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Abstract In this paper, a recurrent neural network (RNN) control scheme is pro-
posed for a biped robot trajectory tracking system. An adaptive online training
algorithm is optimized to improve the transient response of the network via so-called
conic sector theorem. Furthermore, L2-stability of weight estimation error of RNN
is guaranteed such that the robustness of the controller is ensured in the presence of
uncertainties. In consideration of practical applications, the algorithm is developed
in the discrete-time domain. Simulations for a seven-link robot model are presented
to justify the advantage of the proposed approach. We give comparisons between the
standard PD control and the proposed RNN compensation method.

Keywords Conic sector condition · Discrete robot model · Fault tolerant control ·
L2-stability · Online adaptive training · Recurrent neural network

Main Notation List

V̂(k), Ŵ(k) Estimated weight of RNN output layer and hidden layer,
respectively.

V∗(k), W∗(k) Optimal weight of RNN output layer and hidden layer,
respectively.

ŷrnn(k), x(k) Output and state vector of RNN, respectively.
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H(·), f (r(k)) Activation function and cost function of RNN, respectively.
α(k), β Adaptive learning rate and scaling factor of RNN training

algorithm, respectively.
e(k) Tracking error of robot control system.
r(k), ev(k) Training and estimation error of RNN, respectively.
φ(k) Feedback signal of closed-loop systems.
Ji(k) Jacobian matrix of error gradient of RNN.
H1, H2 Feedforward and feedback operator in closed-loop systems,

respectively.
θd(k), θ(k) Command and actual joint angle of robots, respectively.
KP, KD Coefficients of PD controller.
m, I, l, d Various parameters of the robot model.
τ0(k) Control torque contributed by PD controller.
τc(k) Compensation torque contributed by RNN.
M(θ(k)) Inertia matrix of robots.
C(θ(k − 1), θ(k − 2)) Coriolis/centripetal torque matrix of robots.
G(θ(k)) Gravity vector of robots.
D(θ(k), θ(k − 1)) Disturbances including noise, static and dynamic frictions.
F(θ(k), θ(k − 1)) Failure function of robot caused by model uncertainty.
k Sampling index.

1 Introduction

Recently recurrent neural network (RNN) has been extensively studied in the area
of robot control. One of the most remarkable features of RNN is its capability in
modelling time-behavior of dynamic processes. This can provide robotic system with
strong adaptability to the change of working environments [1, 2]. Moreover, combi-
nation of neural network and conventional linear controller is becoming a major
direction in robot controller design [3]. The method simultaneously uses a linear
controller that provides the basic tracking performance as well as a neural network
that compensates various uncertainties, which also named as fault tolerant control
(FTC) [4]. For example, in [5, 6] feedforward neural networks were integrated into
PD controller to improve the tracking performance. In [7] fuzzy neural network was
used and robustness was guaranteed by H∞ design methods.

Stability is an important aspect of control systems that must be proved before they
can be implemented in real applications. Many studies have been carried out on the
issue for RNN [8–12] and neural network controlled robotic systems [13–15]. The
difficulty of these works consists in the computational complicacy of obtaining the
boundary condition of the stability. This is because that a weight adjustment may
affect the entire network states evolution due to the inherent feedback structure of
RNN.

In this paper, we introduce a generalized framework of robustness analysis for
RNN training algorithms. A hybrid controller that consists of PD and RNN is
proposed. The design target is to improve the transient response of the system in
the presence of system faults. Sufficient conditions on the L2-stability of training is
derived via conic sector theorem such that robustness is ensured by restricting the
training parameters within cone conditions. A 7-link robot model is employed as
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control objective in simulations. Main segments of the model include legs, thighs,
trunk and feet. The motion of the robot is constrained on the sagittal plane. As
a consequence, the total number of degrees of freedom will be limited enough.
The work is developed in the discrete-time domain, which can benefit from direct
implementation on digital signal processor (DSP).

The paper is organized as follows: In Section 2 some basics of robotic systems are
introduced, including robot structures, walking patterns etc. In Section 3 we present
a controller which is constructed by PD and RNN. Then robustness analysis for the
online adaptive training algorithm of RNN is derived via conic sector theorem in
Section 4. Simulations are demonstrated in Section 5 to verify the effectiveness of
theoretical results. Finally conclusion is given in Section 6.

2 Robot Dynamics

The rigid biped robot under consideration is shown in Fig. 1. A detail description
of its structure can be found in [7]. For later reference we would like to give an
immediate brief review. The robot consists of 7 links, which represent trunk, thigh,
shin, metatarsal respectively. The links are joined together at 6 pin joints: two hip
joints, two knee joints and two ankle joints. The six joints are ideally rotational.
Each of them has one degree of freedom and is driven by independent electric
DC motors. For each segment, there are four parameters: the mass of the link–mi,
moment of inertia about the center of gravity (COG)–Ii, the length of the link–li, and
the distance between the COG and the lower joint–di, where i = 1, · · · , 6.

Fig. 1 Structure of a 7-link
rigid biped robot
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In literature the most popular analytical model of human walking can be described
as it is performed so as to have the least expenditure of energy. Under this frame-
work, the walking pattern of a biped robot can be roughly divided into three phases:
single support phase, double support phase and transition phase. Among them, the
single support phase is a predominant portion that its duration is longer than the
other two’s. Hence our study mainly focuses on this period. We use the set of the an-
gles θ of each link with the vertical as controlling objectives. In mathematics, the
dynamic equations of non-kick action of above described single-leg-supporting phase
can be expressed in a analog model by

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) + D(θ, θ̇) + F(θ, θ̇ , t) = τ (1)

Where θ̇ and θ̈ are joint angle velocities and accelerations respectively, M(θ) ∈ R6×6

is the inertia matrix, C(θ, θ̇) ∈ R6×6 is the coriolis/centripetal torque matrix, G(θ) ∈
R6×1 is gravity vector, τ ∈ R6×1 denotes the input torque vector, D(θ, θ̇) ∈ R6×1 is
static and dynamic friction and other disturbance torques, and F(θ, θ̇ , t) stands for
the unknown fault that occurs in robot manipulator. The following assumptions of
biped robot dynamics are necessary [16].

Assumption 1

(a) The inertia matrix M(θ) is symmetric, positive definite and both M(θ) and
M−1(θ) are uniformly upper and lower bounded.

(b) The inertia matrix M(θ) is also kinetic energy matrix of the manipulator and
the kinetic energy can be written as θ̇T M(θ)θ̇/2, where superscript T denotes the
transpose of the vectors and matrices.

(c) The matrix Ṁ(θ) − 2C(θ, θ̇) is skew-symmetric.
(d) The unknown system uncertainty is bounded.

In this paper, a hybrid controller that integrated PD and RNN is proposed. In
functionality, the PD is utilized as basic feedback control for trajectory following
and the RNN facilitates to compensate the nonlinearity and system faults [17, 18].
Suppose in a fault free condition, robot dynamics of Eq. 1 can be transformed into a
nominal form as

θ̈ = M−1(θ)[τ − C(θ, θ̇)θ̇ − G(θ) − D(θ, θ̇) − F(θ, θ̇ , t)] (2)

If the robot parameters M(θ), C(θ, θ̇) and G(θ) are exactly known, then with a PD
controller ypd = KPe + KDė, the computed torque τ0 can be designed as

τ0 = M(θ)(θ̈d + KPe + KDė) + C(θ, θ̇)θ̇ + G(θ) (3)

Where e = θd − θ is the tracking error vector, KP, KD are scalars. Substitute the
computed torque (3) into the nominal system (2), we obtain the following error
dynamics

ë + KDė + KPe − M−1(θ)D(θ, θ̇) − M−1(θ)F(θ, θ̇ , t) = 0 (4)

However there may not exist available value for KP, KD with which the tracking
error vector converges to zero. Furthermore when a fault F(θ, θ̇ , t) occurs, the PD
controller may not be able to response as fast as required. The situation will be even
worse in case that an integrator is introduced to reduce offset. Hence a feedforward
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Fig. 2 Block diagram of RNN control scheme

controller is obviously desirable to compensate the error and disturbance terms, and
in turn to improve system response speed and reduce the steady state error. Because
RNN is specially powerful in identifying dynamic nonlinear processes, thus we
employ RNN in robot system to recover the tracking performance in the occurrence
of fault. Hereby the computed torque output should be reconfigured as

τ = τ0 + τc(ŷrnn) (5)

The block diagram of the whole control system is displayed in Fig. 2.

3 RNN Compensator

Now consider a RNN with 24 input nodes, 6 output nodes, and 50 hidden layer
neurons. The output and hidden layer weights of the RNN can be expressed (in
matrix form) by V ∈ R6×50 and W ∈ R50×24, respectively. Upon an input vector u(k),
the corresponding RNN output can be expressed as

ŷrnn(k) = V̂(k)H(Ŵ(k) · x(k)) (6)

where H(·) is the nonlinear activation function, and x(k) is the state vector that
consists of 12 external input entries and 12 output feedback entries

x(k) = [u1(k), · · · , u6(k), u1(k − 1), · · · , u6(k − 1), ŷ1
rnn(k − 1), · · · ,

ŷ6
rnn(k − 1), ŷ1

rnn(k − 2), · · · , ŷ6
rnn(k − 2)]T (7)
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Fig. 3 Structure of an external feedback recurrent neural network

Superscript i denotes the ith entry of each vector. In estimating a desired signal of N
samples {d(0), d(1), · · · , d(N)}, the RNN estimation error r(k) is defined by

r(k) = d(k) − ŷrnn(k) (8)

The diagram of the RNN is shown in Fig. 3.
However the RNN (6) is a digital system while the robot (2) is modelled in

continuous-time domain. We must digitize the robot model before carrying out
formal analysis. For this purpose, a sampler is placed on θ to define

θ(k) = θ(kTs) ∈ R6×1 (9)

Where Ts represents the sampling period. One of the most popular approaches to
digitize the nonlinear dynamics in Eq. 2 is to use Euler’s rule. By this method, the
discrete-time model of the angular speed and angular acceleration of joint angles can
be obtained as {

θ̇ (k)Ts = θ(k) − θ(k − 1)

θ̈(k)Ts = θ̇ (k) − θ̇ (k − 1)
(10)

Substitute Eq. 10 into Eq. 2, then robot dynamics is transformed to an input-output
framework

θ(k + 1) = 2θ(k) − θ(k − 1) + T2
s M−1(θ(k))[τ0(k) + τc(k)

− C(θ(k), θ(k − 1))
θ(k) − θ(k − 1)

Ts

− G(θ(k), θ(k − 1)) − D(θ(k), θ(k − 1)) − F(θ(k), θ(k − 1))] (11)



J Intell Robot Syst (2007) 49:151–169 157

With the feedback signal e(k) = θd(k) − θ(k), the output of PD controller is

ypd(k) =
(

KP + KD
z − 1

z

)
e(k) (12)

Thus the computed torque in discrete-time domain can be expressed by

τ0(k) = M(θ(k))T−2
s [θd(k + 1) − 2θd(k) + θd(k − 1) + KPe(k)

+ KD(e(k) − e(k − 1))] + C(θ(k), θ(k − 1))
θ(k) − θ(k − 1)

Ts

+ G(θ(k))
(13)

τc(k) = M(θ(k))T−2
s ŷrnn(k) (14)

Where τc(k) is the RNN estimation of uncertainties D(θ(k), θ(k − 1)) and
F(θ(k), θ(k − 1)). Substitute Eq. 13, 14 into Eq. 11, closed loop error dynamics of
robot control system become

T2
s M−1(θ(k))[D(θ(k), θ(k − 1)) + F(θ(k), θ(k − 1))] − ŷrnn(k)

= e(k + 1) − 2e(k) + e(k − 1) + KPe(k) + KD(e(k) − e(k − 1))

= e(k + 1) ∗ [1 + (KP + KD − 2)z−1 + (1 − KD)z−2] (15)

In practice, the modelling error r(k) = d(k) − ŷrnn(k) in training algorithm may not
be directly measurable. We would utilize the relationship (15) to obtain r(k) through
e(k). Define the operator

G(z) = 1 + (KP + KD − 2)z−1 + (1 − KD)z−2 (16)

Because G(z) is an FIR filter such that all the poles located in the unit circle
in complex z-plane. Hence G(z) is open loop stable and we need only to ensure
r(k) ∈ L2 in order to guarantee BIBO of closed loop control systems. Along this
thought, we will study the L2 stability of RNN training algorithm via conic sector
theorem in the next section.

4 Robust Adaptive Training Algorithm

During the training phase of RNN, the weights are updated recursively to make the
output best fit into the training data set. The target is to find the optimal weight that
minimizes the following cost function

f = r(k)Tr(k)

2
(17)

In an environment of time-varying signal statistics, one of the frequently used method
is the random gradient search algorithm that iteratively reduces f (r(k)) by estimating
the weight vector at each time instant

V̂i(k + 1) = V̂i(k) − α · ∂ f

∂V̂i(k)
Ŵi(k + 1) = Ŵi(k) − α · ∂ f

∂Ŵi(k)
(18)
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where step-size α is the so-called learning rate and subscription i represents the ith
row of the matrix. Obviously the hidden layer output is always bounded due to the
threshold properties of the activation function. Therefore influence of output layer
weights on the whole system stability will be predominant. Hence we concentrate on
the analysis of RNN output layer in this paper.

It is well known that in order to achieve a better convergence speed, a larger
learning rate α is required, however, big steady state error may be resulted or even
a unstable training. On the contrary, small step-size may lead to excessive number
of iterations needed to reach the minimum, ie, a slow convergence speed. Thus
an optimal learning rate is desirable to achieve a tradeoff between convergence
speed and stability. In this section, we present a robustness analysis for the training
and derive an online adaptive learning rate based upon the input–output approach
from nonlinear system theory. We start by introducing the conic sector theorem.
Considering following feedback system

⎧⎨
⎩

r(k) = ε(k) − φ(k)

ev(k) = H1r(k)

φ(k) = H2ev(k)

(19)

Where operators H1, H2 : L2e → L2e, and discrete time signal r(k), ev(k), φ(k) ∈ L2e

and ε(k) ∈ L2.

Theorem 1 (Conic Sector Theorem) If H1 : r(k) → ev(k) and H2 : ev(k) → φ(k)

satisfy the following two inequalities for some σ, γ, η

(a)
N∑

k=1
[r(k)ev(k) + 1

2σr2(k)] ≥ −γ

(b)
N∑

k=1
[ 1

2σφ2(k) − φ(k)ev(k)] ≤ −η ‖φ(k), ev(k)‖2
N

Then the closed loop system is stable in sense of r(k), ev(k) ∈ L2.

Proof See corollary 8.1 in [19]. 	


Remark 1 In Fig. 4, operator H1 represents the nonlinear mapping and H2 is
dynamic linear operator. Indeed when condition (a) and (b) are satisfied, H1 will
be dissipative and H−1

2 will be strictly inside the cone (1, (1 − σLS)
1/2), which is

equivalent to H2 being strictly inside the cone (σ−1
LS , σ−1

LS(1 − σLS)
1/2) [19]. For the

Fig. 4 Closed loop feedback
system: H1–static nonlinear,
H2–dynamic linear
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Fig. 5 Cone conditions for H−1
2 and H2 to be passive

case that no dynamics are present, eg, H2 = 1, then H2 will be strictly inside any
cone as long as σLS < 1 holds. This relation is illustrated in Fig. 5.

The first step of training RNN is calculating the error gradient. However, because
r(k) is a vector of 6 × 1-dimensional and V̂(k) is a matrix of 6 × 50-dimensional in this
work, there is no convenient way to directly calculate the derivative of r(k) against
V̂(k). We can only derive it row by row. Define the Jocabian matrix

Ji(k) = ∂x(k)

∂V̂i(k)
∈ R24×50 (20)

Where V̂i(k) is the ith row of V̂(k) and i = 1, · · · , 6. Subsequently the error gradient
can be obtained as

∂ f (r)

∂V̂i(k)
= −

6∑
n=1

rn(k)

[
∂ ŷrnn,n(k)

∂V̂i(k)
+ ∂ ŷrnn,n(k)

∂x(k)
· ∂x(k)

∂V̂i(k)

]

= −
6∑

n=1

rn(k)
∂ ŷrnn,n(k)

∂V̂i(k)
−

p∑
n=1

rn(k)V̂n(k)diag{H′(·)}Ŵ(k)Ji(k)

= − ri(k)H(Ŵ(k)x(k))T − rT(k)V̂(k)diag{H′(·)}Ŵ(k)Ji(k) (21)
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Theorem 2 If RNN is trained by the following normalized gradient based algorithm

V̂i(k + 1) = V̂i(k) − βα(k)
∂ f (r(k))

∂V̂i(k)
(22)

where β is a scaling factor in the interval (0, 1), ∂ f (r(k))

∂V̂i(k)
is defined in Eq. 21, and α(k) is

adaptive learning rate determined by

α(k) =
2

⎧⎨
⎩1 +

∥∥∥∥∥V̂(k)diag{H′(·)}Ŵ(k)
6∑

n=1
Jn(k)

∥∥∥∥∥
2

6∑
n=1

[V̂n(k)diag{H′(·)}Ŵ(k)Jn(k)H(Ŵ(k)x(k))]−1

⎫⎬
⎭

∥∥∥H(Ŵ(k)x(k))

∥∥∥2 +
6∑

i=1

∥∥∥V̂(k)diag{H′(·)}Ŵ(k)Ji(k)

∥∥∥2

(23)

Then the training will be L2-stable in the sense of e, ev ∈ L2

Proof Before applying the conic sector stability theorem, we need to restructure the
adaptation law (22) into an equivalent error feedback system. Moreover the weight
estimation error should be referred as output signal of the closed loop.

(1) Construct dynamic linear operator H2

Firstly, the r(k) is decomposed as follows

r(k) = d(k) − ŷrnn(k)

= V∗ H(W∗x(k)) − V̂(k)H(Ŵ(k)x(k))

= [V∗ H(W∗x(k)) − V∗ H(Ŵ(k)x(k))] − [V̂(k)H(Ŵ(k)x(k)) − V∗ H(Ŵ(k)x(k))]
(24)

Where V∗ and W∗ are ideal values of V̂(k) and Ŵ(k) respectively. Due to the thresh-
old activation function, V∗ H(W∗x(k)) − V∗ H(Ŵ(k)x(k) will always be bounded and
has no influence on output layer stability. Thus we can put it into disturbance term
ε̃(k). On the other hand, the V̂(k)H(Ŵ(k)x(k)) − V∗ H(Ŵ(k)x(k)) can be regarded
as an independent term, which is related to the weight estimation error in a explicit
manner. Define

ev(k) = V̂(k)H(Ŵ(k)x(k)) − V∗(k)H(Ŵ(k)x(k)) = Ṽ(k)H(Ŵ(k)x(k)) (25)

Then Eq. 24 can be simplified to

r(k) = ε̃(k) − ev(k) (26)

Above equation establishes the relationship between the disturbance ε̃(k) and the
posterior estimation error ev(k), where the linear feedback gain H2 = 1.
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(2) Construct static nonlinear operator H1

We proceed to establish the nonlinear forward path which maps output error r(k)

into parameter estimation error ev(k). Substitute Eq. 21 into Eq. 22, then training
algorithm of RNN can be expanded as

Ṽi(k+1) = Ṽi(k) + β · α(k)[ri(k)H(Ŵ(k)x(k))T + rT(k)V̂(k)diag{H′(·)}Ŵ(k)Ji(k)]
(27)

Note the above equation is actually an modified least mean square algorithm,
which uses a filtered tracking error r(k) instead of e(k) in adaptation. Square both
sides of Eq. 27 and rearrange the terms

∥∥∥Ṽi(k + 1)

∥∥∥2 −
∥∥∥Ṽi(k)

∥∥∥2 = 2βα(k)Ṽi(k)[ri(k)H(Ŵ(k)x(k))T

+ rT(k)V̂(k)diag{H′(·)}Ŵ(k)Ji(k)]T

+ β2α2(k)

∥∥∥ri(k)H(Ŵ(k)x(k))T

+ rT(k)V̂(k)diag{H′(·)}Ŵ(k)Ji(k)] ‖2 (28)

Because of the fact that 2α(k)r(k)T Ṽ(k)H(Ŵ(k)x(k)) = 2α(k)r(k)Tev(k), summing
up Eq. 28 of index i, the following equation can be obtained

6∑
i=1

∥∥∥Ṽi(k+1)

∥∥∥2−
6∑

i=1

∥∥∥Ṽi(k)

∥∥∥2= 2βα(k)r(k)Tev(k)

×

⎡
⎢⎢⎢⎣1+

∥∥∥∥V̂(k)diag{H′(·)}Ŵ(k)
6∑

n=1
Jn(k)

∥∥∥∥
2

6∑
n=1

[V̂n(k)diag{H′(·)}Ŵ(k)Jn(k)H(Ŵ(k)x(k))]

⎤
⎥⎥⎥⎦

+β2α2(k)

6∑
i=1

‖ri(k) H(Ŵ(k)x(k))T

+ rT(k)V̂(k)diag{H′(·)} Ŵ(k)Ji(k)

∥∥∥2
(29)

Furthermore, we have

6∑
i=1

∥∥∥ri(k)H(Ŵ(k)x(k))T + rT(k)V̂(k)diag{H′(·)}Ŵ(k)Ji(k)

∥∥∥2

≤ 2
6∑

i=1

r2
i (k)

∥∥∥H(Ŵ(k)x(k))

∥∥∥2 + 2 ‖r(k)‖2
6∑

i=1

∥∥∥V̂(k)diag{H′(·)}Ŵ(k)Ji(k)]
∥∥∥2

= 2 ‖r(k)‖2

[∥∥∥H(Ŵ(k)x(k))

∥∥∥2 +
6∑

i=1

∥∥∥V̂(k)diag{H′(·)}Ŵ(k)Ji(k)]
∥∥∥2

]
(30)
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Substitute Eq. 30 into Eq. 29

6∑
i=1

∥∥∥Ṽi(k + 1)

∥∥∥2 −
6∑

i=1

∥∥∥Ṽi(k)

∥∥∥2 ≤ 2βα(k)r(k)Tev(k)

×

⎡
⎢⎢⎢⎣1 +

∥∥∥∥V̂(k)diag{H′(·)}Ŵ(k)
6∑

n=1
Jn(k)

∥∥∥∥
2

6∑
n=1

[V̂n(k)diag{H′(·)}Ŵ(k)Jn(k)H(Ŵ(k)x(k))]

⎤
⎥⎥⎥⎦

+ 2β2α2(k) ‖r(k)‖2

[∥∥∥H(Ŵ(k)x(k))

∥∥∥2 +
6∑

i=1

∥∥∥V̂(k)diag{H′(·)}Ŵ(k)Ji(k)

∥∥∥2
]

(31)

Summing up inequality (31) of sampling index k

6∑
i=1

∥∥∥Ṽi(N + 1)

∥∥∥2 −
6∑

i=1

∥∥∥Ṽi(0)

∥∥∥2 ≤
N∑

k=0

2βα(k)ev(k)r(k)

×

⎡
⎢⎢⎢⎣1 +

∥∥∥∥V̂(k)diag{H′(·)}Ŵ(k)
6∑

n=1
Jn(k)

∥∥∥∥
2

6∑
n=1

[V̂n(k)diag{H′(·)}Ŵ(k)Jn(k)H(Ŵ(k)x(k))]

⎤
⎥⎥⎥⎦

+
N∑

k=0

{
2β2α2(k) ‖r(k)‖2

[∥∥∥H(Ŵ(k)x(k))

∥∥∥2+
6∑

i=1

∥∥∥V̂(k)diag{H′(·)}Ŵ(k)Ji(k)

∥∥∥2
]}

(32)

By this step, we are able to form the closed loop through Eq. 26 and Eq. 32. Thus
conic sector theorem can be applied straight forwardly.

(3) Sufficient conditions of L2-stability
To simply the presentation, we define the following notation

ρ = 2βα2(k)

[∥∥∥H(Ŵ(k)x(k))

∥∥∥2 +
6∑

i=1

∥∥∥V̂(k)diag{H′(·)}Ŵ(k)Ji(k)

∥∥∥2
]

(33)

Substitute α(k) of Eq. 23 into Eq. 32, the following inequality can be derived

N∑
k=0

[
ev(k)r(k) + 1

2
‖r(k)‖2

]

≥
N∑

k=0

[
ev(k)r(k) + 1

2
β ‖r(k)‖2

]

≥ ρmin

6∑
i=1

∥∥∥Ṽi(N + 1)

∥∥∥2 − ρmax

6∑
i=1

∥∥∥Ṽi(0)

∥∥∥2
(34)
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Table 1 Parameters values of the robot model

Length (m) Mass (kg) Mass center (m) Inertia (kg*m2)

Coxa(link 3) 0.204 5.900 0.070 0.010
Thigh(link 2,4) 0.412 13.20 0.210 0.067
Calf(link 1,5) 0.385 7.700 0.223 0.010
Foot(link 6,7) 0.290 8.200 0.140 0.028

Now by the cone condition (a)(b) of Theorem 1, we conclude the proof. Note the
condition (b) of theorem 1 can be treated as positive real function, which H2 = 1
already satisfies. 	


Remark 2 The algorithm can be explained that at the starting point, the neural
network is trained by the gradient algorithm. With the time step moves on, the
estimation error tends to drift outside the specified cone, ie, the estimation error
energy is amplified. Then we utilize the normalized learning rate to push the weight
estimation error within the bounds of the cone, which is equivalent to make the
feedback system satisfy the conic stability. As for β in theorem 2, the theoretical
ideal value is 1. In the practical design, we suggest to make β = 0.8 to maintain both
fast transient response while marginal stability. The entire procedure to synthesize
the robust adaptive training algorithm for RNN can be summarized as follows:

Step 1: Calculate estimation error r(k) of RNN by the measurements of e(k) via
Eq. 15;
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Fig. 6 Actual and desired joint angle positions in case of no fault



164 J Intell Robot Syst (2007) 49:151–169

Step 2: Calculate the gradient of f (r(k)) with respect to weight parameter V̂(k),
based upon Eq. 21;

Step 3: Choose the optimal learning rate α(k) according to Eq. 23 and update the
weight parameters of each layer of RNN;

Step 4: Calculate the computed torque τ0(k) and RNN compensation torque τc(k)

according to the trained weight;
Step 5: With the torque input, we measure the angular position θ(k + 1) of robot

joint angle, and compare with command signal θd(k + 1) to obtain e(k + 1);
Step 6: Go back to Step 1 to continue iteration.

5 Simulations

In this section, the proposed robust adaptive training algorithm and the hybrid
controller are investigated through computer simulations. The control objective is to
make joint positions of the biped robot follow the reference trajectories. Moreover,
when fault occurs, we expect to recover the control performance by RNN compen-
sation scheme. The RNN is constructed with 50 hidden neurons and 24 input nodes.
Both of the hidden and output layer weights of RNN are initialized by uniformly
distributed number between −1 and 1. Sigmoid function H(x) = 1/(1 + e−λx) is
chosen as activation function. The sampling period T = 0.005 s. Every simulation
is running 1, 000 steps, ie, 5 s. In the model setup of simulations, the lower limb of
the robot is divided into two identical parts: left and right, including coxa, thigh, calf,
and foot. Formulas of various parameters of robot dynamics are given in Appendix.
The nominal values of the coefficients in these formulas are presented in Table 1.
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The desired trajectories θd of joint angles are chosen to use the effects of gravity
in a way that the angular momentum is increased in the single support phase. Two
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simulation examples are synthesized to evaluate the robustness of the controller. In
both cases, the initial joint positions and their velocities are given by

θ(0) = [θ1(0) θ2(0) θ3(0) θ4(0) θ5(0) θ6(0)]T

= [0.37 −1 0.75 −0.15 0.56 3.85]Trad

θ̇ (0) = [θ̇1(0) θ̇2(0) θ̇3(0) θ̇4(0) θ̇5(0) θ̇6(0)]T

= [0 0 0 0 0 0]Trad/ sec

Case 1 Only external disturbances, no fault
In the first simulation, only system uncertainty is considered. We employ PD

controller and turn off the RNN compensator. The disturbances, including noise,
static and dynamic frictions are described as

{
D(θ, θ̇) = 0.5sign(θ̇) + 2θ̇

F(θ, θ̇ , t) = 0
(35)

The plant output and squared tracking error are displayed in Figs. 6 and 7. The
simulation results indicate that in a fault-free environment, PD controller is capable
to provide a satisfactory tracking performance and no necessary to insert any
compensator.
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Case 2 Two faults, occurs at 1.7th and 3.6th s, respectively.
In the second simulation, we take into account the model uncertainty as well as

system uncertainty. The first fault of 50% increase in the mass of link 2 and 4 occurs
at 1.7th s. The second fault of nonlinearity changes in link 4 and 5 occurs at 3.6 s,
where the failure function is expressed as

{
D(θ, θ̇) = 0.5sign(θ̇) + 2θ̇

F(θ, θ̇ , t) = M(θ)[0, 0, 0, 0.6θ2
4 θ̇2

5 , 0.5θ̇4θ5, 0]T , t = 3.6
(36)

To provide a comparative idea, firstly we turn off RNN compensator and try to use
PD controller only. The simulation results are shown in Fig. 8. It can be seen that
the joint angles cannot catch up with the command signal in link 3 and 4 due to the
model uncertainty.

Then we turn on the RNN compensator. The tracking errors of the two control
scheme are put together in Fig. 9. In addition, the failure function and RNN
compensation effort are displayed in Fig. 10. To avoid over lengthy plot, only the
information of link 4 are presented because of its representative characteristics in
both faults. From the plots, we found that before faults occur, the steady state error of
hybrid controller is almost the same as that of pure PD controller setup. This means
both the controllers can stabilize the biped robot dynamics in a fault-free condition.
In contrast, after the occurrence of nonlinear faults and modelling uncertainties, the
trajectory error of PD control method deteriorates considerably, especially in link 3
and 4. While the control performance is apparently enhanced in the configuration of
the hybrid controller with RNN compensator.
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The effects of different choices of β on the derived training algorithm (22) are
also studied. It turns out the convergence speed is getting faster as β increases, as
expected. On the other hand, the jitter in the training error becomes series when β

approaches 1, which may lead to unstable training. We suggest to make β = 0.8 in
design to ensure both transient performance and marginal stability. The simulation
result is displayed in the next figure. The first 20 steps (0.1 s) of averaged MSE of 6
joint angle tracking results is shown (see Fig. 11).

6 Conclusion

In this work, we present a RNN compensation scheme for robot trajectory tracking
system. The convergence speed of gradient-type training algorithm is optimized
by using adaptive learning rate. Robustness is analyzed based upon conic sector
theorem. Simulation results show that standard PD controller most likely suffers
from poor transient response when system faults occur. While with the assistance
of RNN, the performance is prevented from deteriorating successfully. Therefore we
conclude that the proposed RNN and training algorithm can provide a favorable
compensation of nonlinear faults and lead to an improvement of whole system
robustness.

Acknowledgements We thank the two anonymous referees who helped to improve the article
greatly.

Appendix

The parameters M, C, G of robot dynamics in Eq. 11 can be calculated by

M(θ(k)) = {cij cos(θi(k) − θ j(k))}
C(θ(k)) = {cij sin(θi(k) − θ j(k))}
G(θ(k)) = {−hi sin θi(k)}

Where

h1 = (m1a1 + m2l1 + m3l1 h2 = (m2a2 + m3l2 + m4l2

+ m4l1 + m5l1 + m6l1)g + m5l2 + m6l2)g
h3 = m3a3g h4 = (m4a4 − m4l4 − m5l4 − m6l4)g

h5 = (m5a5 − m5l5 − m6l5)g h6 = −m6bg

c11 = m1a2
1 + (m2 + m3 + m4 c22 = m2a2

2 + (m3 + m4 + m5

+ m5 + m6)l2
1 + I1 + m6)l2

2 + I2

c33 = m3a2
3 + I3 c44 = m4(l4 − a4)

2+(m5 + m6)a2
4 + I4

c55 = m5(l5 − a5)
2 + m6l2

5 + I5 c66 = m6b 2 + I5

c12 = m2l1a2 + (m3 + m4 + m5 + m6)l1l2 c13 = m3l1a3

c14 = −m4l1(l4 − a4) − (m5 + m6)l1l4 c15 = −m5l1(l5 − a5) − m6l1l5
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c16 = −m6l1b c23 = m3l2a3

c24 = −m4l2(l4 − a4) − (m5 + m6)l2l4 c25 = −m5l2(l5 − a5) − m6l2l5

c26 = −m6l2b c34 = c35 = c36 = 0
c45 = m5l4(l5 − a5) + m6l4l5

c46 = m6l5b

cij = cji
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