J Intell Robot Syst (2007) 49:135-150
DOI 10.1007/s10846-007-9132-2

Simulating Self-replicating Machines

William M. Stevens

Received: 2 August 2006 / Accepted: 11 January 2007 /
Published online: 9 March 2007
© Springer Science + Business Media B.V. 2007

Abstract A simulation framework is described in which sliding tiles moving in a
discrete two-dimensional grid can be put together to build machines. The tiles can
perform logical and mechanical functions, and can be connected to each other. A
self-replicating machine has been designed in this environment and its operation is
summarised. Observations are made about the usefulness and the limitations of the
machine and its environment, and several ways in which the limitations could be
addressed are described. A justification of the simulation approach for modelling
self-replicating systems is given.

Keywords Self-replication - Self-organisation - Simulation - Mechatronics

1 Introduction

It has been proposed that self-replicating manufacturing systems will find applica-
tions ranging from the exploration of the galaxy [6] to the molecular-scale assembly
of macroscale objects [5]. The problem of designing a system capable of constructing
arange of useful objects as well as a replica of itself from a feedstock of raw materials
is complex, and because of this some researchers have restricted their attention to
the problem of designing self-replicating systems that work by assembling simpler
subsystems. To date, only a handful of very simple physical self-replicating systems
have been demonstrated (see Section 4.1). All rely on a supply of pre-fabricated
parts, some require rather complex parts, and some cannot construct anything
other than replicas. This paper presents a simulation environment designed to assist
exploration of the design space for self-replicating systems made from simple pre-
fabricated parts. A specific example of a self-replicating programmable constructor
within the simulation environment is given.

W. M. Stevens ()
Department of Physics and Astronomy, Open University, Milton Keynes MK7 6A A, UK
e-mail: william@stevens93.fsnet.co.uk

@ Springer

136 J Intell Robot Syst (2007) 49:135-150

The possibilities that cellular automata offer for research into self-replicating
systems have been widely explored. Von Neumann [15] developed a programmable
constructing automaton embedded in a cellular automaton in the late 1940s and used
it to prove the existence of a self-replicating automaton capable of constructing any
other automaton within its domain of operation.

Since then several researchers have devised self-replicating systems embedded in
cellular automata arrays. These have ranged from programmable constructors in the
pattern of von Neumann’s example [4, 15] to simple self-replicating loops that can do
nothing but produce copies of themselves [2, 10]. Sipper gives an overview of these
and other self-replicating systems [17, 18].

Research into the design and construction of physical self-replicating machines
may benefit from simulation environments that offer a greater degree of physical
realism than cellular automata. The simulation framework described in this paper is
one such environment. In addition to devising a self-replicating structure embedded
in a cellular automaton array, von Neumann also proposed what is now called his
‘kinematic model’ for studying the constructional capabilities of machines [15]. The
system described in this paper bears some resemblance to von Neumann’s proposal.
The precise way in which the system described here is more physically realistic than
cellular automaton environments is explained in Section 4.

There are two main strands of research into self-replication using prefabricated
parts. One strand is characterised by von Neumann’s kinematic programmable
constructor model and seeks to build program-controlled constructors capable of
constructing replicas of themselves from a set of simple parts. The other strand
is characterised by Penrose’s replicating plywood shape system [16], in which a
sequence of parts serves as a template upon which a replica sequence is built up. A
more recent example of this strand of research can be found in [8]. These two strands
of research may turn out to be complementary to each other. In nature we find that
a template-based process underlies the replication of DNA and the construction of
cellular components. Cellular components then cooperate together in a well-ordered
way following a definite plan of development to construct a replica cell.

The CBlocks system is introduced in the rest of this section, and described more
fully in Section 2. In Section 3 a self-replicating programmable constructor in the
CBlocks system is presented. Section 4 places this work in the context of other work
on physical self-replicating systems, and points out the advantages that it offers.

1.1 The CBlocks System

CBlocks is a system in which square tiles move and interact with each other on a
two-dimensional discrete grid.

There are several different types of tile. Each type performs a specific function.
There are types that perform logical functions, types that join tiles together, types
that move in response to a signal and types that move other tiles. Tiles can send and
receive signals to and from neighbouring tiles.

Tiles occupy one cell in the two-dimensional grid in which they exist, and can
move either north, south, east or west in a single time unit. When a tile moves into a
neighbouring cell that is already occupied, the occupying tile gets pushed away. There
are rules that determine how signals pass between tiles, how tiles can be connected
together and how they should behave when they are connected.

@ Springer

J Intell Robot Syst (2007) 49:135-150 137

Fig.1 A not tile

Machines can be constructed from collections of tiles connected up in an appro-
priate way.

1.2 An Example

A simple example is presented before giving a more formal description of the system.

Figure 1 shows a not tile with an input at the bottom and an output at the top. At
the next time step, the output will be zero if the input is non-zero, or one otherwise.

Figure 2 shows a thrust tile. When the input is non-zero, the tile moves down by
one cell every time step

In Fig. 3, four successive time steps showing the behaviour of an arrangement of
tiles is shown. The thrust tile is activated by the not tile connected to it. It moves one
cell to the right every time step until the not tile on the right turns off the output of
the not tile connected to the thrust tile. Note that the thrust tile continues moving to
the right until one time step after the two not tiles come into contact because it takes
one time step for the signal from the right-most not tile to propagate to the thrust tile.

2 A Concise Description of CBlocks

In CBlocks, time is discrete, and moves forward in steps of one unit. In one time unit
a tile may move one cell to the north, south, east or west. Tiles can be connected
together along their edges. When two or more tiles are connected together, they
move together when pushed. Rules exist to avoid conflicts that might arise when, for
example, an attempt is made to push two tiles into the same cell. Since this kind of
conflict does not arise in the systems described in this paper, a description of these
rules is not necessary. A full discussion of the kinds of conflicts that can arise is given
by Arbib in [1].

2.1 Tile Types and Signals

Two tile types have already been introduced: these were the not and thrust types.
Signals were mentioned in the informal descriptions of these tiles.

Fig.2 A thrust tile

@ Springer

138 J Intell Robot Syst (2007) 49:135-150

Fig. 3 A simple example

o——

The edges of tiles can be regarded as terminals through which signals can be
passed between neighbouring tiles. Tiles do not need to be connected in order for
signals to pass between them. Each terminal of a tile acts either as an input or as an
output. If a terminal has no explicit definition, it is effectively an output producing
no signal.

Signals are 32-bit integer values. The absence of a signal corresponds to a value of
zero. It takes one time unit for a signal to propagate from a tile’s inputs to its outputs,
or for a tile to respond to signals at its inputs.

A tile’s type determines how it responds to input signals, and whether it produces
any output signals. A tile can be in any one of four possible orientations. The CBlocks
environment is rotation symmetric, so that two structures that differ only in their
orientation can be regarded as being logically and kinematically equivalent.

Table 1 describes 24 tile types, of which 23 are used in Section 3. (The RUnFuse
tile is not used, but is included in Table 1 for completeness). In Table 1 the letters N,
S, E and W (for North, South, East and West) are used to refer to terminals and also
to indicate directions. The context should indicate which usage is meant. Note that
terminal labels and directions are given relative to the orientation of the tile.

The notation used for expressions in Table 1 is that used by the C programming
language, summarized in Table 2.

3 A Self-replicating Machine in CBlocks

The tile types described in the previous section have been used to make a self-
replicating machine (SRM). An outline description of the machine is given in this
section. There is not space in this paper to give a detailed description. Interested
readers are referred to the author’s website given at the top of this paper.

@ Springer

J Intell Robot Syst (2007) 49:135-150 139

Table 1 Tile types used for the SRM in Section 3

Tiles used and their graphical representation

1 Wire 2 Cross 3 Delta

N=S N=S,E=W N.E,W=S

4 Not 5 And 6 Or

N=!S N=min(E,W) N=max (E,W)
7 Nand 8 Nor 9 Insulator

N=!(E&&W) N=!(EIIW)
10 Push 12 Thrust 13 RFuse
[

When S!=0, push on

When S!=0, push on
tile that lies N,

When S!=0, connect

in the N direction

self in the S

the tiles that lie

direction N and NE
14 LFuse 15 RUnFuse 16 LUnFuse
]
When S!=0, When S!=0, When S!=0,
connect the disconnect the disconnect the
tiles that tiles that tiles that
lie N and NW lie N and NE lie N and NW
19 RSlide 20 LSlide 21 Equal
LT ~ \
T
When S!=0, apply a When S!=0, apply a N=(E==W)
force on tile that lies N, force on tile that lies N,
in the E direction in the W direction
22 Pulse 24 Creator 25 Multiplier
I
%
N=1 only when S changes When S is non-zero, N=E*W
from 0 to non-zero create a tile in the
N direction
26 Adder 27 Store 32 Toggle
|)
N=E+W

If S!=0 and output N==0, set
output N to S. If E!=0 or
W!=0, set output N to 0

If S!=0, toggle the
value of output N

@ Springer

140 J Intell Robot Syst (2007) 49:135-150

Table 2 Operators used .
in Table 1 Operator Name and meaning

+ Plus
Sum of operands
* Times
Product of operands
== Equals
1 if operands are equal, zero otherwise
1= Not Equals
zero if operands are equal, 1 otherwise
! Logical Not
1 if operand is zero, zero otherwise
&& Logical And
1 if both operands are non-zero, zero otherwise
Il Logical Or
1 if any operand is non-zero, zero otherwise

The SRM would be far more complex were it not for the creator tile type. This
type allows new tiles to appear from nowhere in response to a signal.

Figure 4 illustrates the geometrical structure of the SRM, the four main parts
are labelled. The instruction hopper contains a block of store tiles which encode
a sequence that directs the SRM to move around the universe and to create tiles
in such a way as to duplicate itself. This sequence of store tiles is referred to as
the instruction tape. The instruction tape can encode instructions for building any
configuration of tiles, limited only by the length of the instruction tape. To illustrate
this, Fig. 5 shows a relatively simple configuration of tiles and Table 3 gives the
instruction sequence (with integer instruction codes in brackets) required to make
this configuration. Notice that the orientation of tiles specified in this instruction
sequence is the orientation relative to the orientation of the creator tile in the reader.

Self-replication is the special case where the instruction tape encodes a sequence
of actions that results in a duplicate machine. In the description of the SRM that
follows, the terms parent and child are used to refer to machines in a relationship
where one instance of the machine has constructed or is constructing another.

Figure 6 shows how the instruction tape is arranged in the machine. The ar-
rows show the direction in which store tiles move as the tape is advanced. The

Fig. 4 The geometrical Tape advancing
structure of the srm mechanism
Reader / \
Instruction
\ hopper
Copier

@ Springer

J Intell Robot Syst (2007) 49:135-150

141

Fig. 5 An example
construction

e

o | e

]

!
.

T4

SRBCRCES

tape-advancing mechanism ensures that the tape advances one tile at a time and that
the arrangement shown in Fig. 6 is maintained.

The reader contains logic that interprets signals from the instruction tape and acts
upon them. Figure 7 shows the logical structure of the reader.

The SRM uses a creator tile to create new tiles as they are needed. This tile creates
anew tile whose type and orientation (i.e. orientation relative to the creator tile in the
reader) are dependant on the value of the input signal that it receives. A signal value
of 4T + D encodes a tile of type T and orientation D. Values of T for each tile type
are given in Table 1. The mapping between values of D and possible orientations is

{0, N), (1, E), (2,), 3, W)}.

Table 3 Instructions required for constructing Fig. 5

The instruction sequence

Delta north (14)
Move south (1002)
Delta west (15)
Move south (1002)
Delta west (15)
Move south (1002)
Delta west (15)

Move east (1001)

Move north (1004)
Move north (1004)
Move north (1004)

Delta north (14)

Move north (1004)
Move south (1002)
Move south (1002)
Move south (1002)
Move south (1002)
Delta south (12)

Move north (1004)
Move east (1001)

Move north (1004)
Move north (1004)

Delta north (14)

Move north (1004)
Move south (1002)
Move south (1002)
Move south (1002)
Move south (1002)
Delta south (12)

Move north (1004)
Move east (1001)

Move north (1004)
Move north (1004)

Delta east (13)
Move north (1004)
Move south (1002)
Move south (1002)
Delta east (13)
Move south (1002)
Delta east (13)

Move south (1002)
Orgate east (25)

Move north (1004)
Move east (1001)

Move north (1004)
Pulser south (88)

Move north (1004)
Move south (1002)
Move east (1001)

Thruster south (48)
Move north (1004)
Move south (1002)

Move south (1002)
Move south (1002)
Move south (1002)
Move south (1002)

Move west (1003)
Move west (1003)

@ Springer

142 J Intell Robot Syst (2007) 49:135-150

Fig. 6 The arrangement of the
instruction tape

i

VL’

A

vy

i

VL’

A

Some of the store tiles in the instruction tape encode values which tell the SRM to
perform an action. The values used are as follows:

1001 = move east

1002 = move south

1003 = move west

1004 = move north

1005 = switch between read and copy phases
1006 = do nothing

No explicit instruction is needed in order to tell the reader to fuse newly created
tiles together, since the reader contains fuser tiles that are always active and which
fuse together any tiles that pass in front of them.

The copier is responsible for creating a duplicate instruction tape in a child SRM.
Figure 8 shows the logical structure of the copier.

The replication cycle has two phases: the reading phase and the copying phase.
During the reading phase the instruction tape is interpreted by the reader. The last
instruction in the instruction sequence (code 1005) causes the machine to toggle
between the reading and copying phases. During the copying phase, the parent sends
signals to the child which cause a copy of the instruction tape to be created in the child
SRM. The child machine is then complete and can begin constructing its own child.
The parent machine switches back to the reading phase and the replication cycle
begins again. Figures 9 and 10 show two snapshots of the SRM in action, showing
which phase it is in and what it is doing at each snapshot.

Figure 11 shows a parent SRM and the child SRM that it has produced. Notice
that the child is constructed so as to be oriented 90° anticlockwise with respect
to the parent. This is done so that successive generations of SRMs will fill up the

Move Move Move Move
West East North South
A Signal from
Create | / X -t Pulse — Instruction
Tile [\ v\ Hopper
Reader
Active

Fig. 7 The logical structure of the reader

@ Springer

J Intell Robot Syst (2007) 49:135-150 143

Fig. 8 The logical structure
of the copier

: Create
Signal from -
parent SRM Store
Input to newly
created Store tile

two-dimensional universe. It might be argued that because of this difference in
orientation the child is not an exact replica of the parent. However, since the CBlocks
environment is rotationally symmetric the logical and kinematical behaviour of
parent and child can reasonably be regarded as equivalent.

Figure 12 shows the state of the universe after the initial SRM has produced two
child SRMs, the first of which has produced a child of its own.

3.1 Part Counts

The SRM is made from 2,311 tiles, including the 1,777 store tiles in the instruction
tape. Twenty-three different types of tile are used (see Table 1). The number of each
type used is given in Table 4.

4 CBlocks and Physical Self-replicating Machines

In the introduction it was asserted that the CBlocks environment is more physically
realistic than cellular automaton environments. This statement needs justification.
Cellular automaton environments can of course be made from arrays of discrete
parts, with each physical part corresponding directly to a cell in the abstract envi-
ronment. A self-replicating system in such an environment would be able to alter the
internal state of a discrete part in the array, but this would be the limit of its effect
on the physical environment. Such a system does not harness the mechanics of the
physical environment for the purpose of self-replication.

Fig.9 The parent SRM is in s
the reading phase and is part '
way through constructing a
child SRM

@ Springer

J Intell Robot Syst (2007) 49:135-150

144

Fig. 10 The parent SRM has finished the reading phase and is part way through the copying phase

A physical self-replicating system capable of building itself from component parts
would have to make use of the mechanics of the environment in which the component
parts function in order to replicate itself. The self-replicating system described in

this paper does this within the CBlocks environment. This environment has rules

Fig. 11 A parent SRM has produced a child

As

pringer

J Intell Robot Syst (2007) 49:135-150 145

Fig. 12 SRMs after two generations

of motion and interaction loosely based upon the laws of motion and the mechanical
interactions of physical machines. In this sense, the CBlocks environment can be said
to be more physically realistic than cellular automaton environments.

Matter is not conserved in the CBlocks environment, since a creator tile can
create other tiles from nowhere. At first sight it seems that a creator tile is not at
all physically realistic. However, it is possible to envisage physical systems in which
something like a creator tile can be made. For example, if a physical model based on
CBlocks existed on a two-dimensional surface and a second surface were placed just
above this surface, the second surface could contain a disorganised collection of tiles,
moving about at random. A creator tile on the lower surface needing to create a tile
could wait for a tile of the correct type and in the correct orientation to pass above it

@ Springer

146 J Intell Robot Syst (2007) 49:135-150

Table 4 Count of the types

of tile used in the SRM Tile types No.
Store 1,777 +5
Delta 172
Wire 124
Insulator 108
Pusher 32
Left-slider 18
Right-slider 15
Toggle 12
15 Others 48 (less than six of each, four tile

types only used once)

on the upper surface, and then cause it to be transferred from the upper to the lower
surface.

It may be possible to devise an SRM in CBlocks which is not dependant on a
creator tile. This SRM could fetch the tiles needed to build a copy of itself from a
known location, or alternatively it could forage for tiles in a disorganised collection.

4.1 Other Work on Physical Self-replicating Machines

Other work related to physical self-replication is summarised below in chronological
order.

Penrose devised a set of plywood shapes that could be placed into a container
and agitated. The shapes would remain in a disordered state, unless seeded by a
particular configuration of two shapes, in which case other shapes would tend to pair
up and adopt the same configuration [16].

A NASA summer study in 1980 investigated the possibility of building a self-
replicating factory on the moon [6].

More recently, Chirikjian et al devised LEGO robots that could put together other
robots from three complex parts [3].

Moses developed a set of plastic blocks that could be used to make a three-
dimensional constructor, capable of building another constructor under the control
of a computer or a human operator [13].

Zykov et al. built a system in which robots made from identical subunits containing
power sources, motors and processors could build other robots from the same
subunits, including copies of themselves [20].

Malone and Lipson developed a compact free-form fabrication system capable of
making various components including batteries, wires and flexible joints [11].

Freitas and Merkle published a comprehensive work which describes proposals for
and implementations of physical self-replication, along with some of the engineering
issues surrounding physical self-replication [7].

Griffith et al. built a system for investigating physical template-based self-
replication. This system consists of a programmable unit which can communicate
with and connect to neighbouring units. Behaviour required for self-replication can
be programmed into a large number of units, which will form replicas when seeded
with a template structure [8].

@ Springer

J Intell Robot Syst (2007) 49:135-150 147

The works described above can be categorised as follows: [3], [8] and [16] are
systems made from a small number of parts, designed for the purpose of self-
replication but with little ability to do anything else. References [13] and [20] are
systems made from a larger number of parts, taken from a small set of pre-fabricated
part types. These systems are program-controlled and are therefore able to construct
a wide range of machines made from the pre-fabricated parts. References [6] and [11]
are systems which make their own parts from raw material feedstock. These systems
offer a great deal of flexibility: not only can the arrangement of parts be specified by
a program, the structure of the parts themselves can also be specified by a program.
Reference [6] is a long way from being realised. Reference [11] can make a small
number of component parts and is some way from being able to make the same set
of parts from which it is made and then assemble those parts into a replica.

4.2 The Value of a Simulation Approach

Within this categorisation scheme, the systems described in [13] and [20] are the most
similar to the programmable SRM described in this paper so it is worth examining
these in more detail to see what advantages a simulation approach offers to this class
of system.

The plastic blocks in Moses’s system [13] are of 11 different types and are designed
to permit the construction of a constructing machine based around a controllable
manipulator that can pick up blocks one at a time, position them in three dimensions
and then slot them into a structure being built. Moses’s system is controlled by an
external program: blocks containing motors are fed signals from a computer or from
a human operator that lies outside the environment.

The system of Zykov et al. [20]. is based around a single type of block that
combines processing, connective and motor functions into a single unit. Four of these
units can be put together to make a machine capable of manipulating other units
and arranging them into a replica configuration. In contrast to Moses’s approach of
using a set of simple parts to build a more complex structure under external control,
Zykov’s system is made from complex parts, each of which is capable of containing a
description of the steps required to replicate the whole system.

Both systems can be regarded as steps towards the goal of making a fully
autonomous self-replicating system with a low component-part complexity and
high constructional capability, which will be referred to as goal G. [13] has a low
part complexity and a constructional capability limited only by the 11 part types
available and the size of the domain that the constructor operates in, but is not fully
autonomous. [20] is fully autonomous and also has a wide constructional capability,
but has a very high part complexity.

Building physical prototypes is expensive and time-consuming. To make headway
towards goal G starting from a system like [13] it would be necessary to design a
control unit from the set of available part types, perhaps augmented with several
more to facilitate the processing of digital information. Simulation would greatly
help the design process. Reference [13] has a deliberately restricted set of possible
mechanical interactions between parts, and could therefore be simulated by a
CBlocks type model, which simulates only logical, geometrical and kinematical in-
teractions between parts and between subsystems. By omitting detailed simulation of
mechanical interactions from a simulation model, simulation time is greatly reduced.

@ Springer

148 J Intell Robot Syst (2007) 49:135-150

The designers of system [20] had both simulation and physical construction in
mind when designing their system. A simulation model that models the geometrical
and logical constraints of the system was used to come up with manually designed
and automatically evolved self-replicating structures [14]. In the physical prototype,
a microcontroller was used to implement the controlling logic for the parts, and the
logical communication that takes place between parts is complex.

One way to progress towards G starting from [20] would be to separate out the
different functions of the single part used in this system into perhaps three or four
different types of part. One part for logical processing, one for movement, and one
or two for connecting/disconnecting other parts. An attractive feature of the system
in [20] is that the swiveling half-cube method for moving parts around can be used
both for translation and rotation of parts.

Implementing a controller for such a system derived from [20] using logical
processing parts containing a simple logical element such as a boolean logic gate
would be challenging without the aid of a simulation model.

4.3 Computation and Construction

Several researchers have attempted to establish criteria that can be used to distin-
guish between trivial self-replicating systems such as crystals growing in solution
and fire in a flammable medium and non-trivial systems such as living cells and von
Neumanns self-replicating automaton.

Starting with Burks [15], some researchers have used the capability for universal
computation as the sole distinguishing criterion. Both Herman [9] and Langton [10]
criticise Burks on different grounds. Herman presents a self-replicating automaton
capable of universal computation that seems intuitively trivial, and Langton argues
that the simplest living cells are not capable of universal computation and yet seem
intuitively non-trivial.

McMullin [12] gives a detailed critique of Burks criterion and clears up some
of the confusion surrounding the issue of trivial versus non-trivial self-replication
by pointing out that von Neumann’s self-replicating automaton was not designed
as an end in itself, but was part of the answer to a question that von Neumann
posed about the ability of a machine to create other machines more complex than
itself. Therefore, von Neumann was concerned about the class of objects that his
automaton could be programmed to construct.

Researchers interested in the applications of physical self-replication share the
same concern, and in addition are concerned with the complexity of the component
parts of a machine, and the complexity of a machine relative to the complexity of its
component parts.

Logical universality and the capability for universal computation enter this scene
almost incidentally for the following reasons: Firstly a replicator that is controlled by
a universal computer is likely to have a larger constructional capability than one that
is not. Secondly a replicator may not itself contain a universal computer, but may be
capable of constructing one (the SRM described in this paper is an example of this).

At the present time, a machine’s constructional capability is not so easy to quantify
and hold up for comparison with other machines as its computational capability, since

@ Springer

J Intell Robot Syst (2007) 49:135-150 149

constructional capability depends on the environment that the machine operates in.
Computational capability depends only on the logical structure of a system, where
as constructional capability can depend on the logical, kinematical, mechanical and
physical structure of a system (i.e. how flexibly a system can be programmed, the
range of its movements, how its parts interact with each other mechanically, and
what materials its parts are made from).

5 Conclusion

A simulation environment has been developed in which a self-replicating machine
has been constructed.

The SRM is a moving programmable constructor made from 23 different types of
part. It is controlled by a looping sequence of instructions contained within the body
of the machine. The SRM uses a special creator part that can create other parts out
of nowhere.

There is some redundancy in the set of parts used by the machine. For example,
there are four types of tile which exert forces, 12 types of tile which perform arith-
metic or combinational logic operations and three types of tile that connect or
disconnect other tiles. In choosing the set of tiles used in this paper, a trade-off had
to be made between SRM size (and simulation time requirements) on the one hand,
and tile complexity/redundancy on the other.

The system could be extended to three dimensions, with the advantage that
in three dimensions it is possible to access unit parts (cubes) from six directions
instead of four, and the routing of signals around machines becomes easier. From
the perspective of physical implementation, a three dimensional model poses some
problems. How should parts that are not in contact with the ground be supported?
How can power be routed to parts that are surrounded on all sides by other parts?

Future work is expected to result in an SRM that uses a greatly reduced part
set, with only one type of tile for each different class of function. The need for a
creator tile will be removed by having the machine forage for parts in a disorganised
collection and testing each part that is found to determine its type.

CBlocks was developed with the aim of creating an environment with a greater
degree of physical realism than cellular automata environments and in which an SRM
made from simple component parts could be constructed. This aim has been met. An
environment called Nodes which uses Newtonian laws of motion was developed side-
by-side with CBlocks in order to explore this aim further. This is described in [19].

6 Obtaining CBlocks

Software and C++ source code for the CBlocks environment are available at the
following the URL.:

http://www.srm.org.uk

The website also contains files needed to simulate the SRM described in this paper
and a more detailed description of the structure of the SRM.

@ Springer

http://www.srm.org.uk

150 J Intell Robot Syst (2007) 49:135-150

References

1. Arbib, M.A.: Theories of Abstract Automata, pp. 355-361. Prentice-Hall, Englewood Cliffs, NJ
(1969)

2. Byl J.: Self-reproduction in small cellular automata. Physica D 34, 295-299 (1989)

3. Chirikjian, G.S., Zhou, Y., Suthakorn, J.: Self-replicating robots for lunar development.
IEEE/ASME Trans. Mechatron. 7(4), 462-472 (2002)

4. Codd, E.F.: Cellular Automata. Academic, New York (1968)

5. Drexler, K.E.: Engines of Creation: The Coming Era of Nanotechnology. Anchor, Doubleday,
New York (1986) (http://www.foresight.org/EOC/ Cited on 25 November 2006)

6. Freitas, R.A. Jr.: Report on the NASA/ASEE summer study on advanced automation for space
missions. JBIS, J. Br. Interplanet. Soc. 34, 407-408 (1981)

7. Freitas, R.A. Jr., Merkle, R.C.: Kinematic Self-replicating Machines. Landes Bioscience,
Georgetown, TX (2004) (http://www.molecularassembler.com/KSRM.htm Cited on 25
November 2006)

8. Griffith, S., Goldwater, D., Jacobson, J.M.: Robotics: self-replication from random parts. Nature
437, 636 (2005)

9. Herman, G.T.: On universal computer constructors. Inf. Process. Lett. 2, 61-64 (1973)

10. Langton, C.G.: Self-reproduction in cellular automata. Physica D 10, 135-144 (1984)

11. Malone, E., Lipson, H.: Functional freeform fabrication for physical artificial life. In: Proc. 9th
International Conference on the Simulation and Synthesis of Living Systems. MIT, Boston, MA,
pp. 100-105 (2004)

12. McMullin, B.: John von Neumann and the evolutionary growth of complexity: look-
ing backwards, looking forwards... artificial life VII: Proceedings of the Seventh Interna-
tional Conference. MIT, Boston Massachusetts, pp. 467-476 (2000) (http://www.eeng.dcu.
ie/alife/bmem-2000-01/ Cited on 25 November 2006)

13. Moses, M.: A physical prototype of a self-replicating universal constructor. Masters thesis,
Department of Mechanical Engineering, University of New Mexico (2001) (http:/www.home.
earthlink.net/"mmoses152/SelfRep.doc Cited on 25 November 2006)

14. Mytilinaios, E., Desnoyer, M., Marcus, D., Lipson, H.: Designed and evolved blueprints for
physical self-replicating machines. In: Proc. 9th International Conference on the Simulation and
Synthesis of Living Systems. MIT, Boston, MA, pp. 15-20 (2004)

15. Von Neumann, F.: Theory of self-reproducing automata. Completed by A.W. Burks (ed.). Uni-
versity of Illinois Press, Urbana, IL, pp. 81-82 (1966)

16. Penrose, L.S.: Self-reproducing machines. Sci. Am. 200(6), 105-114 (1959)

17. Sipper, M.: Fifty years of research on self-replication: an overview. Artif. Life 4(3), 237-257
(1998)

18. Sipper, M.: The artificial self-replication page (1998-Present). (http://www.cs.bgu.ac.il/ “sipper/
selfrep Cited on 25 November 2006)

19. Stevens, W.M.: Nodes: an environment for simulating kinematic self-replicating machines.
In: Proc. 9th International Conference on the Simulation and Synthesis of Living Systems.
MIT, Boston, MA, pp. 39-44 (2004) (http://www.srm.org.uk/papers/nodespaper.pdf Cited on 25
November 2006)

20. Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nature 435, 163—
164 (2005)

@ Springer

http://www.foresight.org/EOC/
http://www.molecularassembler.com/KSRM.htm
http://www.eeng.dcu.ie/~alife/bmcm-2000-01/
http://www.eeng.dcu.ie/~alife/bmcm-2000-01/
http://www.home.earthlink.net/~mmoses152/SelfRep.doc
http://www.home.earthlink.net/~mmoses152/SelfRep.doc
http://www.cs.bgu.ac.il/~sipper/selfrep
http://www.cs.bgu.ac.il/~sipper/selfrep
http://www.srm.org.uk/papers/nodespaper.pdf

	Simulating Self-replicating Machines
	Abstract
	Introduction
	The CBlocks System
	An Example

	A Concise Description of CBlocks
	Tile Types and Signals

	A Self-replicating Machine in CBlocks
	Part Counts

	CBlocks and Physical Self-replicating Machines
	Other Work on Physical Self-replicating Machines
	The Value of a Simulation Approach
	Computation and Construction

	Conclusion
	Obtaining CBlocks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

