
J Intell Robot Syst (2007) 48:55–78
DOI 10.1007/s10846-006-9099-4

Qualitative Spatial Reasoning with Conceptual
Neighborhoods for Agent Control

Frank Dylla · Jan Oliver Wallgrün

Received: 16 March 2006 / Accepted: 03 September 2006 /
Published online: 8 December 2006
© Springer Science + Business Media B.V. 2006

Abstract Research on qualitative spatial reasoning has produced a variety of calculi
for reasoning about orientation or direction relations. Such qualitative abstractions
are very helpful for agent control and communication between robots and humans.
Conceptual neighborhood has been introduced as a means of describing possi-
ble changes of spatial relations which e.g. allows action planning at a high level
of abstraction. We discuss how the concrete neighborhood structure depends on
application-specific parameters and derive corresponding neighborhood structures
for the OPRAm calculus. We demonstrate that conceptual neighborhoods allow res-
olution of conflicting information by model-based relaxation of spatial constraints. In
addition, we address the problem of automatically deriving neighborhood structures
and show how this can be achieved if the relations of a calculus can be modeled in
another calculus for which the neighborhood structure is known.

Key words conceptual neighborhood · model-based relaxation ·
qualitative spatial reasoning

1 Introduction

Qualitative spatial reasoning (QSR) is an established field of research investigating
qualitative representations of space that abstract from the details of the physical
world together with reasoning techniques that allow predictions about spatial rela-
tions, even when precise quantitative information is not available [2]. QSR is typically
realized in form of calculi over sets of spatial relations (e.g. left-of or north-of). These

F. Dylla (B) · J. O. Wallgrün
SFB/TR 8 Spatial Cognition, Universität Bremen, Bibliothekstr. 1,
28359 Bremen, Germany
e-mail: dylla@sfbtr8.uni-bremen.de

J. O. Wallgrün
e-mail: wallgruen@sfbtr8.uni-bremen.de

56 J Intell Robot Syst (2007) 48:55–78

calculi are well-suited to serve as simple and efficient abstractions of the world, e.g.
for robot navigation [5] or communication purposes [16].

A multitude of spatial calculi has been proposed during the last two decades,
focusing on different aspects of space (mereotopology, orientation, distance, etc.)
and dealing with different kinds of objects (points, line segments, extended objects,
etc.). The two main research directions in QSR are topological reasoning about
regions [7, 25, 28] and positional reasoning about configurations of point objects
[8, 10, 15, 18, 27] or line segments [5, 20, 30]. Calculi dealing with such information
have been well investigated over the recent years and provide general and sound
reasoning mechanisms. An overview is given in [3].

An important concept in the context of robot navigation and agent control—and
the main topic of this text—is the notion of conceptual neighborhood between spatial
relations. Conceptual neighborhood has been introduced as a means of describing
possible changes of spatial relations which e.g. allows action planning at a high level
of abstraction.

As we will show in this text the concrete neighborhood structure, however,
depends very much on application-specific parameters like what kind of continuous
transformations have to be considered for the objects involved (e.g. locomotion,
deformation, etc.), whether objects can be transformed simultaneously, or whether
two objects can occupy the same space or not. The exemplary calculus we will
investigate in this text is the Oriented Point Relation Algebra (OPRAm) with
adjustable granularity [17, 18] for reasoning about the orientation relations between
oriented points. We will analyze its conceptual neighborhood structures as they arise
under different conditions in the context of robot navigation.

After this analysis, we will demonstrate one way in which conceptual neigh-
borhoods can be beneficially employed for controlling mobile robots, namely the
application of conceptual neighborhoods for a model-based resolution of conflicts in
spatial information stemming from different knowledge sources. Standard constraint
satisfaction techniques for relational constraints [14] will be used to check for
consistency, while the conceptual neighborhoods will be used to incrementally relax
the spatial constraints until an optimal consistent relaxation is found with respect to
an application-dependent cost or distance function.

Since conceptual neighborhood structures depend on the given scenario and,
in addition, qualitative spatial calculi themselves are often developed or adapted
for a specific task, methods for automatically deriving or verifying properties like
composition tables and neighborhood structures for new calculi are required [6].
We address this problem by showing that neighborhood structures for two other
orientation calculi, the FlipFlop calculus [15] and the fine-grained Dipole Relation
Algebra [5], can be automatically computed by first modeling the relations of these
calculi in OPRAm, then generating neighboring configurations in OPRAm, and
finally translating the consistent ones back into the original calculus.

The text is structured as follows: We begin by briefly introducing the most relevant
concepts with respect to QSR and in particular the OPRAm calculus in Section 2.
In the next section, we present the notion of conceptual neighborhood structures
and investigate the different neighborhood structures of OPRAm. Section 4 is
concerned with the application of conceptual neighborhoods for resolving conflicting
information by relaxation. And in Section 5, we address the problem of deriving
conceptual neighborhood structures automatically.

J Intell Robot Syst (2007) 48:55–78 57

2 Qualitative Spatial Reasoning and the OPRAm Calculus

In this section, we give a brief overview on spatial calculi and qualitative spatial
reasoning and introduce the Oriented Point Relation Algebra (OPRAm), which will
accompany us through the rest of the text. The OPRAm calculus has been chosen as
it is algebraically well defined and thus well qualified for being integrated into robot
control architectures.

2.1 Qualitative Spatial Calculi

A qualitative spatial calculus defines operations on a finite set R of spatial relations,
like left-of, north-of, overlap, etc. The spatial relations are defined over a usually
infinite set of spatial objects, the domain D (e.g. points, line segments, regions, etc.).
In this text, we will mainly consider binary calculi in which R consists of binary
relations R ⊆ D × D.

The set of relations R of a spatial calculus is typically derived from a jointly
exhaustive and pairwise disjoint (JEPD) set of base relations BR so that each pair
of objects from D is contained in exactly one relation from BR. Every relation in R
is a union of a subset of the base relation. Since spatial calculi are typically used for
constraint reasoning and unions of relations correspond to disjunction of relational
constraints, it is common to speak of disjunctions of relations as well and write them
as sets {B1, ..., Bn} of base relations. R is then either taken to be the powerset 2BR of
the base relations (all unions of base relations) or a subset of the powerset. In order
to be usable for constraint reasoning, R should contain at least the base relations,
the empty relation ∅, the universal relation U = D × D, and the identity relation
Id = {(x, x)|x ∈ D}. R also needs to be closed under the operations defined in the
following.

As the relations are subsets of tuples from the same Cartesian product, the set
operations union, intersection, and complement can directly be applied:

Union: R ∪ S = { (x, y) | (x, y) ∈ R ∨ (x, y) ∈ S }
Intersection: R ∩ S = { (x, y) | (x, y) ∈ R ∧ (x, y) ∈ S }
Complement: R = U \ R = { (x, y) | (x, y) ∈ U ∧ (x, y) 	∈ R }

where R and S are relations from R.
In addition, two more operations are defined which allow derivation of new facts

from given information, conversion and composition:

Converse: R� = { (y, x) | (x, y) ∈ R }
Composition: R ◦ S = { (x, z) | ∃y ∈ D : ((x, y) ∈ R ∧ (y, z) ∈ S) }

The composition operation is especially important for constraint reasoning since
it describes what relations may hold between objects A and C given what is known
about the relation between A and B and the relation between B and C. For instance,
from knowing that A is north-of B and B is north-of C it follows that A is north-of
C as well. The composition operation is often given in form of look-up tables called
composition tables.

58 J Intell Robot Syst (2007) 48:55–78

Figure 1 Two oriented points related at different granularities.

2.2 OPRAm: A Calculus for Reasoning about Oriented Points

The domain of the Oriented Point Relation Algebra (OPRAm) [17, 18] is the set
of oriented points (points in the plane with an additional direction parameter). The
calculus relates two oriented points with respect to their relative orientation towards
each other. An oriented point �O can be described by its Cartesian coordinates
xO, yO ∈ R and a direction φ �O ∈ [0, 2π] with respect to an absolute reference
direction and thus D = R

2 × [0, 2π].
The OPRAm calculus is suited for dealing with objects that have an intrinsic front

or move in a particular direction and can be abstracted as points. The exact set of
base relations distinguished in OPRAm depends on the granularity parameter m ∈
N. For each of the two related oriented points, m lines are used to partition the plane
into 2m planar and 2m linear regions. Figure 1 shows the partitions for the cases
m = 2 a and m = 4 b. The orientation of the two points is depicted by the arrows
starting at �A and �B, respectively. The regions are numbered from 0 to (4m − 1),
region 0 always coincides with the orientation of the point. An OPRAm base relation
relOPRAm consists of a pair (i, j) where i is the number of the region of �A which
contains �B, while j is the number of the region of �B that contains �A. These relations
are usually written as �A m∠ j

i
�B with i, j ∈ Z4m.1 Thus, the examples in Figure 1 depict

the relations �A 2∠1
7

�B and �A 4∠3
13

�B. Additional base relations called same relations
describe situations in which both oriented points coincide. In these cases, the relation
is determined by the number s of the region of �A into which the orientation arrow of
�B falls (as illustrated in Figure 1c). These relations are written as �A 2∠s �B (�A 2∠1 �B
in the example).

The complete set R of OPRAm relations is the powerset of the base relations
described above.

2.3 OPRAm Notations and Abbreviations

In the following we will on the one hand deal with normal points, e.g. P being
defined by their position in the plane (P = (xP, yP) ∈ R

2). On the other hand, we
will talk about oriented points as required for the OPRAm calculus, written as �O.

1Z4m defines a cyclic group with 4m elements.

J Intell Robot Syst (2007) 48:55–78 59

The following notations will be used assuming A, B and C are normal points: The
direction φBC is defined as the direction from B towards C. We write �ABC for
the oriented point ((xA, yA), φBC). It has the same position as the normal point A and
the direction φBC. We just write �A if the direction is unknown or unspecified, e.g. if
we want to define an oriented point that coincides with A but can have an arbitrary
direction. Note that �AAB, �AAC, and �A are three different oriented points coinciding
in position but possibly differing in orientation. Additionally, we want to emphasize
that oriented point names like �AAC are only identifiers we use for making their role
intuitively comprehensible. The knowledge that one oriented point either coincides
with or is oriented towards another has to be explicitly represented by respective
relations.

As mentioned, we will speak about disjunctions of base relations instead of unions
and write them as sets. We will use the abbreviation �A m∠{k−l}

{i− j} �B with i, j, k, l ∈ Z4m

for the disjunction

j∨

a=i

l∨

b=k

�A m∠b
a

�B.

A ∗ abbreviates all members 0 to (4m − 1) of Z4m and {i, j} a disjunction of i and j
such that for example �A m∠∗

{i, j} �B denotes

(
4m−1∨

b=0

�A m∠b
i

�B
)

∨
(

4m−1∨

b=0

�A m∠b
j

�B
)

.

2.4 Constraint Reasoning with Spatial Calculi

The relations R of a spatial calculus are often used to formulate constraints about
the spatial configuration of objects from the domain of the calculus. The resulting
spatial constraint satisfaction problem (CSP) then consists of a set of variables
V = {v1, ..., vn} (one for each spatial object considered) and a set of constraints
C1, ..., Cm ∈ R. Each variable vi can take values from the domain of the utilized
calculus. CSPs are often described as constraint networks which are complete labeled
graphs CN =< V, l > where the node set is the set of variables of the CSP and the
labeling function l : V × V → R labels each edge with the constraining relation from
the calculus. Figure 2 shows a constraint network for OPRA2.

A CSP is consistent if an assignment for all variables to objects of the domain
can be found, that satisfies all the constraints. Spatial CSPs usually have infinite
domains and thus backtracking over the domains cannot be used to determine

Figure 2 A constraint
network over OPRAm
relations. All edges not shown
are labeled with universal
relation U and thus
unconstrained.

60 J Intell Robot Syst (2007) 48:55–78

Figure 3 The relations of a
simple region based calculus
arranged as a neighborhood
graph.

consistency. Therefore, special techniques for CSPs with relational constraints have
been developed [14].

Besides consistency, weaker forms of consistency called local consistencies are of
interest in QSR, as they can be utilizable to decide or approximate consistency under
specific conditions. One important form of local consistency called path-consistency
is directly connected to the composition operation as it means that for every triple of
variables each consistent evaluation of the first two variables can be extended to the
third variable in such a way that all constraints are satisfied. Path-consistency can be
enforced in O(n3) time for binary constraints where n is the number of variables, for
instance with the algorithm by van Beek [31].2

3 Conceptual Neighborhood and Robot Navigation

Solving navigation tasks involves reasoning about paths as well as reasoning about
configurations of objects or landmarks perceived along the way and thus requires
the representation of orientation and distance information [29]. In this section,
we will introduce the notion of conceptual neighborhood and neighborhood-based
reasoning for modeling how the world could evolve in terms of transitions between
qualitative relations. We will investigate continuous transformations, a fundamental
concept for the definition of conceptual neighborhoods, and discuss the term in the
context of robot motion capabilities and other relevant properties of the objects
involved. Based on these, we will derive different neighborhood structures for
OPRAm.

3.1 Conceptual Neighborhood

The notion of conceptual neighborhood has been introduced by Freksa [9, 10]. Two
spatial relations of a qualitative spatial calculus are conceptually neighbored if they
can be continuously transformed into each other without resulting in a third relation
in between. For instance, imagine two disks A and B in the plane which can move in
arbitrary direction. If we distinguish the three relations disjoint, overlaps, and part-of
(see Figure 3), it is possible to directly get from relation A disjoint B to A overlaps B,
e.g. by continuously moving A. In contrast, going from A disjoint B to A part-of B
by continuous motion is not possible without passing through the relation A overlaps
B. Disjoint and overlaps are therefore conceptual neighbors, written as disjoint ∼
overlaps, while disjoint and part-of are not (disjoint 	∼ part-of).

2Since this is a syntactic algorithm purely based on the defined composition and converse operations,
it only computes path-consistency if the calculus at hand meets specific conditions (cf. [26] for
details).

J Intell Robot Syst (2007) 48:55–78 61

The conceptual neighborhood relation between the base relations BR of a
qualitative calculus is often described in form of the conceptual neighborhood graph
CNG =< BR,∼> as illustrated in Figure 3. For convenience, we also introduce
a function cn : BR → 2BR which yields all conceptual neighbors for a given base
relation b:

cn(b) = {b ′|(b, b ′) ∈∼}
A conceptual neighborhood is a set of base relations which is connected in the

CNG. Later in the text, we utilize a function that takes a relation given in form of a set
S of base relations and yields a coarser relation in which all conceptual neighbors of
the base relations have been added. This function called relax is defined as follows:

relax(S) =
(

⋃

b∈S

cn(b)

)
∪ S

Conceptual neighborhood on the qualitative level corresponds to continuity on
the geometric or physical level: Continuous processes map onto identical or neigh-
boring classes of descriptions [11]. Spatial neighborhoods are very natural perceptual
and cognitive entities. However, the term continuous with regard to transformations
needs a grounding in spatial change over time. Different kinds of transformations
considered like locomotion, growing or shrinking, or deformation will result in
different neighborhood structures. We will look at this in more detail in the next
section.

In the context of robot navigation, we are particularly interested in continuous
locomotion of the robot. The movement of an agent over time can be modeled
qualitatively as a sequence of neighboring spatial relations which hold for adjacent
time intervals. The edges in the CNG can be labeled by qualitative actions of
the agent that cause this particular neighborhood transition (e.g. turn left until a
change in the perceived spatial relation occurs). This facilitates action planning on
a high level of abstraction. Using the neighborhood graph for navigation has for
instance been proposed in [30]. A more detailed consideration of neighborhood-
based planning is presented in [5].

The idea of conceptually neighbored relations between two objects can be ex-
tended to configurations involving more than two objects which leads to neighbor-
hood graphs of complex configurations. In these, spatial transformations from a start
configuration to a goal configuration can be determined.

Modeling the relations from a naive point of view, i.e. by keeping track of
all relations between all objects, leads to combinatorial explosion, as for example
shown in [24]. This can be seen as an allocentric approach. One way to reduce
these complexity issues is to shift to an egocentric perspective by only considering
neighborhoods of relations to a selected set of reliably recognizable objects [5].

3.2 Continuous Transformation

The term continuous transformation is a central concept in the definition of concep-
tual neighborhood. Detailed investigations on different aspects of continuity have
been presented in [1, 4, 12, 13, 21]. The original definition of conceptual neigh-
borhood originates from work on time intervals and therefore only the continuous
transformations shortening and lengthening of intervals were considered. When

62 J Intell Robot Syst (2007) 48:55–78

transferring conceptual neighborhood to spatial relations, only vague discriminations
were made between different types of transformations, e.g. between transformations
in size or transformations in position, although different types of neighborhoods
were already mentioned in [10]. For navigation and action planning it is crucial that
the CNGs reflect the capabilities of the agent so that neighborhood induces direct
reachability in the physical world.

Overall, three main aspects affect the neighborhood structure for a given spatial
calculus in the context of robot navigation:

– The robot kinematics (motion capabilities)
– Whether the objects may move simultaneously
– Whether objects may coincide in position or not (superposition)

Restrictions in motion capabilities and number of objects moving will affect which
relations are connected in the CNG. To give an example, let us assume that OPRA2

relation �A 2∠7
7

�B holds between an agent A and some static object B. The orienta-
tions correspond to the intrinsic fronts of both objects (cf. Figure 4). If our robot is
equipped with an omnidrive allowing it to drive sideways, it can reach configuration
�A 2∠0

0
�B directly by moving to the right side. A robot only outfitted with a differential

drive has to traverse (notated as �) other configurations before reaching the desired
configuration, e.g. �A 2∠7

7
�B � �A 2∠7

0
�B � �A 2∠7

1
�B � �A 2∠0

1
�B � �A 2∠0

0
�B.

In contrast, if the related objects cannot take the same position (no superposition),
for instance because they are both solid physical objects, then relations which
represent such configurations are not feasible and thus are missing in the CNG. To
simplify matters, we will talk about solid and non-solid objects in the remainder of
the text, though the reasons for not allowing superposition can be different.

In the following, we will systematically derive the neighborhood structures for the
OPRAm calculus starting out with very simple robot kinematics and ending with
the most general case of the neighborhood structure for objects which can move in
arbitrary direction. The considered situations are the following:

1. One object moving, rotation only
2. Two objects moving, rotation only
3. Two objects moving, translation only, solid objects

Figure 4 Possible conceptual
neighborhood structures
regarding different motion
capabilities of agent A with
respect to a static object B.
Direct transition is possible
from 4(a) to 4(b) if agent A is
able to move sidewards (dotted
line), whereas several
neighborhood transitions are
necessary if not (dashed line).

J Intell Robot Syst (2007) 48:55–78 63

4. Two objects moving, translation only, non-solid objects
5. Two objects moving, either translation or rotation, non-solid objects
6. Two objects moving, unconstrained motion, non-solid objects

3.3 Neighborhood Structure of OPRAm

For understanding the neighborhood structures of OPRAm, we start by considering
the simplest case in which only one of the two related solid objects is allowed to
rotate while the other does not move at all.

3.3.1 Single Rotating Object

Imagine a robot R represented by the oriented point �R standing in a room together
with a stable object with a fixed intrinsic front, e.g. a locker (�L). Rotating on the
spot will lead to a change in relative position of the locker compared to the robot’s
own intrinsic front, but the robot’s relative position to the locker does not change.
Therefore, the OPRAm relation representing the situation (�R m∠ j

i
�L) only changes

in i. Turning left results in a decrease of i by one, and a right turn in an increase
by one. This means that for all i, j ∈ Z4m, cn(m∠ j

i) = {m∠ j
i−1, m∠ j

i+1}.3 Reversing the
roles of �L and �R entails the same changes in j: cn(m∠ j

i) = {m∠ j−1
i , m∠ j+1

i }. Figure 5a
illustrates this neighborhood structure with the involved actions of R annotated to
the edges. If we allow both objects to occupy the same location, we also get a general
formula for the neighborhood relation between same relations: cn(m∠i) = {m∠(i −
1), m∠(i + 1)} where the first is either caused by R turning left or L turning right, and
vice versa for the latter.

Figure 5 Possible neighborhood transitions of OPRAm base relations for rotating solid objects.

3Note, that Z4m is defined as a cyclic group so that no modulo operation is required.

64 J Intell Robot Syst (2007) 48:55–78

3.3.2 Both Objects Rotating

If both objects are allowed to rotate simultaneously, additional neighborhood tran-
sitions are possible. For object �A and �B both rotating left �A m∠ j−1

i−1
�B can occur.

Both rotating right may result in �A m∠ j+1
i+1

�B. For both rotating opposingly �A m∠ j+1
i−1

�B
and �A m∠ j−1

i+1
�B are possible. The complete annotated neighborhood structure is

illustrated in Figure 5b.

3.3.3 Translating Solid Objects

We will now take a look at possible neighborhood transitions if only translation is
possible and both objects cannot occupy the same location. Just allowing translation
means that our exemplary robot can only move forward in the direction it is facing
or backwards in the opposing direction. For the following observations it does not
matter if only one or both objects may move at the same time and we will thus treat
both cases here. As translations are much more complex to analyze for OPRAm

than rotations, we will restrict ourselves to m = 2.
We first look at the consequences of moving either �A or �B individually. Let us

assume the relation �A 2∠5
1

�B as given. In Figure 6, we illustrate different situations
subsumed by the given relation. In the first case (cf. Figure 6a), �A 2∠5

2
�B can be

reached if �A moves forward or �B backwards. With �A moving backwards �A 2∠4
1

�B is
a valid transition. �B moving forward in the given situation would result in no change.
The second case is similar (cf. Figure 6b). �A 2∠6

1
�B follows from �A moving forward or

�B backwards, and �A 2∠5
0

�B from �B moving forward. The third case is special, because
it will only occur if the orientations of �A and �B are identical. Then both relation parts
change by one to �A 2∠6

2
�B.

Table I summarizes these results and actions are assigned to the particular
neighborhood transitions. As long as the objects are not allowed to superpose,
simultaneous movement of both objects does not result in additional neighborhood
relations. A similar analysis needs to be performed for other relations possible
between A and B accordingly. Due to space restrictions, we will leave out the details
here and move directly to the case of non-solid objects.

Figure 6 Possible neighborhood transitions for relation �A 2∠5
1

�B and translation only.

J Intell Robot Syst (2007) 48:55–78 65

Table I The neighborhood
transitions corresponding to
Figure 6.

�A 2∠5
1

�B ∼

A fwd A bwd B fwd B bwd

2∠5
2 ∨ 2∠4

1 2∠5
0 2∠5

2 ∨
2∠6

1 ∨ 2∠6
1 ∨

2∠6
2 2∠6

2

3.3.4 Translating Non-solid Objects

We now take a look at non-solid objects. Allowing objects to superpose means that
transitions between same and non-same relations are now possible. With only object
B moving, the objects can only take the same positions for the cases with �A 2∠0

i
�B and

�A 2∠4
i

�B. These cases are illustrated in Figure 7. The first case (B1 and B2) reveals
that this situation can only be reached by forward motion of �B. It always results in
the relation �A 2∠(4 + i) �B (in general �A m∠(2m + i) �B). The second case (B3 and B4)
can only migrate to a same relation by backward motion of �B and results in �A 2∠i �B
(or �A m∠i �B in general).

Now we allow both objects to move. In the case of solid objects we did not get
additional neighborhood transitions, as forward motion of one object implied the
identical transitions as backward motion of the other object. For non-solid objects
this is not the case. Consider the different situations described in Figure 8, all
represented by relation �A 2∠7

1
�B. If �A and �B have the right velocities, a same relation

will occur. The first case will result in �A 2∠7 �B, the second in �A 2∠6 �B, and the third
in �A 2∠5 �B.

We have now analyzed rotation and translation individually. The neighborhood
transitions for the case of two rotating solid objects are a superset of those for two
translating solid objects. For robots that move about by alternatingly rotating on
the spot and driving straight (which we will consider in the example in Section 4),
the corresponding neighborhood structure is hence the one given in Figure 5b with
additional action labels for forward and backward motion as suggested in Table I.
Additional neighborhood transitions arise when allowing concurrent translation and
rotation (differential drive) but will not be considered here any further. Instead we
will now look at the most general case of unconstrained motion as e.g. provided by
an omnidrive.

Figure 7 Some situations
resulting in same relations by
straight forward or backward
motion of one objects.

66 J Intell Robot Syst (2007) 48:55–78

Figure 8 Some situations
resulting in same relations by
straight forward motion of
both objects.

3.3.5 Neighborhood Structure for Unconstrained Motion

For objects A and B being solid objects in the general relation �A m∠ j
i

�B and able to
perform any simultaneous combination of rotation and translation in an arbitrary
direction as e.g. provided by an omnidrive, eight neighborhood transitions are
possible. As already indicated in Figure 4, unconstrained motion now means that
it is for instance possible to directly reach relation 2∠0

0 via sideway motion. Overall,
all combinations of increasing and decreasing i and j by one are now possible:4

cns(m∠ j
i) = { m∠ j−1

i−1 , m∠ j
i−1, m∠ j+1

i−1 , m∠ j−1
i ,

m∠ j+1
i , m∠ j−1

i+1 , m∠ j
i+1, m∠ j+1

i+1 }
The result is the same neighborhood structure as in Figure 5b. However, here all

transitions can also be achieved by translation actions and can in principle result from
moving only one of the objects.

If we have non-solid objects, same relations can be reached as well and same
relations can either change into different same relations or back to non-same
relations:

cnns(m∠ j
i) = {m∠(i − 1), m∠(i + 1), m∠(− j), m∠(2m − j),

m∠i, m∠(2m + i)} ∪ cns(m∠ j
i)

cnns(m∠s) = {m∠(s + 1), m∠(s − 1), m∠s
∗, m∠2m−s

∗ , m∠∗
s , m∠∗

2m+s}
We have now derived the neighborhood structures of the OPRAm calculus for

different scenarios. As briefly discussed above, these neighborhood structures can
for instance be employed for qualitative action planning. In the following, we will
address another application of conceptual neighborhoods, namely the model-based
resolution of conflicts in spatial information.

4 Dealing with Conflicting Information: Relaxing Constraint Networks

As suggested in [19], conceptual neighborhoods offer a suitable way to deal with
conflicting information. In the following, we will demonstrate this by showing how
they can serve as a domain-specific heuristic to resolve contradictions. The distance

4The index s is used in the following for the case of solid objects, while ns stands for non-solid objects.

J Intell Robot Syst (2007) 48:55–78 67

between two relations in the neighborhood graph can be used to formulate appro-
priate distance measures between constraint networks which allows searching for the
minimal relaxation of the inconsistent information. We start out by first illustrating
the problem with a small example and by defining what we mean by relaxation.
We then proceed by showing how conceptual neighborhood relations can be used
to formulate application-specific distance functions and finally address the problem
of determining the minimal relaxation with respect to a chosen distance function.

4.1 Inconsistent Information and Relaxations

Let us consider a small example involving three robots as illustrated in Figure 9.
The robots A, B, C are solving some task as a team and all have a limited view
angle (indicated by the dashed lines) which in this case means that A only sees B,
B only sees C and C only sees A. They represent information about the current
situation in the form of qualitative spatial relations from the OPRA2 calculus and
have the ability to communicate with each other to exchange information on what
they currently perceive. This results in a common world model including information
not available to the individual robot (e.g. the information about the other robot that
is currently outside their view). However, the combined world model does not need
to be consistent. In our case, due to slight errors in the perception of robot B, the
relations perceived by the robots could be as shown in Table II.

The corresponding constraint network is inconsistent as the configuration de-
scribed by these three relations is not satisfiable in the domain of oriented points.
For instance, the composition of �A 2∠5

7
�B and �B 2∠5

0
�C yields �A 2∠{5−7}

{5−7} �C, while on

the other hand taking the converse of �C 2∠7
1

�A yields �A 2∠1
7

�C. Since the intersection
of these two results is empty, the constraint network cannot be consistent, which can
even be detected by just using a simple path-consistency algorithm like [31].

In such a situation, it is desirable to slightly relax the given constraints until a
consistent constraint network is found instead of completely discarding the inconsis-
tent information. As constraints in our case are disjunctions of base relations from a
particular spatial calculus written as sets of base relations, we can use set inclusion
to define what we mean by relaxation of an individual constraint: Constraint C1

is a relaxation of constraint C2 if and only if C2 ⊆ C1. We can extend this notion
to complete constraint networks over the same set of variables by defining that

Figure 9 A scene with three
robots represented in OPRA2.

68 J Intell Robot Syst (2007) 48:55–78

Table II The OPRA2
relations for the real situation
in Figure 9 and the relations
perceived by the individual
robots.

Perceived situation Real situation

�A 2∠5
7

�B �A 2∠5
7

�B
�B 2∠5

0
�C �B 2∠5

7
�C

�C 2∠7
1

�A �C 2∠7
1

�A

CN1 =< V, l1 > is a relaxation of CN2 =< V, l2 > (written CN2 ⊆ CN1) if and only
if for all vi, vj ∈ V, l2(vi, vj) ⊆ l1(vi, vj) holds.

4.2 Distance Functions Based on Conceptual Neighborhoods

We usually are not interested in an arbitrary relaxation of the original network that
is consistent, but are looking for minimal relaxations with respect to the domain
and task at hand. To define minimality, we need a distance function over constraint
networks and, as we will show, distances between relations in the conceptual neigh-
borhood graph are well-suited as a basis to formulate such distance functions.

We start by defining the distance db between two base relations ri, r j ∈ BR of
a calculus as the length of the shortest path connecting them in the neighborhood
graph CNG:

db (ri, r j) = x ⇐⇒ x is the length of the shortest path connecting

ri and r j in CNG

We extend this distance measure to constraints which are disjunctions of base
relations written as sets and thus also to conceptual neighborhoods. The intuition
behind this extension is that the distance should correspond to the number of times
we have to apply the relax operation from Section 3.1 to one of the sets until the
result contains all the relations from the other set. This corresponds to taking the
symmetric Hausdorff distance between the two sets based on db . We therefore define
the distance dc(S, R) between two sets of base relations S, R ∈ 2BR as:

dc(S, R) = max{h(S, R), h(R, S)}
where

h(X, Y) = max
x∈X

(
min
y∈Y

db (x, y)

)

How this distance function for individual constraints should be extended to
constraint networks over the same set of variables is dependent on the concrete
application considered since the resulting distance function describes what we con-
sider similar in the given context. Things that one might want to minimize in a given
application could for example be the following:

– the number of corresponding constraints that differ in constraint networks CN1

and CN2:

ConstraintsChanged(CN1, CN2) = | {(vi, vj) | vi, vj ∈ V ∧
l1(vi, vj) 	= l2(vi, vj)} |

J Intell Robot Syst (2007) 48:55–78 69

– the maximal distance between corresponding constraints as given by dc:

MaxChangedDistance(CN1, CN2) = max
vi,vj∈V

dc
(
l1(vi, vj), l2(vi, vj)

)

– the overall sum of distances between corresponding constraints as given by dc:

SumOfDistances(CN1, CN2) =
∑

vi,vj∈V

dc
(
l1(vi, vj), l2(vi, vj)

)

Such measures can be arbitrarily combined to define an overall distance function
dCN over the space of constraint networks over the same set of variables and the
same set of relational constraints, for example by taking the weighted sum:

dCN(CN1, CN2) = α ConstraintsChanged(CN1, CN2)

+ β MaxChangedDistance(CN1, CN2)

+ γ SumOfDistances(CN1, CN2)

4.3 Minimal Relaxations

Finding the minimal relaxation means that we have to solve a combinatorial opti-
mization problem in which the cost function is given by our distance function dCN

with respect to the original constraint network. Relaxed constraint networks are
constructed by applying the relax function to individual constraints. This means
that a constraint is replaced by the coarsest relation with distance one according to
the distance function dc.

Let RCCN be the set of all constraint networks which are relaxations of a given
constraint network CN and consistent:

RCCN = { N | CN ⊆ N ∧ N is consistent }
The goal of the relaxation process now is to find a constraint network CN∗ ∈

RCCN that is closest to CN according to the distance function dCN chosen. We call
such a network a minimal consistent relaxation of CN:5

CN∗ = argmin
N∈RCCN

dCN(N, CN)

The number of possible relaxations is nl where n is the number of constraints
(which is proportional to |V|2) and l is the diameter of the constraint graph which
means a constraint can be relaxed at most l times. If the distance to the original
network grows monotonically whenever the relax operator is applied to a con-
straint, a general algorithm similar to Dijkstra’s shortest path algorithm can be used
to find a minimal relaxation. Constraint networks would then be stored in a priority
queue sorted by increasing distance from the original constraint network. In every
step the first network is taken from the queue and checked for consistency. If it
is not consistent several new networks are generated by applying relax to one of

5Note, that CN∗ is not well-defined, as several minimal consistent relaxations may exist.

70 J Intell Robot Syst (2007) 48:55–78

the constraints of the current network. These new networks are then sorted into
the queue. If the inspected network is consistent, it has to be a minimal consistent
relaxation.

However, for certain distance functions it is possible to directly enumerate the
relaxations in order of increasing distance without the need of keeping multiple
constraint networks stored in a queue. Provided we have such an enumeration
function generateRelaxation(N) that generates the next relaxation from the
currently considered relaxation N with respect to the distance function, and we have
a function consistency(N) that decides the consistency of network N, we can
define a recursive function mcr(CN) that computes a minimal consistent relaxation
of a given network CN as follows:

mcr(CN) =
{

CN : if consistent(CN)

mcr(generateRelaxation(CN)) : otherwise

In our example case, we are dealing with noisy sensor information. Therefore,
we want our overall distance function d to combine MaxChangedDistance and
SumOfDistances in a way that MaxChangedDistance is given precedence over
SumOfDistances. This means, that given two different relaxations CN1, CN2

of CN, MaxChangedDistance(CN1, CN) > MaxChangedDistance(CN2, CN)

implies d(CN1, CN) > d(CN2, CN). Only if MaxChangedDistance is the same
for CN1 and CN2, SumOfDistances would be used to decide which one is closer
to CN. Employing this distance is very appropriate for our application since it
prefers relaxations with multiple small changes over few large changes while, as a
second criterion, minimizing the overall sum of changes. In applications in which
few large outliers are more likely than many small changes, a combination of
ConstraintsChanged and SumOfDistances would have been the better choice.

For many applications, a reasonable distance function will give strict precedence
of one criterion over another. In principal, these can still be formulated as a weighted
sum by choosing the weights accordingly. Moreover, in most cases it should be
possible to formulate direct enumeration algorithms. The enumeration function we
used for our example together with the networks considered can be found on our
website.6 For simplicity we assume that our robots can either rotate on the spot
or move straight in the direction they are facing and employ the corresponding
neighborhood structure as discussed in Section 3.3.4. The result is one of the
following two possible minimal consistent relaxations:

�A 2∠5
7

�B �A 2∠5
7

�B
�B 2∠5

7
�C and �B 2∠6

7
�C

�C 2∠7
1

�A �C 2∠7
1

�A
The original situation is correctly described by the first of these two solutions but

the other would have been just as likely given the inconsistent information. Even if
the agents follow a conservative policy and only accept what holds in all minimal
consistent relaxations, they still are able to determine the position of the robot not
visible to them, just not the exact orientation of C with respect to B.

6http://www.sfbtr8.uni-bremen.de/project/r3/relaxation/

http://www.sfbtr8.uni-bremen.de/project/r3/relaxation/

J Intell Robot Syst (2007) 48:55–78 71

Even though we can generate relaxations in order of increasing distance to the
original constraint network, the huge number of possible relaxations means that
only for problems in which the minimal consistent relaxations are rather close to
the original network can be relaxed in appropriate time. In our case, it would be
reasonable to assume that no perceived relation will be further from the actual
relation by more than 2 with respect to db . Therefore, if no corresponding consistent
relaxation with MaxChangedDistance ≤ 2 would have been found, the relaxation
process could have been stopped, as obviously something unexpected must have
happened.

To summarize, as we have shown conceptual neighborhoods can serve as a mean-
ingful and well-defined basis for optimizing the relaxation process in constraint net-
works. Minimal relaxation can be defined based on minimal neighborhood distance.
However, as a prerequisite the adequate neighborhood structure for the application
at hand needs to be known. Since manually deriving neighborhood structures can be
a very tedious process, tools to automate the derivation are required. We will now
present a method that exploits the formalization of the relations of a new calculus
in another calculus with known neighborhood structure to automatically deduce the
neighboring structure of the new calculus.

5 Deriving Conceptual Neighborhoods for Qualitative Calculi in OPRAm

Since not always adequate calculi are available for specific tasks, new ones have to
be developed. Determining the operations and properties of a new calculus is an
error-prone and time-consuming process. Modeling one spatial calculus in another
one has been shown to be helpful for determining the properties and operations of a
new calculus. In [22, 23] the Dependency Calculus is presented and its properties
are derived by mapping it onto the Region Connection Calculus [25]. In [6] it is
shown how OPRAm representations of other orientation calculi can be utilized to
automatically compute composition tables.

This section proceeds in a similar way. We introduce two more orientation calculi,
then show how to model their base relations in OPRAm, and finally use these
models and our knowledge about OPRAm neighborhood structures to derive the
neighborhood relations of the two calculi. The calculi considered are the FlipFlop
calculus (FFC) and the fine-grained Dipole Relation Algebra (DRA f).

5.1 The FlipFlop Calculus (FFC)

The FlipFlop calculus proposed in [15] describes the position of a point C (the
referent) in the plane with respect to two other points A (the origin) and B (the
relatum) as illustrated in Figure 10. FFC relations are only defined for A 	= B.
The following base relations are distinguished: C can be to the left or to the right
of the oriented line going through A and B, or C can be placed on the line resulting

Figure 10 The reference
frame for the FlipFlop
Calculus.

72 J Intell Robot Syst (2007) 48:55–78

in one of the five relations inside, front, back, start (C = A) or end (C = B) resulting
in 7 base relations overall. A FFC relation relF FC is written as A, B relF FC C, e.g.
A, B r C as depicted in Figure 10.

5.2 Encoding the FlipFlop Calculus in OPRAm

To encode the seven ternary FlipFlop base relations A, B relF FC C in OPRA1 based
on the three normal points A, B, and C, we use the two oriented points �AAC and
�BBC. To distinguish the cases in which C coincides with either A or B, we make use of
a third oriented point �C with one distinct but arbitrary orientation. In [6] a different
OPRA1 representation of FFC relations has been introduced, but the formalization
we use here is better suited to address neighborhood structures.

We first consider the five FFC relations for which A 	= B 	= C holds: right, left,
front, inside, and back. We need three OPRA1 relations to unambiguously describe
these. �AAC

1∠ j
i

�BBC will describe the position of C relative to the reference line AB.
The other two relations (�AAC

1∠ j
0

�C and �BBC
1∠ j

0
�C) are needed for modeling A 	= C

and B 	= C for these five cases and will differ for the start and end cases.
Assume C is located on the left side of AB. B is now to the right of �AAC and A to

the left of �BBC resulting in OPRA1 relation �AAC
1∠1

3
�BBC. As long as C stays on the

left side of the line AB, the two oriented points stay in this relation. If C moves to
a position in front of AB two things will change because both oriented points rotate
simultaneously and their orientations now coincide: B is now in front of �AAC and A
is behind �BBC yielding the OPRA1 relation �AAC

1∠2
0

�BBC. The inside case in which
C lies between A and B results in �AAC

1∠0
0

�BBC and the back case in �AAC
1∠0

2
�BBC.

Moving C to the right of the reference line yields �AAC
1∠3

1
�BBC.

For start and end the position of C coincides with either A or B. Relation end
for example is defined by A 	= B = C. Since in this case the orientation of �BBC

is not fixed, the result is a disjunction of four OPRA1 relations that we write
with the *-notation introduced in Section 2.3: �AAC

1∠∗
0

�BBC. Additionally, we have
to define that B = C by �BBC

1∠∗ �C. At first glance, the two cases �AAC
1∠0

0
�BBC

and �AAC
1∠2

0
�BBC contained in the disjunction above seem to conflict with the

formalizations of front and inside, but this ambiguity is resolved by the difference in
the relation between �BBC and �C. Similarly, the start relation results in the OPRA1

relations �AAC
1∠0∗ �BBC and �AAC

1∠∗ �C. We thus have now a disjoint and exhaustive
description of the FFC relations in OPRA1 which is summarized in Table III.

Table III A mapping of FlipFlop relations to OPRA1 relations.

A, B rF FC C �AAC rOPRA1
�BBC �AAC rOPRA1

�C �BBC rOPRA1
�C

front �AAC
1∠2

0
�BBC �AAC

1∠∗
0

�C �BBC
1∠∗

0
�C

end �AAC
1∠∗

0
�BBC �AAC

1∠∗
0

�C �BBC
1∠∗ �C

inside �AAC
1∠0

0
�BBC �AAC

1∠∗
0

�C �BAC
1∠∗

0
�C

start �AAC
1∠0∗ �BBC �AAC

1∠∗ �C �BBC
1∠∗

0
�C

back �AAC
1∠0

2
�BBC �AAC

1∠∗
0

�C �BBC
1∠∗

0
�C

left �AAC
1∠1

3
�BBC �AAC

1∠∗
0

�C �BBC
1∠∗

0
�C

right �AAC
1∠3

1
�BBC �AAC

1∠∗
0

�C �BBC
1∠∗

0
�C

J Intell Robot Syst (2007) 48:55–78 73

5.3 Deriving the CNG for FFC

Now we derive the general neighborhood structure of FFC from the general neigh-
borhood structure of OPRA1 described in Section 3.3.5. Since A and B are not
allowed to coincide in the FFC definition, we can restrict ourselves to consider cases
in which only C is allowed to move. Nevertheless, the corresponding oriented point �C
is part of all three relations in the OPRA1 formalization and thus all three relations
can change simultaneously.

The general idea of the algorithm for deriving the CNG is to combine the indi-
vidual conceptual neighbors of the three OPRA1 relations and check the resulting
constraint networks for consistency to find out whether the generated formalizations
describe valid FFC relations. We abbreviate the OPRA1 model �AAC S1 �BBC ∧
�AAC S2

�C ∧ �BBC S3
�C of a FCC relation (as provided by Table III) as a triple

(S1, S2, S3) where the Si again are sets of base relations. The set of combinations
that need to be checked for a given triple (S1, S2, S3) can then be specified with the
help of the relax function (defined in Section 3.1) as (relax(S1) × relax(S2) ×
relax(S3)) \ (S1 × S2 × S3).

For the FFC relation front, we check all combinations from the following three
sets except those which are combinations of base relations already contained in S1,
S2, and S3:

relax(S1) = relax({1∠2
0}) = {1∠2

0,1∠1
3, 1∠2

3, 1∠3
3, 1∠1

0, 1∠3
0, 1∠1

1, 1∠2
1, 1∠3

1}
relax(S2) = relax(S3) = relax(1∠∗

0) = {1∠∗
01∠∗

3, 1∠∗
1, 1∠∗}

From all these combinations that were checked for consistency with the SparQ7

toolbox [32], all consistent networks fall into one of three classes from Table III.
These are (1∠1

3, 1∠∗
0, 1∠∗

0) for left, (1∠3
1, 1∠∗

0, 1∠∗
0) for right, and (1∠∗

0, 1∠∗
0, 1∠∗) for end.

These three FFC relations are indeed the correct conceptual neighbors of the front
relation. Applying this method to the other base relations yields the CNG shown in
Figure 11.

5.4 The Fine-grained Dipole Relation Algebra (DRA f)

A dipole is an oriented line segment as e.g. determined by a start and an end point.
We will write �dAB for a dipole defined by start point A and end point B. The idea

Figure 11 The conceptual neighborhood structure of the FlipFlop Calculus.

7http://www.sfbtr8.uni-bremen.de/project/r3/sparq/

http://www.sfbtr8.uni-bremen.de/project/r3/sparq/

74 J Intell Robot Syst (2007) 48:55–78

Figure 12 A dipole
configuration: �dAB rlll �dCD in
the fine-grained dipole relation
algebra (DRA f).

was first introduced by Schlieder [30] and extended in [20]. The fine-grained dipole
calculus (DRA f) [5] describes the orientation relation between two dipoles �dAB and
�dCD. Each base relation is a 4-tuple (r1, r2, r3, r4) of FlipFlop relations. r1 describes
the relation of C with respect to the dipole �dAB, r2 of D with respect to �dAB, r3 of
A with respect to �dCD, and r4 of b with respect to �dCD. The relations are usually
written without the commas and brackets, e.g. rrll. The example in Figure 12 shows
the relation �dAB rlll �dCD. DRA f has 72 base relations.

5.5 Encoding DRA f in OPRAm

We will now give a mapping of the 72 base relations of the fine-grained Dipole
Relation Algebra (DRA f) to OPRA1 based on the points A, B, C, and D belonging
to the DRA f relations. Analogous to the FFC formalization, we need the oriented
points �AAC, �BBC, and �C for r1, �AAD, �BBD, and �D for r2, �CCA, �DDA, and �A for r3,
and �CCB, �DDB, and �B for r4.

Since each of the four symbols of a DRA f relation is derived in the same way,
just for different triples of points, and each is describing a FlipFlop relation, we
begin by providing the FlipFlop encodings from Table III, but with the concrete
oriented points replaced by variables X, Y, and Z (see Table IV). Table V lists the

Table IV Describing the local DRA f point configurations (cf. Table III).

A, B rF FC C �X X Z rOPRA1
�YY Z �X X Z rOPRA1

�Z �YY Z rOPRA1
�Z

front �X X Z
1∠2

0
�YY Z �X X Z

1∠∗
0

�Z �YY Z
1∠∗

0
�Z

end �X X Z
1∠∗

0
�YY Z �X X Z

1∠∗
0

�Z �YY Z
1∠∗ �Z

inside �X X Z
1∠0

0
�YY Z �X X Z

1∠∗
0

�Z �Y X Z
1∠∗

0
�Z

start �X X Z
1∠0∗ �YY Z �X X Z

1∠∗ �Z �YY Z
1∠∗

0
�Z

back �X X Z
1∠0

2
�YY Z �X X Z

1∠∗
0

�Z �YY Z
1∠∗

0
�Z

left �X X Z
1∠1

3
�YY Z �X X Z

1∠∗
0

�Z �YY Z
1∠∗

0
�Z

right �X X Z
1∠3

1
�YY Z �X X Z

1∠∗
0

�Z �YY Z
1∠∗

0
�Z

J Intell Robot Syst (2007) 48:55–78 75

Table V Instantiation
mapping of X, Y, Z in
Table IV according to the
position in the DRA f relation
tuple.

position X Y Z

1st position (r1) A B C
2nd position (r2) A B D
3rd position (r3) C D A
4th position (r4) C D B

instantiations that have to be chosen for X, Y, and Z for each of the four symbols.
We give an example of a complete translation of a DRA f relation:

�dAB r f ll �dCD ≡ �AAC
1∠3

1
�BBC ∧ �AAC

1∠∗
0

�C ∧ �BBC
1∠∗

0
�C

∧ �AAD
1∠2

0
�BBD ∧ �AAD

1∠∗
0

�D ∧ �BBD
1∠∗

0
�D

∧ �CCA
1∠1

3
�DDA ∧ �CCA

1∠∗
0

�A ∧ �DDA
1∠∗

0
�A

∧ �CCB
1∠1

3
�DDB ∧ �CCB

1∠∗
0

�B ∧ �DDB
1∠∗

0
�B

5.6 Deriving the CNG for DRA f

For deriving the CNG for DRA f we use the same algorithmic scheme as for
FFC: composing the individual neighbors of the relations occurring in the OPRA1

translation, checking the results for consistency, and retranslating the consistent
ones.

For a single FFC relation about 140 potential neighboring relations exist. Applying
this scheme naively to DRA f relations, we get about 1404 potential neighbors for
each relation. However, after eliminating the inconsistent ones for FFC, we ended
up with an average of four consistent networks per FFC relation. We therefore chose
to employ these results to reduce the number of networks that need to be checked
for consistency for DRA f . The constraints being responsible for the inconsistencies
in the FFC networks will also be contained in the potential neighbors for DRA f

relations and thus the overall constraint network would be classified as inconsistent as
well. After that, only an average of 54 − 1 = 624 potential neighboring configurations
needed to be checked per DRA f relation.

Out of the potential neighbors of rfll only 14 are consistent. The neighboring
relations are: rrll, rlll, rele, rlli, rrlf, flll, brll, rrbl, ffbb, efbs, ifbi, bfii, sfsi, and ffff.
For solid objects, the relations efbs and sfsi would not have been neighbors of rfll.

To give another example, for relation ebis 30 neighbors were derived: fbii, ibib,
ells, errs, eses, lbll, rbrr, rlir, lril, llll, lllb, lllr, llrl, llrr, lril, lrll, lrlr, lrrl, lrri, lrrr, flll, frrr,
illr, rlll, rlli, rllr, rlrl, rlrr, rrll, and rlrl.

The method for deriving neighborhood structures described in this section yields
the correct neighborhood graphs for the two calculi considered. However, whether it
is applicable for qualitative calculi in general is still an open question. So far, manual
verification of the neighborhoods graphs computed for different orientation calculi
indicates that this might be the case, but further research is needed on this issue.

76 J Intell Robot Syst (2007) 48:55–78

6 Conclusion

In this paper, we investigated the idea of conceptual neighborhood in the context of
robot control tasks and world modeling. We have shown that conceptual neighbor-
hoods are well-suited to provide information about how the world might develop on
a high level of abstraction. Using the example of the OPRAm calculus, we studied
how neighborhood structures are affected by such task and environment-specific
parameters like robot motion capabilities, the dynamics of the objects involved,
and whether objects are able to superpose or not. As an exemplary application of
conceptual neighborhoods, we showed how these structures can be exploited for
resolving conflicting knowledge about the world, e.g. as arising through noisy sensor
readings.

As often no adequate calculus is available for a specific task, new ones have to be
developed and methods to automate this are needed. We showed that expressing the
relations of a new calculus in a different well-specified calculus is one way in which
this automation can be achieved.

The OPRAm calculus is a very suitable calculus for formalizing other orientation
calculi as it is expressive enough to unambiguously describe the relations of most
other orientation calculi as configurations of a rather small number of oriented
points. We presented the OPRAm formalizations for the FlipFlop Calculus and the
fine-grained Dipole Relation Algebra, and will continue to do so for other spatial
calculi.

Other benefits of the mappings between different calculi still need to be investi-
gated. In addition, the idea of complex neighborhood graphs that represent possible
changes of spatial relations for more than two objects needs further investigation. In
principle, the approach presented in Section 5 computes neighboring configurations
for OPRAm configurations of more than two objects. We intend to continue work in
this direction in order to improve the applicability of neighborhood-based planning
in complex dynamic situations.

Acknowledgements The authors would like to thank Lutz Frommberger, Diedrich Wolter,
Reinhard Moratz, and Christian Freksa for fruitful discussions and impulses. Our work was sup-
ported by the DFG Transregional Collaborative Research Center SFB/TR 8 Spatial Cognition.

References

1. Bennett, B., Galton, A.P.: A unifying semantics for time and events. Artif. Intell. 153(1,2), 13–48
(2004), March

2. Cohn, A.G.: Qualitative spatial representation and reasoning techniques. In: Brewka, G.,
Habel, C., Nebel, B. (eds.) KI-97: Advances in Artificial Intelligence, 21st Annual German
Conference on Artificial Intelligence, Freiburg, Germany, September 9-12, 1997. Proceedings,
vol. 1303 of Lecture Notes in Computer Science, pp. 1–30. Springer, Berlin Heidelberg New
York (1997)

3. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: an overview.
Fundam. Inform. 46(1,2), 1–29 (2001)

4. Davis, E.: Continuous shape transformation and metrics of shape. Fundam. Inform. 46, 31–54
(2001), May

5. Dylla, F., Moratz, R.: Exploiting qualitative spatial neighborhoods in the situation calculus. In:
Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition
IV. Reasoning, Action, Interaction: International Conference Spatial Cognition 2004, vol. 3343

J Intell Robot Syst (2007) 48:55–78 77

of Lecture Notes in Artificial Intelligence, pp. 304–322. Springer, Berlin, Heidelberg, New York
(2005)

6. Dylla, F., Wallgrün, J.O.: On generalizing orientation information in OPRAm. In: Proceedings
of the 29th German Conference on Artificial Intelligence (KI, June 2006), Bremen, Germany
(2006)

7. Egenhofer, M.J.: A formal definition of binary topological relationships. In: 3rd International
Conference on Foundations of Data Organization and Algorithms, New York, NY, USA,
pp. 457–472. Springer, Berlin Heidelberg New York (1989)

8. Frank, A.: Qualitative spatial reasoning about cardinal directions. In: Proceedings of the
American Congress on Surveying and Mapping (ACSM-ASPRS), Baltimore, MD, USA,
pp. 148–167 (1991)

9. Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning.
In: Singh, M.G., Travé-Massuyès, L. (eds.) Proceedings of the IMACS Workshop on Decision
Support Systems and Qualitative Reasoning, pp. 181–187. North-Holland, Amsterdam (1991)

10. Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U.,
Campari, I., Formentini, U. (eds.) Theories and Methods of Spatio-temporal Reasoning in
Geographic Space, pp. 162–178. Springer, Berlin Heidelberg New York (1992)

11. Freksa, C.: Spatial cognition – an AI prespective. In: Proceedings of 16th European Conference
on AI (ECAI 2004) (2004)

12. Galton, A.: Continuous motion in discrete space. In: Cohn, A., Giunchiglia, F., Selman, B. (eds.)
Proceedings 7th Internat. Conf. on Principles of Knowledge Representation and Reasoning
(KR2000), pp. 26–37. Morgan Kaufmann, San Francisco, CA (2000)

13. Galton, A.: Qualitative Spatial Change. Oxford University Press, London, UK (2000)
14. Ladkin, P., Reinefeld, A.: Effective solution of qualitative constraint problems. Artif. Intell. 57,

105–124 (1992)
15. Ligozat, G.: Qualitative triangulation for spatial reasoning. In: Frank, A.U., Campari, I. (eds.)

Spatial Information Theory: A Theoretical Basis for GIS, (COSIT’93), Marciana Marina, Elba
Island, Italy, vol. 716 of Lecture Notes in Computer Science, pp. 54–68. Springer, Berlin
Heidelberg New York (1993)

16. Moratz, R.: Intuitive linguistic joint object reference in human-robot interaction. In: Proceedings
of the Twenty-first National Conference on Artificial Intelligence (AAAI), Boston, MA. AAAI,
Menlo Park, CA (2006), July

17. Moratz, R.: Representing relative direction as binary relation of oriented points. In: Proceedings
of the 17th European Conference on Artificial Intelligence (ECAI, August, 2006), Riva del
Garda, Italy (2006)

18. Moratz, R., Dylla, F., Frommberger, L.: A relative orientation algebra with adjustable granu-
larity. In: Proceedings of the Workshop on Agents in Real-time and Dynamic Environments
(IJCAI, July 05), Edinburgh, Scotland (2005)

19. Moratz, R., Freksa, C.: Spatial reasoning with uncertain data using stochastic relaxation.
In: Brauer, W. (ed.) Fuzzy-Neuro Systems 98, pp. 106–112. Infix; Sankt Augustin (1998)

20. Moratz, R., Renz, J., Wolter, D.: Qualitative spatial reasoning about line segments. In: Horn, W.
(ed.) Proceedings of the 14th European Conference on Artificial Intelligence (ECAI), Berlin,
Germany. IOS Press, Amsterdam, The Netherlands (2000)

21. Muller, P.: A qualitative theory of motion based on spatio-temporal primitives. In: Cohn, A.G.,
Schubert, L., Shapiro, S.C. (eds.) KR’98: Principles of Knowledge Representation and Reason-
ing, pp. 131–141. Morgan Kaufmann, San Francisco, CA (1998)

22. Ragni, M., Scivos, A.: Dependency calculus: Reasoning in a general point relation algebra.
In: Proceedings of the 28th German Conference on Artificial Intelligence (KI 2005),
pp. 49–63 (2005)

23. Ragni, M., Scivos, A.: Dependency calculus reasoning in a general point relation algebra.
In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, 30 July–5 August, 2005,
pp. 1577–1578. Professional Book Center, Denver, CO (2005)

24. Ragni, M., Wölfl, S.: Temporalizing spatial calculi – on generalized neighborhood graphs.
In: Proceedings of the 28th German Conference on Artificial Intelligence (KI 2005) (2005)

25. Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection.
In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and
Reasoning: Proceedings of the Third International Conference (KR’92), pp. 165–176. Morgan
Kaufmann, San Mateo, CA (1992)

78 J Intell Robot Syst (2007) 48:55–78

26. Renz, J., Ligozat, G.: Weak composition for qualitative spatial and temporal reasoning.
In: Proceedings of the 11th International Conference on Principles and Practice of Constraint
Programming (CP 2005), pp. 534–548, Sitges (Barcelona), Spain (2005), October

27. Renz, J., Mitra, D.: Qualitative direction calculi with arbitrary granularity. In: Zhang, C.,
Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004: Trends in Artificial Intelligence, 8th Pacific
RimInternational Conference on Artificial Intelligence, Auckland, New Zealand, Proceedings,
vol. 3157 of Lecture Notes in Computer Science, pp. 65–74. Springer, Berlin Heidelberg New
York (2004)

28. Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: A maximal tractable
fragment of the region connection calculus. Artif. Intell. 108(1,2), 69–123 (1999)

29. Röfer, T.: Route navigation using motion analysis. In: Freksa, C., Mark, D.M. (eds.) Spatial
Information Theory: Foundations of Geographic Information Science. Conference on Spatial
Information Theory (COSIT), pp. 21–36. Springer, Berlin Heidelberg New York (1999)

30. Schlieder, C.: Reasoning about ordering. In: Spatial Information Theory: A Theoretical Basis for
GIS (COSIT’95), vol. 988 of Lecture Notes in Computer Science, pp. 341–349. Springer, Berlin
Heidelberg New York (1995)

31. van Beek, P.: Reasoning about qualitative temporal information. Artif. Intell. 58(1-3), 297–321
(1992)

32. Wallgrün, J.O., Frommberger, L., Wolter, D., Dylla, F., Freksa, C.: A toolbox for qualitative
spatial representation and reasoning. In: Spatial Cognition 2006, Bremen, Germany (2006)

	Qualitative Spatial Reasoning with Conceptual Neighborhoods for Agent Control
	Abstract
	Introduction
	Qualitative Spatial Reasoning and the OPRAm Calculus
	Qualitative Spatial Calculi
	OPRAm: A Calculus for Reasoning about Oriented Points
	OPRAm Notations and Abbreviations
	Constraint Reasoning with Spatial Calculi

	Conceptual Neighborhood and Robot Navigation
	Conceptual Neighborhood
	Continuous Transformation
	Neighborhood Structure of OPRAm
	Single Rotating Object
	Both Objects Rotating
	Translating Solid Objects
	Translating Non-solid Objects
	Neighborhood Structure for Unconstrained Motion

	Dealing with Conflicting Information: Relaxing Constraint Networks
	Inconsistent Information and Relaxations
	Distance Functions Based on Conceptual Neighborhoods
	Minimal Relaxations

	Deriving Conceptual Neighborhoods for Qualitative Calculi in OPRAm
	The FlipFlop Calculus (FFC)
	Encoding the FlipFlop Calculus in OPRAm
	Deriving the CNG for FFC
	The Fine-grained Dipole Relation Algebra (DRAf)
	Encoding DRAf in OPRAm
	Deriving the CNG for DRAf

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

