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Abstract This paper describes an efficient localization algorithm based on a vector-
matching technique for mobile robots with laser range finders. As a reference the
method uses a map with line-segment vectors, which can be built from a CAD
layout of the indoor environment. The contribution of this work lies in the overall
localization process. First, the proposed sequential segmentation method enables
efficient vector extraction from scanned data. Second, a reliable and efficient vector-
matching technique is proposed. Finally, a cost function suitable for vector-matching
is proposed for nonlinear pose estimation with solutions for both nonsingular and
singular cases. Simulation results show that the proposed localization method works
reliably even in a noisy environment. The algorithm was implemented for our
wheelchair-based mobile robot and evaluated in a 135 m long corridor environment.

Keywords Laser range finder · Localization · Line segment extraction ·
Line segment matching · Map-based navigation

1 Introduction

Autonomous robots are robots that can perform desired tasks in certain environ-
ments without human guidance. For a robot to perform the given task autonomously,
it must know where it is in order to navigate. Localization is the ability of a robot to
estimate its pose (orientation and location) within a given environmental map [28].

Categories (3), (6).
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There are two approaches to robot pose estimation.

• Global localization: The robot pose is determined in global coordinates on a
given map without reference to its initial pose. The key to this approach is finding
the most probable location on the map that best matches the acquired sensor
data. Typical examples include [3, 14, 18].

• Local localization: This approach requires an initial guess of the start pose. If
a world map is not provided, the robot updates its pose incrementally while
traversing. Because there is no global reference, a small pose error inevitably
accumulates, which may lead to a catastrophic pose error after a long traverse.
Most scan-matching techniques, such as iterative dual correspondence (IDC)
algorithm [19, 27], are in this group. On the other hand, when the robot has
been given an environmental map and information about its starting position, it
can determine its pose more deterministically. An estimated robot pose is always
represented in global coordinates, consistent with the given map, which prevents
possible accumulation of pose error.

In this paper, we deal with the map-based local localization problem for mobile
robots equipped with laser range finders (LRFs). Various approaches have been
proposed and they have the following common key operations.

• Feature extraction from the sensor data: Robust and efficient feature extrac-
tion is crucial for feature-matching-based localization methods. Various types
of features have been used, such as the angle histogram [30], line segment
[1, 2, 4, 9–12, 22, 32], and point [29, 31]. Also raw sensor data have been used
in many researches without feature extraction [13, 21].

• Feature matching: Extracted features are matched to the map for pose estima-
tion. There exist various matching schemes according to the type of features
used, but many approaches adopt Mahalanobis distance [2, 6].

• Pose estimation: The current robot pose is estimated based on the matching
result. For this operation, the least-squares method has been widely used
[6, 16, 19, 20].

Line segment is widely used as a main feature for LRF-based localization systems.
As LRF scan data are a set of Cartesian points, we require a segmentation method
to extract line segments from these. Recently, Nguyen [23] examined six popular
segmentation methods and concluded that the split-and-merge and incremental algo-
rithms are preferred because of their superior speed and accuracy. In particular, split-
and-merge is better with its lower computational complexity, O(N · log N) where
N is the number of segments. However, we require a more efficient segmentation
method for crowded environments where many segments may be extracted, resulting
in performance degradation. On the other hand, most matching algorithms for line
segment-based localization emphasizes linear characteristics of line segments. For
example, a scan and map line segments are determined as a matching pair in [32]
when the difference of angle and distance are less than a threshold. Similarly, match-
ing pairs are determined in [6] for line segments showing minimum Mahalanobis
distance. However, these approaches do not consider the end points of line segments.
It is possible for several map line segments to have almost the same line parameters,
which complicates determination of matching pairs with a simple geometric relation-
ship. For the pose estimation process, many successful approaches use nonlinear
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optimization methods, e.g., [5, 6, 19, 20], that minimize their own cost functions.
The cost function proposed by Beveridge [5] was developed for vision processing,
which needs some modification to deal with LRF scan data. In addition, a solution
for singularity is not presented in [5]. IDC [19] and MbICP [20] were originally scan-
matching algorithms; consequently they focus on minimizing the distance from point
to point. For the map-based localization, these scan- matching methods must obtain
virtual scan data from the map, requiring additional computation time. WLS [6] uses
two types of features: line segments and point features. A line segment is represented
as a point on the line that is the closest to the origin. However, as can be seen in
Figure 1 of [25], the uncertainty of a line segment increases with distance from the
center of rotational uncertainty. When the representative point features exist away
from the corresponding line segments, their accuracy cannot be guaranteed.

Our localization algorithm is based on a vector-matching technique: LRF scan
data are condensed into a collection of vectors and are matched to an environmental
map, which is built from a computer-aided design (CAD) layout of the environment.
For efficient vector extraction from raw sensor data, we propose a new sequential
least-squares fitting method, which is one of the most efficient methods of line
fitting operations. Feature matching is one of the most time-consuming processes
in the feature map-based localization. We present an efficient means of reducing
the search space. In addition, a new distance measure is proposed for robust vector-
matching. Pose estimation is accomplished by the well-known least-squares method.
Fast closed-form solutions for both nonsingular and singular cases are derived by
considering translation and rotation simultaneously. Simulation and experimental
results demonstrate the robustness and accuracy of the proposed localization method
compared with other modern techniques.

The remainder of the paper is organized as follows. Section 2 describes the overall
localization algorithm based on vector-matching. Section 3 presents simulation
and experimental results showing the performance of the proposed algorithm. We
present our conclusions in Section 4.

2 Localization Based on Vector-Matching

This section describes the proposed localization algorithm. For reference, the key
symbols used in this paper are described in Table 1.

Table 1 List of key symbols
used Symbol Description

M A global vector map, which is a set of map vectors
mi A map vector defined by a start point qi1 and an end

point qi2

D A set of LRF scan points
si A scan vector with a start point ri1 and an end point ri2

H A set of map-scan vector pairs
E A cost function representing a measure of the

distance between matched scan and map vectors
� Lagrange equation for pose estimation
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Our localization algorithm is based on the following schemes:

Step 1. Extract vectors from the LRF scan data.
Step 2. Perform vector-matching for map and scan vectors.
Step 3. Estimate the optimum robot pose using the matched vector pairs.

The rest of the Section describes map vectors and the three localization steps.

2.1 Map Vectors

Before explaining details of the three Steps, we explain map vectors, since our
localization algorithm adopts a vector map for global pose reference. Vector maps
are used implicitly or explicitly by previous researches [2, 7]. The vector map M is a
set of map vectors with NM vector elements:

M = {
mi|i = 1, . . . , NM

}
. (1)

mi is a directed line segment – vector – represented by the start point qi1 and the end
point qi2:

mi = {
qi1, qi2|qi ∈ R

2
}
. (2)

It is distinguished from an ordinary line segment as it includes the direction, as
shown in Fig. 1. We assume that the left side of a vector is open space and the
opposite side is unreachable space.

The main advantage of the vector map is that it simplifies discrimination between
the opposite sides of a wall. If a wall is described by two simple line segments m1

and m2 without considering direction, as shown in Fig. 2a, it is ambiguous as to
which side of the wall matches the detected scan line segment s1 . However, if we
use vectors, it is straightforward to determine that the scan vector s1 matches m1 by
checking directions, as shown in Fig. 2b. We use an LRF that scans the environment
counterclockwise; therefore, it is easy to extract vector features from the scan data
by using a suitable feature-extraction method.

Fig. 1 An example of a map
vector. The right side is
blocked or filled space and
the left side is open space

1iq

2iq

mi
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Fig. 2 Matching a with line
segments, b with vectors

1m 2m

1s

a

1s

1m 2m

b

2.2 Vector Extraction by the Sequential Segmentation Algorithm

This subsection describes the extraction of vectors from raw scan data (Step 1).
Here we propose a new vector extraction algorithm using a sequential least-squares
method, which does not require all the points constituting the line to update the
line parameters: When a new point is being added, the line parameters are updated
incrementally using previously computed information. The complexity of the pro-
posed algorithm is O(N), demonstrating its superior efficiency. The sequential least-
squares method is described in Appendix A1.

Given a set of raw scan data D={di|i = 1, . . . , ND, di ∈ R
2}, we start the segmen-

tation process by finding three consecutive points {dk, . . . , dk+2}1≤k≤ND−2 of which
distances ‖dk+1 − dk‖ and ‖dk+2 − dk+1‖ are within a threshold δd and the point
variance along the line they constitutes is less than a threshold δσ 2 . Let L1 be a line
which is obtained by least square fitting using the points {dk, . . . , dk+2}:

L1 : x · cos θ + y · sin θ = ρ. (3)

If ‖dk+3 − dk+2‖ is less than δd, we calculate the distance dist(dk+3, L1), which is
the perpendicular distance from the scan point dk+3 = (xd

k+3, yd
k+3) to L1:

dist(dk+3, L1) = ∣∣xd
k+3 · cos θ + yd

k+3 · sin θ − ρ
∣∣ .

If dist(dk+3, L1) is within the threshold, L1 is updated including dk+3 by the proposed
sequential least-squares method, and the next point dk+4 is tested. If not, a scan
vector s1 is determined from L1 and the same process is repeated for s2 from dk+3.
When the i-th line Li is determined by the scan points {dk, dk+1, . . . , dk+n}, the two
terminal points ri1, ri2 of si are determined as follows:

ri1 = (ρ · cos θ − t1 · sin θ, ρ · sin θ + t1 · cos θ)

ri2 = (ρ · cos θ − t2 · sin θ, ρ · sin θ + t2 · cos θ)

where:

t1 = −xd
k · sin θ + yd

k · cos θ

t2 = −xd
k+n · sin θ + yd

k+n · cos θ.

The resulting scan vector si is composed of its two end points (ri1, ri2), length li,
and the standard deviation σi of points constituting si, as shown in Fig. 3. In addition
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Fig. 3 An example of a scan
vector si, which has two end
points (ri1, ri2) that are
obtained during the
segmentation process kd

1ir

2irsi

il

Ni, the number of scan points contributed for the vector is also included for the pose
estimation step:

si = {
(ri1, ri2), li, σi, Ni|ri1, ri2 ∈ R

2, (li, σi) ∈ R
}
. (4)

Note that si is described in the local coordinate system. To be matched to the
map vectors, therefore, we have to transform scan, or map, vectors to the general
coordinate system. Further descriptions are presented in Section 2.3.

Following MATLAB simulation results show that the proposed sequential seg-
mentation algorithm requires less computation time than the split-and-merge algo-
rithm [24], which is known as one of the most efficient segmentation method [23].
We managed a simulation environment to generate 10 to 50 times of segmentation.
Figure 4 shows an example. The robot obtains scan data at the position marked by
red arrow (Fig. 4a), which is segmented into 50 vectors (Fig. 4b).

Figure 5 and Table 2 compares the mean computation time for the segmentation
algorithms. For each case, 1,000 times of segmentation has been performed. The

Fig. 4 Simulation for vector extraction. a Shows the simulated environment with various obstacles.
Red arrow indicates the simulated robot. Fifty segments are extracted as shown in (b)
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Fig. 5 The computation time
of vector extraction by the
selected methods. Blue circle
is for split and merge method
and red square is for
sequential segmentation
method

computation time of split-and-merge increases more rapidly than the proposed
method as the number of segmentation increases. From this fact, we can expect that
the proposed segmentation algorithm works better in a more cluttered environment.

The uncertainty associated with si is represented by the covariance matrices
associated with its end points ri1 and ri2. To obtain these parameters, we first calculate
the uncertainty of the related line Li, which is represented by the covariance matrix
P�. Here we use Haralick’s approach [15] to find P�.

Covariance on � = [θ ρ]T , P�, is given by

P� =
(

∂g
∂�

)−1

· (
	 f + 	d

) ·
(

∂g
∂�

)−1

where:

g = ∂ E fit/∂�

E fit =
n∑

i=1

f 2
i =

n∑

i=1

(
xi cos θn + yi sin θn − ρn

)2

Table 2 The computation time of vector extraction by the selected methods

Number of Split and merge Sequential segmentation 2©/ 1©
extracted vectors (ms) . . . 1© method (ms) . . . 2©
10 0.647 0.645 0.997
20 1.533 1.054 0.686
30 2.390 1.314 0.550
40 2.743 1.577 0.575
50 4.161 1.916 0.460
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	 f =
n∑

i=1

(
∂g
∂ fi

)
Pf

(
∂g
∂ fi

)T

	d =
n∑

i=1

(
∂g
∂di

)
Pdi

(
∂g
∂di

)T

To calculate the covariance of end points, Pri1,ri2 , from P�, we adopted Pfister’s
method [26]. By definition, ri1 and ri2 are the perpendicular feet of dk and dk+n,
respectively. Therefore, Pri1,ri2 should be affected by Pdk,dk+n and P� as follows:

Pri1 = Rθn Ha Ps HT
a RT

θn

Pri2 = Rθn Hb Ps HT
b RT

θn
(5)

where Rθn is a rotational matrix, Ha,b are selection matrices, and Ps is determined
from P� and Pdk,dk+n . Further descriptions are presented in Section 4.2.9 of [26].

2.3 Vector-Matching

After scan vectors are extracted, they should be matched to the map vectors to
estimate the robot pose (Step 2). There are two important issues in the vector-
matching step: efficiency and accuracy. Generally, vector-matching is one of the most
time-consuming components in the localization process. Given NS scan vectors and
NM map vectors, NNM+1

S possible combination should be tested to find the optimum
matching pairs. When a robot operates in a cluttered and complex environment,
many scan vectors need to be compared to many map vectors, which requires
considerable computation time.

Here we propose a new vector-matching algorithm. A selection guide for matching
candidates is presented for the efficiency issue. In addition, a new distance measure is
defined that considers the relationship between end points of map vectors and those
of scan vectors.

As described in Sections 2.1 and 2.2, scan vectors are defined in the local coor-
dinate frame but the map vectors are described in the global coordinate frame. To
find matching pairs, these vectors must be described in the same coordinate system.
In general, the number of scan vectors is smaller than the number of map vectors.
Therefore, transforming scan vectors to the global coordinate frame costs less than
the reverse. For this reason, vector-matching and the following pose estimation
processes are performed in the global coordinate system.

Moreover, local localization assumes small or limited odometry error. From this
fact, we can limit the candidate map vectors that are to be matched to the scan
vectors by considering the sensor range. Figure 6 shows the possible sensing range
with respect to each coordinate frames. Throughout this paper, a LMS200 laser
range finder is used as the main sensor. It provides 180◦ coverage with 0.25, 0.5, or
1.0◦ angular resolution. ψideal of Fig. 6a denotes the ideal sensing range in the local
coordinate frame.

However, there are some problems remaining. First, the half-circled shape of the
sensing range makes selection of candidate map vectors difficult. For efficiency, it
is simplified to be the rectangle ψL, which contains ψideal, considering the odometry
error {δψ

x , δ
ψ
y , δ

ψ

φ }. Then ψL is transformed into global coordinates (ψ ′
L of Fig. 6b).

To determine candidate map vectors, all map vectors must be tested whether they
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Fig. 6 Possible sensing area with respect to each coordinate frames. a ψideal is the ideal sensing area
in the local coordinate frame, which is simplified as ψL for efficiency. Here OL is the local origin and
{δψ

x , δ
ψ
y , δ

ψ
φ } indicates odometry error. b ψL is transformed into global coordinate frame becoming

ψ ′
L, which is further simplified as ψG for algorithmic efficiency

are partially or totally included in ψ ′
L. The computational complexity is greatly

dependent on the shape of ψ ′
L. Further simplification of ψ ′

L into ψG makes this
operation extremely simple.

Figure 7 and Table 3 shows the simulation results for the vector-matching opera-
tion using the full search method and the proposed algorithm. It can be seen that the
proposed algorithm becomes more efficient as the number of map vectors increases.

As mentioned in Section 1, considering only line parameters (angle and perpendic-
ular distance from the origin) is not enough for vector-matching. Figure 8 shows an
example of matching ambiguity. Here m1 and m5 lies on the same line: If we consider
only line parameters, we can not determine which of them is closer to s1. On the other

Fig. 7 Average computation
time of the selected
vector-matching methods
with respect to the number
of map vectors. Blue circle
is for the full search method
and red square is for the
proposed method
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Table 3 Average computation
time of the selected vector-
matching methods with
respect to the number
of map vectors

NM Full search Proposed method 2©/ 1©
(ms) . . . 1© (ms) . . . 2©

767 6.536 0.767 0.174
1534 12.814 1.041 0.081
2301 18.764 1.315 0.070
3068 24.943 1.619 0.065
3835 31.198 1.938 0.062

hand, m3 is farther from s1 than other vectors considering line parameters. However,
it needs less amount of translation and rotation to be matched with s1 compared to
m1 or m5.

To solve this kind of ambiguity problem, we present a new distance measure
considering geometric relationship between vectors. Let M′ be a set of map vectors
that are partially or totally included in ψG.

M′ = {
m j| j = 1, . . . , NM′

}
(6)

Then a map vector m j ∈ M′ is determined to be a match for a scan vector si when
it minimizes the following distance measure:

dist2(si, m j) � dist2(ri1, m j) + dist2(ri2, m j), (7)

where rik|k=1,2 are the end points of si.
Let the projection of rik onto m j be r p

ik as described in Fig. 9. If r p
ik is on the outside

of m j (Fig. 9a, c), dist(rik, m j) is the shorter one between
∥∥rik − q j1

∥∥ and
∥∥rik − q j2

∥∥.
If r p

ik exists on m j, dist(rik, m j) becomes
∥∥rik − r p

ik

∥∥. That is, dist2(si, m j) explains not
only vertical but also horizontal distance between vectors, which clarify the ambiguity
problem of Fig. 8. These facts can be expressed in a simple formulation:

dist2(rik|k=1,2 , m j) � min
λ∈[0,1]

dist2(rik|k=1,2 , (1 − λ)qj1 + λqj2)

= min
λ∈[0,1]

(aλ2 + bλ + c), (8)

Fig. 8 An example of
matching ambiguity 1s

1m

3m
5m
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Fig. 9 Distance measures for vector-matching according to the geometry of vectors. 1© indicates
dist(ri1, m j) and 2© is for dist(ri2, m j). si is a scan vector with end points (ri1, ri2), and m j is a map
vector with two points (qj1, qj2). r p

i1 and r p
i2 are perpendicular feet of ri1 and ri2 onto m j respectively

where:

a = ‖qj2 − qj1‖2

b = −2(rik|k=1,2 − qj1)
T(

qj2 − qj1
)

c = ‖rik|k=1,2 − qj1‖2.

Table 4 shows the complete vector-matching process. As a result, we obtain a set
of N matching pairs H defined as:

H = {hk|hk =< si, m j >, si ∈ S, m j ∈ M′, k = 1, . . . , N}.

2.4 Nonlinear Pose Estimation

The purpose of the pose estimation step is to find the most plausible robot pose by
calculating the rotation φ and translation T that optimally matches the scan data to
the map (Step 3). In this subsection, a cost function for the proposed vector-matching
is presented, and a closed-form solution is also presented.

Table 4 The proposed vector-matching algorithm

Pseudo-code for the vector-matching algorithm

Determine M′
For all scan vectors {si}i=1,...,NS

For all map vectors {m j} j=1,...,NM′
If |∠si − ∠m j| is under threshold

Compute dist2(si, m j)

If dist2(si, m j) is under threshold and is minimum
mmin = m j

End If
End If

End For
If mmin is nonzero

H ← hk =< si, m j >

End If
End For
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Fig. 10 Parameters for pose
calculation. vkj| j=1,2 are
perpendicular distances from
the end points of sk to mk

sk
siR= Tφ 

• +

mk

1kv 2kv

From the result of the previous matching step, we can build a cost function E as:

E = η ·
N∑

k=1

Nklk

σk

2∑

j=1

v2
kj (9)

where Nk, lk and σk are entities of sk as in Eq. 4. These parameters indicate the
quality of the scan vector for localization. A vector receives greater weight when
it is either made from more scan points or longer than other vectors. In addition,
point variance is also considered to bestow a penalty on noisy vectors [17]. η is a
normalizing constant.

Here, vkj is defined as a perpendicular distance from rk(1,2) of sk, which is
transformed from si by rotation φ and translation T, to the corresponding map vector
mk (Fig. 10):

vkj = [
cos θ ′

k sin θ ′
k

] · (
Rφ · r′

kj + T
) − ρ ′

k (10)

where θk and ρk are line parameters for the map vector mk.
Using the following substitution:

�k =
[

cos θ ′
k

sin θ ′
k

]
, �kj =

[
x′

kj −y′
kj

y′
kj x′

kj

]
, � =

[
cos φ

sin φ

]

vkj can be simplified as:

vkj = �T
k · (�kj� + T) − ρ ′

k. (11)

Expanding Eq. 9 with Eq. 11 gives:

E(�, T) = η ·
N∑

k=1

Nklk

σk

2∑

j=1

(
�T

k · (�kj� + T) − ρ ′
k

)
2

= �T A� + 2TT B� + TTCT − 2U T� − 2VT T + τ, (12)
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where:

A = η ·
N∑

k=1

Nklk

σk

2∑

j=1

�T
kj�k�

T
k �kj B = η ·

N∑

k=1

Nklk

σk

2∑

j=1

�k�
T
k �kj,

C = 2η ·
N∑

k=1

Nklk

σk
�k�

T
k , U = η ·

N∑

k=1

Nklk

σk

2∑

j=1

ρ ′
k�

T
kj�k,

V = 2η ·
N∑

k=1

Nklk

σk
ρ ′

k�k, τ = 2η ·
N∑

k=1

Nklk

σk

(
ρ ′

k

)2
. (13)

Because Eq. 12 is a quadratic form, the local minima of E(�, T) satisfy:

∂ E
∂�

= 0 (14)

∂ E
∂T

= 0. (15)

� is constrained by the following trigonometric identity:

�T� = 1, (16)

Now Eq. 15 is combined with Eq. 12 to reveal:

∂ E
∂T

= 2B� + 2CT − 2V = 0. (17)

Now the solutions for Eq. 17 are categorized by the singularity of matrix C. If C is a
nonsingular matrix, the unique translation T is given as a function of �:

T = C−1(V − B�). (18)

Infinitely many solutions for T exist satisfying the constraint (17) if C is singular.
Figure 11 shows this situation. The robot pose is uniquely determined if there exist
at least two scan segments that are not parallel to each other, as in Figs. 11a and
11b. However, when only parallel scan segments are detected, as in Figs. 11c and
11d, infinitely many solutions exist along a line. The singularity of C in each case is
described in Appendix A2. The following subsections describe these situations.

2.4.1 When C is a Nonsingular Matrix

When the scan vectors are not parallel to each other, the cost function E has a unique
minimum [17]. Substituting T of Eq. 12 for Eq. 18 gives:

E = �T P� + 2WT� + τ ′, (19)

where:

P = A − BT(C−1)T B

W = BT(C−1)TV − U

τ ′ = τ − VT(C−1)TV.
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Fig. 11 Situations for a
unique solution and infinite
solutions. Dashed vectors
denote scan vectors obtained
at the robot pose shown. When
the scan vectors are not
parallel to each other, as in
(a), there exists a unique
solution (b). However, when
only parallel scan vectors are
obtained, as in (c), infinitely
many solutions exist (d)

a

One unique 
solution

b

c

Infinitely 
many 

solutions 
along a line

d

Now, � is the only variable in cost E. To find the optimum φ minimizing E, we form
a Lagrangian combining Eqs. 19 and 16, for example:

� = E(�, T) + λ(�T� − 1). (20)

The value of � minimizing � satisfies:

∂�

∂�
= 2P� + 2W + 2λ� = 0

or:

(P + λI)� + W = 0. (21)

Substituting P, W, and � of Eq. 21 with the following definitions:

P =
[

p1 p3

p3 p2

]
, W =

[
w1

w2

]

and excluding λ from Eq. 21 yields:

p3
(
cos2 φ − sin2 φ

) + (p2 − p1) cos φ sin φ + w2 cos φ − w1 sin φ = 0. (22)
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Further expansion of Eq. 22, using identity Eq. 16, leads to a quartic in sin φ as:

k4 sin4 φ + k3 sin3 φ + k2 sin2 φ + k1 sin1 φ + k0 = 0, (23)

where:

k4 = (p1 − p2)
2 + 4p2

3

k3 = −2(p1 − p2)w2 + 4p3w1

k2 = w2
1 + w2

2 − k4

k1 = 2(p1 − p2)w2 − 2p3w1

k0 = p2
3 − w2

2.

As described above, φ is the angular difference between the odometry and the
real pose. Assuming moderate odometry error, φ should be |φ| < π/2 where sin φ

is a one-to-one function. Among all the real roots of Eq. 23, we can always find a
unique solution that is under a threshold value and satisfies Eq. 22. As a result, the
translation T is also determined uniquely from Eq. 18.

2.4.2 When C is a Singular Matrix

If the scan vectors obtained are parallel to each other, or only one vector is detected,
as shown in Fig. 11c, Eq. 12 will produce a unique rotation φ and infinitely many
candidates for translation T. When only parallel vectors are obtained, matrices B
and C in Eq. 13 become singular, as shown in Appendix A2. We define the individual
elements of all matrix parameters of Eq. 17 as follows:

C =
[

c1 c3

c3 c2

]
, B =

[
b1 b2

c3

c1
b1

c3

c1
b2

]

, T =
[

t2
t2

]
, V =

[
v1

v2

]
. (24)

Expanding Eq. 17 with Eq. 24 results in a line equation for a possible trans-
lation T:

c1t1 + c3t2 = v1 − b1 cos φ − b2 sin φ. (25)

We build a Lagrangian from Eq. 12, as in Eq. 20. Substitution of:

A =
[

a1 a3

a3 a2

]
, U =

[
u1

u2

]

and using a similar expansion to that in Eq. 22 gives:

k4 sin4 φ + k3 sin3 φ + k2 sin2 φ + k1 sin1 φ + k0 = 0, (26)
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where:

k4 =
(

a2 − a1 + b 2
1 − b 2

2

c1

)2

+ 4

(
a3 − b1b2

c1

)2

k3 = 4

(
a3 − b1b2

c1

) (
b1

c1
v1 − u1

)
+ 2

(
a2 − a1 + b 2

1 − b 2
2

c1

) (
b 2

c1
v1 − u2

)

k2 = −
(

a2 − a1 + b 2
1 − b 2

2

c1

)2

− 4

(
a3 − b1b2

c1

)2

+
(

b 1

c1
v1 − u1

)2

+
(

b 2

c1
v1 − u2

)2

k1 = −2

(
a3 − b1b2

c1

)(
b1

c1
v1 − u1

)
− 2

(
a2 − a1 + b 2

1 − b 2
2

c1

)(
b2

c1
v1 − u2

)

k0 =
(

a3 − b1b2

c1

)2

−
(

b 2

c1
v1 − u2

)2

.

Now, the unique rotation φ is calculated, and the line equation for translation is
also obtained, by inserting φ into Eq. 25. The resultant line equation for possible
translations T is:

c1t1 + c3t2 = v1 − b1 cos φ − b2 sin φ

⇒ cos ψ · t1 + sin ψ · t2 = ε, (27)

where cos ψ = c1√
c2

1+c2
3

, sin ψ = c3√
c2

1+c2
3

, and ε = v1−b 1x−b 2 y√
c2

1+c2
3

.

Let the optimal translation T be the perpendicular foot of the presumed robot
position, known by odometry, onto the line of Eq. 27, which means that T is the
perpendicular foot of the origin:

T =
[

ε cos ψ

ε sin ψ

]
. (28)

Note that the resultant robot pose can be calculated by transforming φ and T into
the global coordinate system.

2.4.3 Uncertainty

The uncertainty of the robot pose is obtained in a similar manner, as shown in
Section 2.2:

Px,y,φ =
(

∂h
∂(x, y, φ)

)−1

· (	v + 	r + 	m) ·
(

∂h
∂x, y, φ

)−1

(29)
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where h = ∂ E/∂(x, y, φ) and

	v =
N∑

k=1

2∑

j=1

∂h
∂vkj

· Pv · ∂h
∂vkj

T

	r =
N∑

k=1

2∑

j=1

∂h
∂rkj

· Prkj · ∂h
∂rkj

T

	m =
N∑

k=1

∂h
∂mk

· Pmk · ∂h
∂mk

T

Here Pmk is given as an input, and Pv is estimated as the sample covariance, which is
the same as E(x, y, φ). Prkj is the variance of two end points of sk, which is described
in Section 2.2.

3 Simulations and Experiments

In this section, the performance of the proposed localization method is evaluated by
simulations and experiments.

3.1 Simulations

Two famous localization methods were selected for comparison with the proposed
localization algorithm. Borges [8] presented the WLS estimator. This method uses
the cost function J(z̃, U), which is similar to Eq. 9. However, the main feature used
in Borges’s method is different from ours; he used infinite line and point features
for pose estimation. As shown in [26], the uncertainty of a scan vector is a minimum
at the center of mass and maximum at the two terminal points. For this reason, the
features used in [8] may suffer more uncertainty compared to the proposed vector

Fig. 12 The clean
environment of which obstacle
ratio is 15.67%. Obstacles are
represented as red circles and
rectangles. The simulated
robot is initiated at a random
position on the blue curve and
starts global pose estimation
navigating along the trajectory
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Fig. 13 The heavily occupied
environment. The ratio
of corrupted sensor data
increases to an average
of 69.11%

feature. In addition, IDC [19] was compared to our method to determine whether
the scan- matching method is useful for map-based localization.

We managed two simulation environments with different obstacle ratios. Here
we use the term ’obstacle ratio’ as the ratio of scan data that is obtained from
objects that are not present in the map. The clean environment of Fig. 12 contains
few obstacles with a ratio of 15.67%. On the other hand, Fig. 13 shows a heavily
occupied environment, for which the obstacle ratio is 69.11%. The more obstacles in
the environment, the greater the chance of matching error.

It was assumed that the robot moves along the predefined trajectory with a
velocity of 0.3 m/s. Odometry is modeled that suffers from random noise by 10%
of real wheel rotation. The range sensor was modeled on the SICK LMS-200, which
is the same as fitted to our mobile robot.

Table 5 shows the result of the pose estimation simulation. For clarity, only
position error is presented. As can be seen, the proposed method shows minimum
mean error compared to the other algorithms, which shows the adequacy of vector
feature used and the accuracy of the pose estimation.

Figure 14 shows ±3σ confidence intervals for the proposed localization method.
As can be seen, the proposed approach presents consistent uncertainty estimates
with pose error.

3.2 Experiments

The proposed localization technique was implemented on a two-wheeled au-
tonomous wheelchair, as shown in Fig. 15. Our system is based on a commercial

Table 5 A simulation result
for the performance of
selected pose estimation
algorithms

Clean Heavily occupied

Mean err(m) Std. dev. Mean err(m) Std. dev.

Proposed 0.0092 0.0363 0.0208 0.0671
WLS 0.0347 0.0480 0.0479 0.0602
IDC 0.0313 0.0736 0.0412 0.0806
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Fig. 14 Errors (blue line) and
±3σ confidence intervals (red
dots) given by the proposed
localization approach in the
heavily occupied environment
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battery-powered wheelchair Chairman, manufactured by Permobil (see http://
www.permobil.com), which has two drive motors, four seat actuator motors, and
three control modules: a joystick module that receives the user’s instructions and
converts it to a corresponding control command, a power module that converts the

Fig. 15 The wheelchair
mobile robot

http://www.permobil.com
http://www.permobil.com
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Fig. 16 The geometry of
the measurement system. The
SICK LMS-200 on the chassis
is tilted down by θs = 25◦
at a height of H = 169 cm

H

sθ 

tx
ty

hx
hy

F

control command to power signals to drive the wheelchair and transmits the current
status to the joystick module, and a seat-actuator module that provides the power for
electrical adjustment of the seat position. These modules communicate via RS232c
serial interfaces.

Our retrofitted robotic wheelchair is equipped with an industrial PC (CPU:
Pentium III-1 GHz, RAM: 512 MB), mounted on the back of the wheelchair, and
running Linux 2.4.22 with RTAI 24.1.10 for real-time processing. An LRF (SICK
LMS 200) is mounted on a custom-designed aluminum prop, at a height of 169
cm, and with its scan plane tilted at an angle of 25◦ to the ground, so that the
wheelchair can perceive the environment and detect objects below the height of the
LRF (Fig. 16). The x-y coordinates of scanned data are corrected by:

xh = xt

yh = yt · cos θs

where (xt, yt) is the original point and (xh, yh) is the corrected point. Note that the
scan points for which yh is approximately F are eliminated to prevent erroneous wall
detection.

The LRF provides a selectable angular resolution of 0.25◦, 0.5◦, or 1◦. In our
system, it scans through 180◦, at 0.5◦ angular resolution, with each complete scan
taking 26 ms. Because the data packet size for one complete scan is 733 bytes, it is
linked to the PC via a RS422 serial port for high-speed data transmission at 500 Kbps.

Figure 17 shows the block diagram of the implemented localization system; a
shaded block denotes physical hardware. Raw scan data obtained from the LRF
are corrected according to the geometry of the LRF in the ’Data correction’ block.
The ’Vector extraction’ block performs sequential least-squares fitting for vector
extraction. Then scan vectors are transformed to the global coordinates according
to the estimated pose by dead reckoning and compared to the map vectors to
find matching vector pairs. Finally, the ’Pose estimation’ block performs nonlinear
optimization to determine the resultant robot pose.

While traversing a 135 m corridor on the third floor of Dept. of EE in KAIST,
the wheelchair system scanned the environment 14,838 times. The corridor has two
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Motor encoder LRF

Pose estimation by 
dead-reckoning

Data correction 

Vector extraction Vector matching  

Pose estimation

Environmental map

Fig. 17 A block diagram of the implemented localization system

corners and 41 doors, some of which were open and others closed. Some sections
have glass windows on the wall, where the laser beam may penetrate or may be
reflected in an undefined manner. At each scan time, the robot always met a new
environment, i.e., it did not pass a previously passed location.

A map of the environment was built from the CAD layout as a set of vectors,
which does not include any sophisticated information. All doors were assumed to
be closed and glass windows were treated as ordinary walls, meaning that the robot
cannot travel through them. In fact, some doors were open and some glass windows
were not detected by the LRF. Moreover, there were obstacles not described in the
map, such as chairs, flower pots, bookshelves, etc., and some parts of the corridor
were slightly different from the CAD layout, adding considerable uncertainty to the
localization process.

Our localization algorithm proved to have real-time performance. As Table 6
shows, the computation time for localization is less than 1 ms, which is less than
1/10 of the data transmission time. In addition, the total processing time, including
data transmission time, is 17.33 ms, which allows the whole localization process to be
completed within the LRF scan time of 26 ms.

Table 6 Average computation
time for each localization step Average computation time (ms)

Data transmission 16.1
Vector extraction 0.2
Vector-matching 0.9
Pose calculation 0.1
Total 17.3
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Fig. 18 Overlaid scan data
according to the localization
results given by the proposed
method (red dots). The mobile
robot starts navigation at the
position ‘O’ and arrives at ‘X’

Figure 18 shows the localization result given by the proposed approach. It is not
possible to know the real robot pose at every localization step. To examine the
algorithmic performance, all scan data are overlaid on the map; the data were trans-
formed to the global coordinate system according to the corresponding estimated
pose. Related uncertainty is shown in Fig. 19. Here the ±3σ bound for the y-axis is
larger than that of the x-axis because most parts of the environment are corridors
with few doors open, which results in many singular cases. However, the uncertainty
still remains under the ±0.5m boundary.

An experiment for room-to-room localization has been performed as shown in
Fig. 20. The robot starts moving at (0, 0) in Room A, navigates to Room B and
comes back. It moved 65.31 m and performed 3,813 steps of localization. In this

Fig. 19 Confidence intervals
(±3σ ) given by the proposed
localization approach in a real
environment
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Fig. 20 Experimental result
of room-to-room localization.
Map (black line segment) is
built by the proposed
vector-matching method which
is overlaid with corresponding
scan data (red dots). The robot
path is depicted as blue circles

case, environmental map is built by the proposed vector-matching algorithm, which
suggests that efficient SLAM should be possible with the aid of our localization
method.

4 Conclusions

This paper presents an efficient, fast, accurate, and robust localization algorithm,
based on a vector-matching technique, for mobile robots equipped with LRFs. A
vector is composed of two end points indicating its direction, which ensure robust
and accurate matching results in our localization process. The proposed localization
technique is performed in three steps: First, a sequential segmentation method is
introduced, which enables fast and reliable segmentation of the scan data. Second,
a new vector-matching method is presented that performs robustly and efficiently
even with a map composed of a large number of vectors. Finally, a cost function is
proposed with closed-form solutions for the optimality equation, which ensures the
best result with vector features. Simulation and experimental results have verified
that the proposed localization method works accurately and robustly, given the
occurrence of unexpected obstacles not present on the map.

Future work includes the expansion of the algorithm to the global localization
problem, because there will be many situations where the robot cannot be provided
with information about its initial position. In addition, efficient SLAM is possible
with the aid of the localization method presented here.

Appendix

A1 Sequential Least-Squares Fit

Lu [19] described a line-fitting algorithm using the least-squares method. Here we
extended it to be able to operate in a sequential manner.
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A collection of points {(xi, yi)|i = 1, . . . , n} is to be fitted to a line Ln: x · cos θn +
y · sin θn = ρn in a least-squares sense. (θ, ρ) minimizes the following error:

E fit =
n∑

i=1

(xi cos θn + yi sin θn − ρn)
2. (30)

A closed form solution is given by:

θn = 1

2
atan2

−2
(

Sxy
n − nxn yn

)

(
Syy

n − Sxx
n

)
− n

(
y2

n − x2
n

)

ρn = xn cos θn + yn sin θn (31)

where:

Sxx
n =

n∑

i=1

x2
i , Syy

n =
n∑

i=1

y2
i , Sxy

n =
n∑

i=1

xi yi,

xn = 1

n

n∑

i=1

xi, yn = 1

n

n∑

i=1

yi.

When a point (xn+1, yn+1) is added, the updated line equation becomes Ln+1:
x · cos θn+1 + y · sin θn + 1 = ρn + 1, where θn+1 and ρn+1 are given by:

θn+1 = 1

2
atan2

−2
(

Sxy
n+1 − (n + 1)xn+1 yn+1

)

(
Syy

n+1 − Sxx
n+1

)
− (n + 1)

(
y2

n+1 − x2
n+1

)

ρn+1 = xn+1 cos θn+1 + yn+1 sin θn+1 (32)

Using the substitution:

Sxx
n+1 = Sxx

n + x2
n+1, Syy

n+1 = Syy
n + y2

n+1, Sxy
n+1 = Sxy

n + xn+1 yn+1,

xn+1 = nxn + xn+1

n + 1
, yn+1 = nyn + yn+1

n + 1
,

we obtain a sequential least-squares fit equation:

θn+1 = 1

2
atan2

−2
(

Sxy
n + xn+1 yn+1 − 1

n+1

(
nxn + xn+1

)(
nyn + yn+1

))

(
Syy

n − Sxx
n

)
+

(
y2

n+1 − x2
n+1

)
− 1

n+1 ((nyn + yn+1)2 − (nxn + xn+1)2)

ρn+1 = nxn + xn+1

n + 1
cos θn + nyn + yn+1

n + 1
sin θn (33)
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In addition, the point variance of Ln, which is used in the proposed cost function,
is obtained naturally and sequentially from the above equations. The variance σ 2

n is
given by:

σ 2
n = 1

2n

(
Sxx

n + Syy
n − n

(
x2

n + y2
n

) −
√

4
(
Sxy

n − nxn yn

)2 + (
Syy

n − Sxx
n − n

(
y2

n − x2
n

))2
)

and σ 2
n+1 with added point (xn+1, yn+1) becomes:

σ 2
n+1 = 1

2(n + 1)

(
Sxx

n + Syy
n + (

x2
n+1 + y2

n+1

)

− 1

n + 1

(
(nxn + xn+1)

2 + (nyn + yn+1)
2
) −

√
4a2 + b 2

)
(34)

where:

a = Sxy
n + xn+1 yn+1 − 1

n + 1
(nxn + xn+1)(nyn + yn+1)

b = Syy
n − Sxx

n +
(

y2
n+1 − x2

n+1

)
− 1

n + 1

(
(nyn + yn+1)

2 − (nxn + xn+1)
2
)

Equations 33 and 34 show that these parameters can be updated sequentially,
which greatly improves the vector extraction process.

A2 Matrix Singularity

Lemma 1 Matrices B and C of Eq. 12 are singular if and only if a single scan segment
is detected, or all extracted scan segments are parallel with each other, as shown in
Fig. 11c.

Proof First, we prove the necessary condition. Given N matching pairs, matrices B
and C of Eq. 13 are given by:

B =
N∑

k=1

lk

σk

⎡

⎢⎢⎢⎢
⎣

cos2 θk

Nk∑

l=1

xkl + cos θk sin θk

Nk∑

l=1

ykl

cos θk sin θk

Nk∑

l=1

xkl + sin2 θk

Nk∑

l=1

ykl

− cos2 θk

Nk∑

l=1

ykl + cos θk sin θk

Nl∑

l=1

xkl

− cos θk sin θk

Ni∑

l=1

ykl + sin2 θk

Nk∑

l=1

xkl

⎤

⎥⎥⎥⎥
⎦

(35)

C =
N∑

k=1

lk Nk

σk

[
cos2 θk cos θk sin θk

cos θk sin θk sin2 θk

]

(36)
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When all scan vectors are parallel, θk is either θ or θ + π , so that cos(θ + π) =
− cos θ and sin(θ + π) = − sin θ. Further expansion of the above yields:

B =
(

N∑

k=1

lk

σk

)

·

⎡

⎢⎢⎢⎢⎢
⎣

cos2 θ

Nk∑

l=1

xkl + cos θ sin θ

Nk∑

l=1

ykl

cos θ sin θ

Nk∑

l=1

xkl + sin2 θ

Nk∑

l=1

ykl

− cos2 θ

Nk∑

l=1

ykl + cos θ sin θ

Nk∑

l=1

xkl

− cos θ sin θ

Nk∑

l=1

ykl + sin2 θ

Nk∑

j=1

xkl

⎤

⎥⎥⎥⎥⎥
⎦

(37)

= kB · B′ (38)

and:

C =
(

N∑

l=1

lk Nk

σk

)

·
[

cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]

= kC · C′, (39)

where kB and kC are constants. Now det(B′) = 0 because:

B′ =

⎡

⎢⎢⎢⎢
⎣

cos2 θ

Nk∑

l=1

xkl + cos θ sin θ

Nk∑

l=1

ykl

cos θ sin θ

Nk∑

l=1

xkl + sin2 θ

Nk∑

l=1

ykl

− cos2 θ

Nk∑

l=1

ykl + cos θ sin θ

Nk∑

l=1

xkl

− cos θ sin θ

Nk∑

l=1

ykl + sin2 θ

Nk∑

l=1

xkl

⎤

⎥⎥⎥⎥
⎦

=
[

b11 b12

tan θ · b11 tan θ · b12

]
. (40)

Similarly, det(C′) = cos2 θ sin2 θ − cos2 θ sin2 θ = 0. Therefore, det(B) = 0 and
det(C) = 0, which means that matrices B and C are singular only when parallel scan
vectors are obtained.

Conversely, if there are more than one scan vectors that are not parallel with other
vectors, matrices B and C are not singular. When a set of all θk is {θ1, θ2, . . . , θNθ

}, B
can be arranged from Eqs. 38 and 40.

B = kB1 B1 + kB2 B2 + . . . + kBNθ
BNθ

=
[

b (1)
11 + b (2)

11 + . . . b (1)
12 + b (2)

12 + . . .

tan θ1b (1)
11 + tan θ2b (2)

11 + . . . tan θ1b (1)
12 + tan θ2b (2)

12 + . . .

]

(41)

From the definition, θ1 �= θ2 �= . . . �= θNθ
. Therefore B is not singular.

C can be arranged similarly as:

C = kC1C1 + kC2C2 + . . . + kCNθ
CNθ

(42)

=
[

c1 cos2 θ1 + c2 cos2 θ2 + . . . c1 cos θ1 sin θ1 + c2 cos θ2 sin θ2 + . . .

c1 cos θ1 sin θ1 + c2 cos θ2 sin θ2 + . . . c1 sin2 θ1 + c2 sin2 θ2 + . . .

]

(4.3)
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Then det(C) is

det(C) =
∑

i �= j

cicj cos2 θi sin2 θ j −
∑

i �= j

cicj cos θi cos θ j sin θi sin θ j

From the assumption, det(C) is not zero. Therefore, C is nonsingular if nonparallel
scan vectors exist. �
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