as the baseline of the stereo rig that can be carried is small,
and therefore it limits the height at which the UAV can fly. UAV simultaneous
localisation and map building with vision using a delta fixed-wing platform is also
presented in [19]. Artificial landmarks of known size are used in order to simplify
the landmark identification problem. The known size of the landmarks allows to
use the cameras as a passive range/bearing/elevation sensor. Preliminary work on
the use of vision-based bearing-only SLAM in UAVs is presented in [23]. In [22],
vision and IMU are combined for UAV SLAM employing an Unscented Kalman
Filter. The feature initialization assumes a flat terrain model, similarly to the present
approach. Results in simulation are shown in the paper. In [25], an architecture for
multi-vehicle SLAM is studied for its use with UAVs. The paper deals with the issues
of data association and communication, and some simulation results are presented.

Visual servoing approaches has been also proposed for direct control of UAVs.
The use of an omnidirectional camera for helicopter control has been presented
in [17]. The camera is used to maintain the helicopter in the centroid of a set of
artificial targets. The processed images are directly used to command the helicopter.
The paper shows the feasibility of the procedure, but no actual control is tested.
Omnidirectional vision is also used in [12] to estimate the attitude of an UAV. The
method detects the horizon line by means of image processing and computes the
attitude from its apparent motion. In the work of [27], vision is used to track features
of buildings. Image features and GPS measurements are combined together to keep
the UAV aligned with the selected features. Control design and stability analysis of
image-based controllers for aerial robots are presented in [26]. In [32] recent work
on vision-based control of a fixed wing aircraft is presented.
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2 Homography-Based Visual Odometry for UAVs

Image homographies will be a basic tool for estimating the motion that an UAV
undergoes by using monocular image sequences. A homography can be defined as
an invertible application of the projective space P2 into P2 that applies lines into
lines. Some basic properties of the homographies are the following:

– Any homography can be represented as a linear and invertible transformation in
homogeneous coordinates:
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Inversely, any transformation of this nature can be considered as a homography.
– Given the homogeneous nature of the homography H, it can be multiplied by an

arbitrary constant k �=0 and represent the same transformation. This means that
the matrix H is constrained by eight independent parameters and a scale factor.

Given two views of a scene, the homography model represents the exact transfor-
mation of the pixels on the image plane if both views are related by a pure rotation,
or if the viewed points lie on a plane. When a UAV flies at relatively high altitude,
it is a usual assumption to model the scene as pseudo-planar. The paper will propose
a method to extend the applicability of the homography model to non-planar scenes
(computing the homography related to a dominant plane on the scene) in order to
be able to perform motion estimation at medium or even low UAV altitude.

2.1 Robust Homography Estimation

The algorithm for homography computation is based on a point features matching
algorithm, and has been tested and validated with thousands of images captured
by different UAVs flying at different altitudes, from 15 to 150 m. This algorithm
(including the feature matching approach) was briefly described in [29]. It basically
consists of a point-feature tracker that obtains matches between images, and a
combination of least median of squares and M-Estimator for outlier rejection and
accurate homography estimation from these matches.

However, there are two factors that may reduce the applicability of the technique,
mainly when the UAV flies at altitudes of the same order of other elements on the
ground (buildings, trees, etc):

– Depending on the frame-rate and the vehicle motion, the overlap between
images in the sequence is sometimes reduced. This generates a non-uniform
distribution of the features along the images.

– In 3D scenes, the parallax effect will increase, and the planarity assumption will
not hold. The result is a dramatic growth of the outliers and even the divergence
of the M-Estimator.
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They produce different problems when computing the homography. If the
matches are not uniformly distributed over the images, an ill-posed system of
equations for homography computation will be generated, and there may exist
multiple solutions. On the other hand, if the parallax effect is significant, there
may exist multiple planes (whose transformation should be described by multiple
homographies); the algorithm should try to filter out all features but those lying on
the dominant plane of the scene (the ground plane).

In the proposed solution, the first problem is addressed through a hierarchy of
homographic models (see Fig. 1), in which the complexity of the model to be fitted
is decreased whenever the system of equations is ill-constrained, while the second is
tackled through outlier rejection techniques.

Therefore, depending on the quality of the available data, the constraints used
to compute the homography are different; thus, the accuracy changes as well. An
estimation of this accuracy will be given by the covariance matrix of the computed
parameters.

A complete homography has 8 df (as it is defined up to a scale factor). The
degrees of freedom can be reduced by fixing some of the parameters of the 3 × 3
matrix. The models used are the defined by Hartley in [16]: Euclidean, Affine and
Complete Homographic models, which have 4, 6 and 8 df respectively (see Fig. 1).
The percentage of successful matches obtained by the point tracker is used to have
an estimation about the level of the hierarchy where the homography computation
should start. These percentage thresholds were obtained empirically by processing
hundreds of aerial images. Each level involves the following different steps:

– Complete homography. Least median of squares (LMedS) is used for outlier
rejection and a M-Estimator to compute the final result. This model is used if
more than the 65% of the matches are successfully tracked.

– Affine homography. If the percentage of success in the tracking step is between
40% and 65%, then the LMedS is not used, given the reduction in the number
of matches. A relaxed M-Estimator (soft penalization) is carried out to compute
the model.

Fig. 1 Levels in the proposed
hierarchical homography
computation. Accuracy
increases with the complexity
of the model
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– Euclidean homography. If the percentage is below 40%, the set of data is too
noisy and small to apply non-linear minimizations. The model is computed using
least-squares.

In addition, it is necessary a rule to know when the current level is ill-posed
and the algorithm has to decrease the model complexity. The M-Estimator used
in the complete and affine computations is used for this purpose. It is considered
that the M-Estimator diverge if it reaches the maximum number of iterations and,
hence, the level in the hierarchy has to be changed to the next one.

2.2 Geometry of Two Views of the Same Plane

The odometer will extract the camera motion from the image motion modeled by the
estimated homography between two consecutive views. If we consider the position
and orientation of two cameras in the world coordinate frame, as shown in Fig. 2, it
can be seen that the two projections m1 ∈ R

2 and m2 ∈ R
2 of a fixed point P ∈ R

3

belonging to a plane � are related by:

m̃2 = A2R12

(
I − t2nT

1

d1

)
A−1

1

︸ ︷︷ ︸
H12

m̃1 (2)

where R12 is the rotation matrix that transforms a vector expressed in the coordinate
frame of camera one into the coordinate frame of camera two, t2 is the translation of
camera two with respect to camera one expressed in the coordinate frame of camera
one, the Euclidean distance from the camera one to the plane � is d1 and the normal
of the plane � (in the first camera coordinate frame) is given by the unitary 3-D
vector n1 (see Fig. 2).

Fig. 2 Geometry of two views
of the same plane



144 J Intell Robot Syst (2009) 54:137–161

For this particular case, the transformation between the features m1 and m2 is a
plane-to-plane homography, so m̃2 = H12m̃1. This homography is completely defined
by the calibration matrices A1 and A2, the relative position of the cameras and the
structure of the scene (the normal and distance of the plane). The problem can be
reformulated as a single camera whose position and orientation change through time.
In this case the calibration matrix is the same for both views, so A1 = A2.

Then, for the calibrated case, the relative position (rotation and translation)
between the cameras and the plane normal can be obtained if the homography
that relates two views of the same plane is known, for instance by obtaining a set
of matches between the images, as described in the previous section. Moreover, it
will be shown how to obtain an estimation of the covariance matrix for all these
parameters.

2.3 Motion Estimation from Homographies

A solution based on the singular value decomposition (SVD) of the homography will
be used. Consider a single camera that moves through time, the homography H12

that relates the first and the second view of the same planar scene and the camera
calibration matrix A1. According to Eq. 2, the calibrated homography is defined as:

Hc
12 = A−1

1 H12A1 = R12

(
I − t2nT

1

d1

)
(3)

The elements can be extracted from the singular value decomposition (SVD) of
the homography Hc

12 = UDVT , where D = diag(λ1, λ2, λ3) stores the singular values.
Once U, V and D have been conveniently ordered such us λ1 > λ2 > λ3, the singular
values can be used to distinguish three types of movements carried out by the camera
[39]:

– The three singular values of Hc
12 are equal, so λ1 = λ2 = λ3. It occurs when the

motion consist of rotation around an axis through the origin only, i.e., t2 = 0.
The rotation matrix is unique, but there is not sufficient information to estimate
the plane normal n1.

– The multiplicity of the singular values of Hc
12 is two, for example λ1 = λ2 �= λ3.

Then, the solution for motion and geometrical parameters is unique up to a
common scale factor for the translation parameters. In this case, the camera
translation is parallel to the normal plane.

– The three singular values of Hc
12 are different, i.e., λ1 �= λ2 �= λ3. In this case two

possible solutions for rotation, translation and plane normal exist and can be
computed.

The presence on noise in both feature tracking and homography estimation always
leads to different singular values for Hc

12 and the third of the previous cases becomes
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the dominant in real conditions. Rotation, translation and normal to the plane is then
given by the following expressions [39]:

R2 = U
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and ω is a scale factor. We set that scale factor so that ‖n1‖ = 1. Each solution
must accomplish that sgn(β) = −sgn(δ). For this case, Triggs algorithm [38] allows
a systematic and robust estimation. This method has been implemented and tested
in the experiments presented in this paper with very good results.

From Eq. 3 it can be seen that (as ‖n1‖ = 1) only the product ‖t2‖
d1

can be recovered.
The scale can be solved, then, if the distance d1 of camera 1 to the reference plane
is known. If the reference plane is the ground plane, as it would be the case in the
experiments, a barometric sensor or height sensor can be used to estimate this initial
distance. Also, a range sensor can be used. In this paper, we will consider that this
height is estimated for the first frame by one of these methods.

2.4 Correct Solution Disambiguation

Apart from the scale factor, two possible solutions {R1
2, t1

2, n1
1} and {R2

2, t2
2, n2

1} will be
obtained. Given a third view and its homography with respect to the first frame H13,
it is possible to recover an unique solution, as the estimated normal of the reference
plane in the first camera coordinate frame, n1, should be the same.

A method to detect the correct solution is proposed. If a sequence of images is
used, the set of possible normals is represented by:

Sn = {
n1

12, n2
12, n1

13, n2
13, n1

14, n2
14, ...

}
(5)

where the superindex denotes the two possible normal solutions and the subindex 1 j
denotes the normal n1 estimated using image j in the sequence.



146 J Intell Robot Syst (2009) 54:137–161

If n1
12 and n2

12 were correct, there would be two set of solutions, Sn1 and Sn2 . The
uniqueness of the normal leads to the following constraints:

∥∥∥n1
12 − ni

1 j

∥∥∥ ≤ ε1 ∀ni
1 j ∈ Sn1 (6)

∥∥∥n2
12 − ni

1 j

∥∥∥ ≤ ε2 ∀ni
j ∈ Sn2 (7)

where ε1 and ε2 are the minimal values that guarantee an unique solution for Eqs. 6
and 7 respectively. The pairs {Sn1 , ε1} and {Sn2 , ε2} are computed separately by means
of the following iterative algorithm:

1. The distance among ni
12 and the rest of normals of Sn is computed.

2. εi is set to an initial value.
3. For the current value εi, check if there exist an unique solution.
4. If no solution is found, increase the value of εi and try again with the step 3. If

multiple solutions were found decrease εi and try again with step 3. If an unique
solution was found, then finish.

The algorithm is applied to i = 1 and i = 2 and the correct solution is then chosen
between both options as the one that achieves the minimum ε.

2.5 An Estimation of the Uncertainties

An important issue with odometric measurements is to obtain a correct estimation
of the associated drift. The idea is to estimate the uncertainties on the estimated
rotation, translation and plane normal from the covariance matrix associated to
the homography, which can be computed from the estimated errors on the point
matches [6].

The proposed method computes the Jacobian of the complete process to obtain a
first order approximation of rotation, translation and plane normal error covariance
matrix. Once the calibrated homography has been decomposed into its singular
values, the computation of the camera motion is straightforward, so this section
will focus in the computation of the Jacobian associated to the singular value
decomposition process.

Thus, given the SVD decomposition of the calibrated homography Hc
12:

Hc
12 =

⎡
⎣

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤
⎦ = UDVT =

3∑
i=1

(
λiuivT

i

)
(8)

The goal is to compute ∂U
∂hij

, ∂V
∂hij

and ∂D
∂hij

for all hij in Hc
12. This Jacobian can be

easily computed through the robust method proposed by Papadopoulo and Lourakis
in [31].

Taking the derivative of Eq. 8 with respect to hij yields the following expression:

∂Hc
12

∂hij
= ∂U

∂hij
DVT + U

∂D
∂hij

VT + UD
∂VT

∂hij
(9)
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Clearly, ∀(k, l) �= (i, j ), ∂hkl
∂hij

= 0 while ∂hij

∂hij
= 1. Since U is an orthogonal matrix:

UTU = I ⇒ ∂UT

∂hij
U + UT ∂U

∂hij
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ij
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ij
U = 0 (10)

where 

ij
U is defined by
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U = UT ∂U

∂hij
(11)

It is clear that 

ij
U is an antisymmetric matrix. Similarly, an antisymmetric matrix 


ij
V

can be defined for V as:



ij
V = ∂VT

∂hij
V (12)

By multiplying Eq. 9 by UT and V from left and right respectively, and using
Eqs. 11 and 12, the following relation is obtained:

UT ∂Hu
12

∂hij
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ij
U D + ∂D

∂hij
+ D


ij
V (13)

Since 

ij
U and 


ij
V are antisymmetric matrices, all their diagonal elements are equal

to zero. Recalling that D is a diagonal matrix, it is easy to see that the diagonal
elements of 


ij
U D and D


ij
V are also zero. Thus:

∂λk

∂hij
= uikv jk (14)

Taking into account the antisymmetric property, the elements of the matrices 

ij
U

and 

ij
V can be computed by solving a set of 2 × 2 linear systems, which are derived

from the off-diagonal elements of the matrices in Eq. 13:

dl

ij
U kl + dk


ij
V kl = uikv jl

dk
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U kl + dl


ij
V kl = −uilv jk

⎫⎬
⎭ (15)

where the index ranges are k = 1 . . . 3 and l = i + 1 . . . 2. Note that, since the dk are
positive numbers, this system has a unique solution provided that dk �= dl . Assuming
for now that ∀(k, l), dk �= dl , the 3 parameters defining the non-zero elements of 


ij
U

and 

ij
V can be easily recovered by solving the 3 corresponding 2 × 2 linear systems.

Once 

ij
U and 


ij
V have been computed, the partial derivatives are obtained as

follows:

∂U
∂hij

= U

ij
U (16)

∂V
∂hij

= −V

ij
V (17)

Taking into account the Eqs. 14, 16 and 17 and the covariance matrix correspond-
ing to the homography it is possible to compute the covariance matrix associated to
U, V and D. Further details and demonstrations can be found in [31]. Finally, the
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Jacobians of the equations used to extract the rotation, translation and normal, given
by Eq. 4, are easily computed and combined with these covariances to estimate the
final motion covariances.

2.6 Experimental Results

This section shows some experimental results in which the homography-based visual
odometer is applied to monocular image sequences gathered by real UAVs.

The first experiment was conducted with the HERO helicopter (see Fig. 3).
HERO is an aerial robotic platform designed for research on UAV control, navi-
gation and perception. It has been developed by the “Robotics, Vision and Control
Research Group” at the University of Seville during the CROMAT project, funded
by the Spanish Government. HERO is equipped with accurate sensors to measure
position and orientation, cameras and a PC-104 to allow processing on board. A DSP
is used as data acquisition system and low level controller (position and orientation);
the PC-104 runs the rest of tasks such as perception, communications or navigation.
All the data gathered by the DSP are exported to the PC-104 through a serial line
and published for the rest of the processes.

All the sensor data have been logged together with the images in order to avoid
inconsistency among different sensor data. The position is estimated with a Novatel
DGPS with 2 cm accuracy and updated at 5 Hz, while an inertial measurement
unit (IMU) provides the orientation at 50 Hz, with accuracy of 0.5 degrees. In
the experiment, the camera was oriented forty-five degrees with respect to the
helicopter horizontal.

The visual odometer algorithm (feature tracking, robust homography computa-
tion and homography decomposition) has been programmed in C++ code and runs
at 10 Hz with 320 × 240 images. The experiment image sequence is composed by
650 samples, or approximately 65 s of flight. A sharp movement is made around
sample 400.

The DGPS measurements are used to validate the results. Along the flight,
good GPS coverage was available at all time. It is important to notice that the

Fig. 3 HERO helicopter



J Intell Robot Syst (2009) 54:137–161 149

odometry is computed taking into account the estimated translation and rotation,
so it accumulates both errors. The estimated position by using the visual odometer
is shown in Fig. 4. The figure presents the DGPS position estimation and the errors
associated to the odometer. It can be seen how the errors grow with the image sample
index. The errors corresponding to each estimation are added to the previous ones
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Fig. 4 Up position estimation using vision based technique (green dashed line) and DGPS estimation
(red solid line). Down error of the vision based odometry (green solid line) and estimated standard
deviation (blue dashed line)
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and make the position estimation diverge through time. Moreover, it can be seen
how the estimation of the standard deviation is coherent with the evolution of the
error (which is very important for further steps).

Figure 5 shows the evolution of the estimated orientation by using the odome-
ter and the on-board IMU. The orientation has been represented in the classic
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estimation (red solid line). The orientation is represented in roll/pitch/yaw. Bottom errors in the
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Fig. 6 Three images of the landing sequence and the estimated height computed by the visual
odometer (solid) and DGPS (dashed). The average frame rate is 7 Hz

roll/pitch/yaw convention (Euler XYZ). It can be seen that the errors in the estimated
orientation are small except for the pitch angle. The standard deviation is in general
overall consistent.

Results have been also obtained with data gathered during an autonomous land-
ing1 by the autonomous helicopter Marvin, developed by the Technical University of
Berlin [33]. Figure 6 shows three frames of the landing sequence with the obtained
matches. It should be pointed out that there are no artificial landmarks for the
matching process. Also, in this experiment, the concrete landing platform lacks
of structure, which can pose difficulties for the matching procedure. Moreover,
along the descent, the pan and tilt unit was moving the camera. Figure 6 shows
the estimated translation compared with DGPS, along with the estimated errors.
The results are very accurate, although the technique tends to overestimate the
uncertainty.

Thus, the experimental results show that the visual odometer can be used to
estimate the motion of the UAV; moreover, the estimated errors are consistent.
It is important to highlight that all experiments were carried out by using natural
landmarks automatically selected by the feature tracking algorithm, without the help
of visual beacons.

3 Application of Homography-Based Odometry to the SLAM Problem

A SLAM-based technique is proposed to compensate the accumulative error intrin-
sic to odometry and to solve the localization problem. SLAM employing monocular

1The autonomous landing was done based on DGPS and ultrasonic sensors.
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imagery is a particular case of the SLAM problem, called bearing-only SLAM or
boSLAM, in which bearing only sensors are used, a camera in this case. boSLAM
is a partially observable problem [41], as the depth of the landmarks cannot be
directly estimated. This entails a difficult landmark initialization problem which has
been tackled with two basic approaches: delayed and un-delayed initialization. In
the delayed initialization case, landmarks are not included in the SLAM system in
the first observation, but when the angular baseline in between observations has
grown large enough to ensure a good triangulation. This method has the advantage
of using well conditioned landmarks, but the SLAM system cannot take advantage
of the landmark until its localization is well conditioned. Several approaches have
been proposed in this area such as [10] where a Particle Filter is used to initialize
the landmark depth, or [11], where non-linear bundle adjustment over a set of
observations is used to initialize the landmarks.

On the other hand, un-delayed approaches introduce the landmark in the SLAM
system with the first observation, but some considerations have to be taken into
account due to the fact that the landmarks are usually bad conditioned in depth, and
then divergence problems may appear in the SLAM filter. Most existing approaches
are based on multiple hypotheses, as in [20], where a Gaussian Mixture is used for
landmark initialization in a Kalman Filter. Recent research [28] proposes the inverse
depth parametrization in a single-hypothesis approach for landmark initialization.

The technique presented in this Section is based on a classical EKF that simul-
taneously estimates the pose of the robot (6 df ) and a map of point features, as in
[2, 3, 14, 24]. The main contributions is a new undelayed feature initialization that
takes advantage of the scene normal plane estimation computed in the Homography-
based odometry. Indeed, the technique cannot be considered as boSLAM because
information from a range sensor is used, combined with the normal vector to the
plane, to initialize the landmark depth.

The use of the estimated rotation and translation provided by the odometer as the
main motion hypothesis in the prediction stage of the EKF is another contribution
made by this approach. Complex non-linear models are normally used to estimate
vehicle dynamics, due to the lack of odometers in UAVs. This leads to poor predic-
tion hypotheses, in terms of accuracy, and then a significant reduction of the filter
efficiency. In [19] a solution based on merging model-based estimation and inertial
measurements from local sensors (IMUs) is proposed, resulting in an accuracy
growth. The integration of the IMU is also considered here in order to improve the
position estimation. Next paragraphs describe the structure and implementation of
this filter.

3.1 The State Vector

The robot pose pt is composed by the position and orientation of the vehicle at time
t in the World Frame (see Section 3.4), so:

pt = [tt, qt]T = [x, y, z, qx, qy, qz, qw]T (18)

where tt expresses the position at time t of the UAV in the world coordinate frame,
and qt is the unitary quaternion that aligns the robot to the world reference frame
at time t. Using quaternions increases (in one) the number of parameters for the
orientation with respect to Euler angles, but simplifies the algebra and hence, the
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error propagation. However, the quaternion normalization has to be taken into
account after the prediction and update stages.

Landmarks will be represented by their 3D cartesian position in the World Frame
yn. Thus, the state vector xt is composed by the robot pose pt and the set of current
landmarks {y1, ..., yn} so:

xt = [
pT

t , yT
1 , ..., yT

n

]T
(19)

3.2 Prediction Stage

Given the pose at time t − 1, the odometer provides the translation with respect to
the previous position (expressed in the t − 1 frame) and the rotation that transforms
the previous orientation into the new one (expressed in the t frame). Taking into
account the quaternions algebra, the state vector at time t can be computed as:

tt = tt−1 + qt−1 ⊗ tu ⊗ q−1
t−1 (20)

qt = q−1
u ⊗ qt−1 (21)

where tu and qu represent the estimated translation and rotation from the odometer,
and ⊗ denotes quaternion multiplication. Notice that prediction does not affect the
landmark position because they are assumed to be motionless.

Computing the odometry requires to carry out the image processing between
consecutive images detailed in Section 2: feature tracking, homography estimation
and, finally, odometry. The estimated translation and rotation covariance matrices
are used to compute the process noise covariance matrix.

3.3 Updating Stage

From the whole set of features provided by the feature tracking algorithm used in
the prediction stage, a small subset is selected to act as landmarks. The features
associated to the landmarks are taken apart and not used for the homography
estimation in order to eliminate correlations among prediction and updating. Thus,
the number of landmarks must be a compromise between the performance of the
EKF and the performance of the homography estimation (and thus, the odometry
estimation). In addition, the computational requirements of the full SLAM approach
has to be considered.

Experimental results allowed the authors to properly tune the number of land-
marks and features used in the approach. A set of one hundred features are tracked
from one image to another, and a subset of ten/fifteen well distributed and stable
features are used as landmarks. Therefore, for each new image, the new position of
this subset of features will be given by the feature tracking algorithm; this information
will be used as measurement at time t, zt.

If the prediction stage was correct, the projection of each landmark into the
camera would fit with the estimated position of the feature given by the tracking
algorithm. If the landmark yn corresponds to the image feature mn = [u, v], following
the camera projection model (Fig. 7):

m̃n = A
(
q−1

t ⊗ (yn − tt) ⊗ qt
)

(22)
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Fig. 7 Projection of a
landmark into the camera. The
landmark is represented by a
black dot, the translation of
the camera focal (F) in the
world frame (W) is tt , the
back-projection of the feature
mn is m̃n and the position of
the landmark in the world
frame is yn

where A is the camera calibration matrix and m̃n = [ũ, ṽ, h], so the feature position
is computed as mn = [ũ/h, ṽ/h]. This measurement equation is applied to all the
features correctly tracked from the previous image to the current one. The data
association problem is solved by means of the feature matching algorithm.

In order to bound the computational cost needed for the SLAM approach,
landmarks are not stored indefinitely in the EKF filter. Instead, they are maintained
for a short period of time in the filter just to avoid transient occlusions, later they
are automatically marginalized out from the filter and a new feature, provided by
the tracker, initialized. If the corresponding landmarks are well conditioned, the
measurement equation constraints the current position and orientation of the UAV.

3.4 Filter and Landmarks Initialization

The filter state vector will be initialized to a given position and orientation. This
information can be provided by external devices such as GPS and IMU, and the
process covariance matrix to the corresponding error information. The position
can be also initialized to zero, so the first position is assumed as the origin and
the corresponding covariances are zero too. This initial position defines the World
Reference Frame where the landmarks and UAV pose are expressed.

In the following, a more sophisticated method for landmark initialization is
proposed. When a new image feature is selected for being a landmark in the filter,
it is necessary to compute its real position in the World frame. Due to the bearing
only nature of the camera, the back-projection of the feature is given by a ray defined
by the camera focal point and the image of the landmark. The proposed technique
takes advantage of knowing the normal to the scene plane and the distance from
the UAV to the ground at a given time. With this information the ground can be
locally approximated by a plane and the landmark position as the intersection of the
back-projection ray with this plane, as shown in Fig. 8.

If the World frame is aligned with the camera frame, the back-projection of the
feature mn = [u, v] will be the ray r defined by:

r : A−1m̃n (23)
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Fig. 8 Landmark
initialization representation

  Alt

where A is the camera calibration matrix and m̃n = [hmn, h]. In addition, the
odometer provides an estimation of the normal to the scene plane at time t denoted
as nt. Given the distance to the plane dt, the plane � is defined as:

� : dt − nT
t

⎡
⎣

x
y
z

⎤
⎦ (24)

Then, the landmark position will be computed as the intersection of the ray r with
the plane �. If Eqs. 23 and 24 are merged, the value of λ can be easily computed as:

h = (
nT

t A−1m̃n
)−1

dt (25)

and the landmark can be computed as:

yn = (
nT

t A−1m̃n
)−1

dtA−1m̃n (26)

But this landmark is expressed in the camera coordinate frame. The UAV current
position dt and orientation qt are finally used to express the landmark in the World
frame:

yn = tt + qt ⊗
((

nT
t A−1m̃n

)−1
dtA−1m̃n

)
⊗ q−1

t (27)

There is a strong dependence of this approach on the planarity of the scene. The
more planar the scene is, the better the plane approximation, leading to smaller noise
in the plane normal estimation, and thus, to a better initialization.

Nevertheless, the back-projection procedure is still non-linear, and therefore, the
Gaussian approximation for the errors has to be carefully considered. If the relative
orientation of the ray r associated to a feature is near parallel with respect to the
plane, the errors on the estimation can be high, and a Gaussian distribution will
not approximate the error shape adequately. Then, only those landmarks for which
the relative orientation of the ray and the plane is higher than 30 degrees will be
considered in the initialization process.

3.5 Experimental Results on Homography-Based SLAM

To test the proposed approach, experiments with the HERO helicopter were carried
out. The image sequence was gathered at 15 m of altitude with respect to the ground
and with the camera pointed 45 degrees with respect to the helicopter horizontal.

It is important to remark that no close-loop was carried out during the experiment,
although there are some loops present in the UAV trajectory, this subject is out of the
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scope of this research work. Therefore, the result can be improved if a reliable data
association algorithm is used for detecting and associating landmarks in the filter.
The complete size of the trajectory is about 90 m long.

IMU information is used to express the results in the same frame than DGPS mea-
surements. The results of the experiment are shown in Fig. 9, where the estimation
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Fig. 9 Up position estimation using the SLAM approach (green dashed line) and DGPS estimation
(bi). Down error of the SLAM approach (green solid line) and estimated standard deviation (blue
dashed line)
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Fig. 10 XY position
estimation using the SLAM
approach (green dashed line)
and DGPS estimation
(red solid line)

in each axis and the errors (with respect to DGPS outputs) are plotted. It can be
seen how the uncertainty estimation is coherent with the measured errors. However,
the position slowly diverges through time due to the absence of large loop closing.
The instant orientation is not plotted because it is inherently taken into account
in the computation of position. More details are shown in Fig. 10, where the XY
DGPS trajectory is plotted together with the XY estimation.

3.6 Experimental Results Including an Inertial Measurement Unit

The errors shown in Fig. 9 are partially generated by a drift in the estimation of
the UAV orientation. If the measurements of an inertial measurement unit (IMU)
are incorporated into the SLAM approach, the errors introduced by the orientation
estimation can be reset, and then the localization could be improved.

Fig. 11 XY position
estimation using the SLAM
approach with IMU
corrections (green dashed line)
and DGPS estimation (red
solid line)
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Fig. 12 Up position estimation using the SLAM approach with IMU corrections (green dashed line)
and DGPS estimation (red solid line). Down error of the SLAM approach with IMU corrections
(green solid line) and estimated standard deviation (blue dashed line)

The proposed SLAM approach can be easily adapted to include the IMU infor-
mation by integrating its measurement in the prediction stage of the EKF. The IMU
provides the complete orientation, so there is no error integration and it is bounded
by the accuracy of the device.
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This approach has been tested with the same data set. The XY estimation is plot-
ted in Fig. 11. Figure 12 shows the estimation compared to the DGPS measurement.
It can be seen that the errors in Z and Y are significantly smaller while in X are
slightly smaller with respect to the approach without considering the IMU.

4 Conclusions

The paper presents contributions to the vision-based navigation of aerial vehicles.
It is proposed a visual odometry system for UAVs based on monocular imagery.
Homographic models and homography decomposition are used to extract the real
camera motion and the normal vector to the scene plane. A range sensor is used to
obtain the scale factor of the motion. The paper shows the feasibility of the approach
through experimental results with real UAVs.

An important aspect of the proposed odometry approach is the use of natural
landmarks instead of beacons or visual references with known positions. A general-
purpose feature tracking is used for this purpose. Although natural landmarks in-
crease the applicability of the proposed techniques, they also increase the complexity
of the problem to be solved. In fact, outlier rejection and robust homography
estimation are required.

The paper also proposes a localization technique based on monocular vision. An
Extended Kalman filter-based SLAM is successfully used to compute the localization
and mapping. Two basic contributions to SLAM with UAVs are proposed. First,
the use of a vision based odometry as main motion hypothesis for the prediction
stage of the Kalman filter and, second, a new landmark initialization technique that
exploits the benefits of estimating the normal to the scene plane. Both techniques are
implemented and validated with a real UAV.

Although no large loops are closed in the experiments, the estimated position and
covariance are coherent, so the result could be improved if a reliable data association
algorithm is used for detecting and associating landmarks in the filter.

Future developments will consider different features with better invariance char-
acteristics in order to close loops. It should be pointed out that the method can be
applied to piece-wise planar scenes, like in urban scenarios
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