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Abstract This paper presents a method for determining the GPS location of a
ground-based object when imaged from a fixed-wing miniature air vehicle (MAV).
Using the pixel location of the target in an image, measurements of MAV position
and attitude, and camera pose angles, the target is localized in world coordinates.
The main contribution of this paper is to present four techniques for reducing
the localization error. In particular, we discuss RLS filtering, bias estimation, flight
path selection, and wind estimation. The localization method has been implemented
and flight tested on BYU’s MAV testbed and experimental results are presented
demonstrating the localization of a target to within 3 m of its known GPS location.

Key words computer vision · geo-location · localization · micro air vehicles ·
unmanned air vehicles

1 Introduction

Unmanned air systems are prime candidates for tasks involving risk and repetition,
or what the military calls the “dull, dirty and dangerous” [13]. For tasks that involve
tracking, reconnaissance, and delivery, one objective of unmanned air systems is to
accurately determine the location of ground-based objects.

This paper presents a method for determining the location of objects in
world/inertial coordinates using a gimballed EO/IR camera on board a fixed-wing
miniature air vehicle (MAV). We focus on fixed-wing UAVs (as opposed to rotary
wing aircraft or blimps) due to the unique benefits available from fixed-wing aircraft,
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including: adaptability to adverse weather, enhanced fuel efficiency, a shorter learn-
ing curve for the untrained operator, and extreme durability in harsh environments.
Also, minimum airspeed requirements associated with fixed-wing aircraft requires
images to be provided from multiple vantage points, allowing for more robust
localization.

In this paper we have assumed that the target is identified in the video stream
by a human end user. The target is then automatically tracked at frame rate using
a combination of color segmentation and feature tracking [11]. After the object has
been identified in the video stream and an initial estimate of its world coordinates
has been determined, the MAV adjusts its path autonomously in order to orbit the
object and collect additional information that is used to further enhance the estimate.
Due to the specific nature of MAVs, there are several sources of error that affect the
position estimates. In this paper, we analyze the error sources and present four steps
to enhance the accuracy of the estimated target location.

While vision-based localization is well understood, previously published results
focus on unmanned ground vehicles [4, 17], or stationary air vehicles such as a
blimps [3] or rotorcraft [21]. However, blimps are not well suited for use in high
winds or inclement weather, and the costs and complexities associated with rotorcraft
are non-trivial. The objective of this paper is to explore localization methods using
fixed-wing MAVs which tend to be more robust and less-expensive platforms.

Previous results on geo-locating objects from fixed-wing aircraft have several
limitations not present in the system described in this paper. In [9, 10], all information
collected by an aerial camera is accurately geo-located through registration with pre-
existing geo-reference imagery. In contrast, our system focuses on geo-locating a
specific object in the video stream and does not require pre-existing geo-referenced
imagery. A method for creating geo-referenced mosaics from aerial video is pre-
sented in [18], however, this method assumes an extremely accurate IMU that is
impractical for MAVs due to weight and power restrictions.

Several previous works on target tracking/localization from UAVs are focused on
control of the UAV to keep the object in view, as opposed to actually geo-locating
the objects [7, 16, 19, 22]. In [16] flight paths for fixed-wing UAVs are designed to
maintain a constant line-of-sight with a ground-based target. Stolle and Rysdyk [19]
present similar results with some useful details on camera control. Both references
focus on pointing a UAV-mounted camera at a known target location and present
simulation results. The accuracy of the localization results is not discussed.

The geo-location system presented in [8] is similar to our work, however, the
reported errors are in excess of 20 m, while our method achieves localization errors
under 5 m. Whang et al. [23] and Dobrokhodov et al. [5] describe a geo-location
solution that is similar to the work presented in this paper. Range estimates in [5]
are obtained using a terrain model, and a nonlinear filter is used to estimate the
position and velocity of moving ground based targets. Campbell and Wheeler [2]
also presents a vision based geolocation system that is similar to our solution. The
estimation scheme proposed in [2] is based on a square root sigma point filter and
can handle moving objects. Bounds on the localization error are explicitly derived
from the filter. However, the results presented in [5] and [2] both exhibit biases in
the estimate, and neither paper addresses the sensitivity of the solution to heavy
wind conditions. Early versions of the results appearing in this paper are presented
in [14].
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The remainder of the paper is organized as follows. In Section 2, we present
the basic mathematics used to obtain the raw target localization estimates from a
single frame within the video. In Section 3 we discuss four techniques for improving
the localization estimate of the target. We present flight results demonstrating the
effectiveness of our method in Section 4, and offer some concluding remarks in
Section 5.

2 The Geometry of Geo-location

In this section, we present our method for generating raw estimates of the target’s
location in the world frame. We assume throughout the paper that the target’s pixel
location in the video image is known. Experimental results are obtained by allowing
a user to select the target to be imaged and using a color segmentation algorithm to
track the target in the image plane.

2.1 Coordinate Frames

The coordinate frames associated with this problem include the inertial frame, the
vehicle frame, the body frame, the gimbal frame, and the camera frame. Figures 1
and 2 show schematics of the different coordinate frames. The inertial frame, denoted
by (XI, YI, Z I), is a fixed frame with XI directed North, YI directed East, and Z I

directed toward the center of the earth. The vehicle frame, denoted by (Xv, Yv, Zv),
is oriented identically to the inertial frame but its origin is at the vehicle center of
mass. The body frame, denoted by (Xb , Yb , Zb ) also originates at the center of mass
but is fixed in the vehicle with Xb pointing out the nose, Yb pointing out the right
wing, and Zb pointing out the belly. As shown in Figures 1 and 2, the gimbal frame,
represented by (Xg, Yg, Zg) originates at the gimbal rotation center and is oriented
so that Xg points along the optical axis, Zg points down in the image plane, and Yg

points right in the image plane. The camera frame, denoted (Xc, Yc, Zc), originates
at the optical center with Xc pointing up in the image, Yc pointing right in the image
plane, and Zc directed along the optical axis.

Figure 1 A graphic showing a
lateral view of the coordinate
frames. The inertial and
vehicle frames are aligned with
the world, the body frame is
aligned with the airframe, and
the gimbal and camera frames
are aligned with the camera.
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Figure 2 A graphic showing a
longitudinal view of the
coordinate frames.
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The notation vi implies that vector v is expressed with respect to frame i. The
rotation matrix and the translation vector from frame i to frame j are denoted by R j

i

and d j
i respectively. The homogeneous transformation matrix from frame i to frame

j is given by

T j
i =

(
R j

i −d j
i

0 1

)
, (1)

where 0 ∈ R
3 is a row vector of zeros. Note that d j

i is resolved in the jth coordinate
frame. The inverse transformation is given by

Ti
j

�= T j
i

−1 =
(

R j
i

T
R j

i

T
d j

i
0 1

)
.

The transformations used in this papers are defined in Table I. The derivation for
each of the transformations will be discussed below.

Table I Homogeneous
transformation matrices Transformation Description

Tv
I Inertial to MAV vehicle frame

Tb
v MAV vehicle to MAV body frame

Tg
b MAV body to gimbal frame

Tc
g Gimbal to camera frame
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2.1.1 Transformation from the Inertial to the Vehicle Frame

The transformation from the inertial to the vehicle frame is a simple translation.
Therefore Tv

I is given by

Tv
I =

[
I −dv

I
0 1

]
, where

dv
I =

⎡
⎣ xMAV

yMAV

−hMAV

⎤
⎦ , (2)

and where xMAV and yMAV represent the North and East location of the MAV as
measured by its GPS sensor, and hMAV represents the MAV’s altitude as measured
by a calibrated, on-board barometric pressure sensor.

2.1.2 Transformation from the Vehicle to the Body Frame

The transformation from the vehicle frame to the MAV body frame, Tb
v , consists of a

rotation based on measurements of Euler angles. If φ, θ and ψ represent the MAV’s
roll, pitch and heading angles in radians, then the transformation is given by

Tb
v =

[
Rb

v 0
0 1

]
, where

Rb
v =

⎡
⎣ cθ cψ cθ sψ −sθ

sφsθ cψ − cφsψ sφsθ sψ + cφcψ sφcθ

cφsθ cψ + sφsψ cφsθ sψ − sφcψ cφcθ

⎤
⎦ (3)

and where cϕ
�= cos ϕ and sinϕ

�= sin ϕ. On our platform, the Euler angles are esti-
mated by a two-stage Kalman filter as described in Eldredge [6]. The Kalman filter
uses rate gyros for the propagation model, and accelerometers for the measurement
update.

2.1.3 Transformation from the Body to the Gimbal Frame

The transformation from the MAV body to the gimbal frame, Tg
b , will depend on the

location of the MAV’s center of mass with respect to the gimbal’s rotation center.
This vector, denoted by dg

b , is resolved in the gimbal frame. Tg
b will also depend on

the rotation that aligns the gimbal’s coordinate frame with the MAV’s body frame.
This rotation is denoted Rg

b and requires measurements of the camera’s azimuth and
elevation angles. Let αaz denotes the azimuth angle of rotation about Zg, and αel the
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elevation angle of rotation about Yg, after αaz. Both αaz and αel can be deduced from
the gimbal servo commands. The transformation is given by

Tg
b =

[
Rg

b −dg
b

0 1

]
, where

Rg
b = Ry,αel Rz,αaz

=
⎡
⎣ cel 0 sel

0 1 0
−sel 0 cel

⎤
⎦

⎡
⎣ caz saz 0

−saz caz 0
0 0 1

⎤
⎦

=
⎡
⎣ celcaz celsaz sel

−sel caz 0
−selcaz −selsaz cel

⎤
⎦ . (4)

2.1.4 Transformation from the Gimbal to the Camera Frame

The transformation from gimbal to camera reference frames, Tc
g, depends on the

vector dc
g, which describes the location of the gimbal’s rotation center relative to the

camera’s optical center and is resolved in the camera’s coordinate frame. Tc
g also

depends on a fixed rotation Rc
g, which aligns the camera’s coordinate frame with that

of the gimbal since we have chosen Xc = −Zg and Zc = Xg. The transformation is
given by

Tc
g =

[
Rc

g −dc
g

0 1

]
, where

Rc
g =

⎡
⎣ 0 0 −1

0 1 0
1 0 0

⎤
⎦ . (5)

2.2 Camera Model

A simple camera projection model is shown in Figure 3. The point q = (xip, yip, 1, 1)T

is the homogeneous projection of the point pc
obj = (px, py, pz, 1)T onto the image

Figure 3 A graphic showing
the coordinate frames
associated with the camera.
The coordinate frame
represented by {Xc, Yc, Zc}
has origin at the camera center
and its elements have units of
meters. The frame
{Xim, Yim, Zim = Zc − f } is
centered at the image plane
and has units of meters. The
frame (Xip, Yip) is centered in
the upper left hand corner of
the image and has units of
pixels.
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plane in pixels, where pc
obj denotes the location of an object p relative to the center

of the camera. Trucco and Verri [20] show that the change from pixels to meters in
the image frame is accomplished by

xim = (−yip + 0y)Sy

yim = (xip − 0x)Sx , (6)

where the units of (xip, yip) are pixels and the units of (xim, yim) are meters. The
parameters 0x and 0y denote the x and y offsets to the center of the image from the
upper-left hand corner in pixels, and Sx and Sy denote the conversion factors from
pixels to meters.

By similar triangles we get that

xim

f
= px

pz
, and

yim

f
= py

pz
,

where f is the focal length of the camera. Using Eq. 6, and defining λ
�= pz we get

�q =

⎡
⎢⎢⎣

0 fx 0x 0
− fy 0 0y 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
C

pc
obj , (7)

where fx
�= f

Sx
, fy

�= f
Sy

, and � =
(

λI 0
0 1

)
. The matrix C is known as the calibration

matrix.
Our objective is to determine pI

obj, the object’s position in the inertial frame. Using
the homogeneous transformations derived in the previous sections we have

�q = Cpc
obj = CTc

gTg
b Tb

v Tv
I pI

obj.

Solving for pI
obj gives

pI
obj =

[
CTc

gTg
b Tb

v Tv
I

]−1
�q. (8)

Therefore, pI
obj can be determined when λ is known.

2.3 Image Depth

The image depth λ refers to the distance along the camera’s optical axis to the object
of interest in the image [11]. In this paper we describe a technique for estimating λ

based on a flat earth assumption. A similar technique can be used if a terrain map is
available.
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Let pcc be the location of the camera’s optical center. If pcc is resolved in the
camera frame we have pc

cc = (0, 0, 0, 1)T . Therefore, resolving in the inertial frame
gives

pI
cc =

⎛
⎜⎜⎝

xI
cc

yI
cc

zI
cc
1

⎞
⎟⎟⎠ =

[
Tc

gTg
b Tb

v Tv
I

]−1

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ . (9)

Figure 4 shows the location q = [xip yip 1 1]T . Define qI
obj as q resolved in the

inertial frame, i.e.,

qI
obj =

⎛
⎜⎜⎝

xI
obj

yI
obj

zI
obj
1

⎞
⎟⎟⎠ =

[
CTc

gTg
b Tb

v Tv
I

]−1
q. (10)

Note from Figure 4 that the flat earth model implies that the relationship between
the z-components of qI

obj and pI
cc is given by

0 = zI
cc + λ

(
zI

obj − zI
cc

)
. (11)

If a terrain model is known, the zero on the left-hand side of Eq. 11 would be
modified to reflect the altitude at the point where the optical axis intersects the
terrain. Since both zI

cc and zI
obj are known from Eqs. 9 and 10 respectively, λ can

be computed as

λ = zI
cc

zI
cc − zI

obj

. (12)

Since Z I is defined positive toward the center of the earth, zI
cc will be negative for

flight altitudes greater than the calibrated zero. Thus, Eq. 12 yields a positive value
for λ, as expected.

Figure 4 The range to the
target λ, is estimated using a
flat earth model and
knowledge of the location and
orientation of the MAV and
its camera system.
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2.4 Target Location

Given λ, the inertial location of the object is given by

pI
obj =

[
CTc

gTg
b Tb

v Tv
I

]−1
�q

= T I
v Tv

b Tb
g Tg

c C−1�q , (13)

or equivalently, in the more computationally efficient form

p̄I
obj = p̄I

cc + λ
(

q̄I
obj − p̄I

cc

)
, (14)

where p̄ represents the first three elements of p.
Using these equations, we can estimate the geo-location of a target using the

telemetry data from the MAV and a time-synchronized video frame containing the
target. Unfortunately, every term on the right-hand side of Eq. 13 is computed using
measured (i.e. noisy and biased) data. In particular, the transformation matrices (T)
and � are computed using sensor readings, which for MAVs are typically low grade.
In the next section we discuss the effects of low quality sensors on the estimation
error and introduce four techniques that can be used to reduce the error.

3 Enhancing the Geo-location Accuracy

Sensor noise and uncertainty in the MAV geometry introduces error in the geo-
location estimate provided by Eq.(13). Figure 5 shows the results of a flight test
using the MAV system described in Section 4.1. The MAV was commanded to orbit
the target location and a color segmentation algorithm was used to track the target
location in the image. The error (in meters) of the raw estimates of the geo-location
of the target are shown in Figure 5. The raw estimates have errors that typically range
from 20 to 40 m.

Figure 5 The error, in meters,
of raw geo-location estimates
obtained by using Eq. 13.
Sensor noise and geometric
uncertainties result in typical
estimation errors of 20 to 40 m.
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The primary contribution of this paper is to propose four techniques for enhancing
the accuracy of the geo-location estimate. These techniques include: (1) recursive
least squares filtering, (2) bias estimation, (3) flight path selection, and (4) wind
estimation. Each technique is discussed in more detail below.

3.1 Recursive Least Squares

As shown in Figure 5, there is significant noise in the estimation error. In this paper,
we assume that the target location is stationary. Therefore, a well known technique to
remove the estimation error is to use a recursive least squares (RLS) filter [12]. The
RLS filter minimizes the average squared error of the estimate using an algorithm
that only requires a scalar division at each step and is therefore suitable for on-line
implementation.

The result of using the RLS filter on the data shown in Figure 5 is shown in
Figure 6. Note that the RLS filter quickly converges to an error of approximately
5 m. While the improvement in geo-location accuracy is significant, it will be shown
in the following three sections that it is possible to further improve the geo-location
accuracy by exploiting the structure inherent in the problem.

3.2 Bias Estimation

The sensor noise and the geometric uncertainties introduce both zero-mean noise
and a constant bias. While the RLS algorithm is effective at removing the zero-mean
noise, it is not effective at removing the bias. The geo-location error is particularly
sensitive to biases in the roll and the gimbal azimuth measurement. Although
bias errors can be mitigated by advanced attitude estimation schemes and precise
mounting and calibration of the camera gimbal, it is impossible to totally remove
these bias errors.

Fortunately, by executing a loiter pattern around a specific object, the biases and
zero-mean noise can be easily distinguished. Because the bias errors are uncorrelated

Figure 6 Result of using the
RLS algorithm. The error in
the geo-location estimate
decreases from 20 to 40 m to
approximately 5 m.
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Figure 7 Localization error
before gimbal calibration. The
errors in the localization
estimates exhibit a circular
pattern about the target
location due to the biases
introduced by imprecisely
calibrated sensors and
geometric modeling errors.
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with respect to position along the desired flight path, and the flight path is symmetric
about the target, the bias errors result in geolocation estimates that are also sym-
metric about the target. For the case of a circular flight path centered at the target,
this results in the localization estimates forming a ring around the desired target, as
shown in Figure 7.

If the biases are removed from the localization estimates, the geo-location er-
rors collapse to a 2-D Gaussian distribution centered at the object, as shown in
Figure 8. The covariance of the distribution is a function of the zero-mean noise on
raw attitude estimates and the selected radius and altitude of the loiter trajectory.

Since the biases may change from flight to flight, an on-line learning algorithm
was developed to estimate and remove them. The algorithm exploits the observation
that biases add a ring-like structure to the location estimates, effectively increasing

Figure 8 Localization error
after gimbal calibration. The
structured bias in the estimates
has been removed.
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the variance of the estimates. Therefore, if the flight path is a circular orbit about the
target and the bias errors are uncorrelated with position along the flight path, then
the distribution of location estimates with the smallest variance will be obtained from
the unbiased estimate of the target location. As a result, the bias estimation problem
can be posed as the following optimization problem:

min
ᾱaz,ᾱel,φ̄,θ̄ ,ψ̄,z̄

σ 2
localization(ᾱaz, ᾱel, φ̄, θ̄ , ψ̄, z̄) (15)

where ᾱaz, ᾱel, φ̄, θ̄ , ψ̄ , and z̄ are the biases associated with the measurements of
gimbal azimuth, gimbal elevation, roll, pitch, yaw, and altitude, respectively.

For the fixed-wing MAVs used in this paper, the center of mass and the gimbal
center are located close to each other. Therefore, as can be seen from Figure 1
the rotation axes for heading ψ , and gimbal azimuth angle αaz are nearly aligned,
making biases introduced by these quantities, virtually indistinguishable. In an orbit
pattern, the gimbal azimuth angle will be close to 90◦, which implies that the airframe
roll axis and the gimbal elevation axis will be nearly aligned, again making biases
introduced by φ and αel nearly indistinguishable. Even when the flight path is not
an orbit, if the body pitch angle is close to zero, then biases introduced by the roll
and heading measurements are indistinguishable from biases introduced by gimbal
elevation and azimuth measurements, respectively. For the MAVs used in this paper,
the angle of attack is approximately 5◦, implying that the pitch angle is close to zero
for constant altitude flight patterns. Extensive flight testing has also shown that for
certain altitude–orbit radius pairs, the estimation error is not significantly affected
by biases in pitch and altitude. Therefore, bias estimation can be reduced to the
following optimization problem:

min
ᾱaz,ᾱel

σ 2
localization(ᾱaz, ᾱel). (16)

This problem is solved on-line using a quasi-Newton based method.
Once the biases have been determined, their effects are removed by using the

corrected measurements for αel and αaz in Eq. 13 to obtain unbiased raw estimates.
The effects of bias estimation and correction on the dispersion of raw target estimates
can be seen in Figure 8. It is clear from Figure 8 that the ring structure characteristic
of bias errors has been dramatically reduced.

3.3 Flight Path Selection

With the bias removed, we turn our attention to minimizing the variance of the
resulting zero-mean estimation error. The variance is primarily due to noisy estimates
of the attitude and the position of the MAV. Redding [15] presents a study of the
sensitivity of Eq. 13 to errors in attitude and position. The conclusion of that study
is that for circular orbits, the geo-location estimate is most sensitive to errors in roll.
However, the sensitivity is a strong function of altitude and orbit radius. As shown
in Figure 9, as the altitude of the MAV increases, the distance to the target also
increases. Therefore, a fixed error in roll, produces a localization error that increases
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Figure 9 The sensitivity of the
localization error to imprecise
attitude estimates, is highly
dependent on altitude. At low
altitudes, the sensitivity is due
to the obliqueness of the angle
to the target. At high altitudes,
the sensitivity is due to
distance from the target.

Localization error sensitivity 
increases with altitude

Localization error sensitivity 
increases with obliqueness

with altitude. On the other hand, Figure 9 illustrates that low altitudes also increase
the error sensitivity since the angle to the target becomes more oblique as altitude
decreases. For an identical error in roll, increasingly oblique angles produce a larger
localization error. To explore the relationship between sensitivity to roll and the
altitude and orbit radius, consider the simplified situation shown in Figure 10, where
we have assumed that the camera is aligned with the right wing and is pointing
directly at the target, and that the pitch angle is zero. Therefore, the nominal roll
angle is φnom = tan−1 h

R where h is the altitude and R is orbit radius. If the roll angle
deviates from the nominal value by δφ, Eq. 13 will indicate a geo-location of R − δR
instead of R. For the simplified geometry shown in Figure 10 we have that

R − δR = h
tan(φ + δφ)

.

Figure 10 Simplified
geometry used to derive an
expression for the sensitivity of
the localization error to the
roll angle as a function of the
orbit altitude and radius.
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Therefore, using the relations tan(A + B) = tan(A)+tan B
1−tan(A) tan(B)

and tan φ = h
R , we obtain

δR = R − h
tan(φ + δφ)

= R − h
1 − tan φ tan δφ

tan φ + tan δφ

= R − h
R − h tan δφ

h + R tan δφ

= (R2 + h2) tan δφ

h + R tan δφ
. (17)

Figure 11 shows a plot of Eq. 17 as a function of h for δφ = 5◦ and R = 100 m.
It is clear that for a fixed radius, there is an optimal altitude that minimizes the
sensitivity of the localization error to deviations in the roll attitude. The optimal
altitude is found by differentiating Eq. 17 with respect to h and solving for the unique
minimizer:

h∗ = R
(

1 − sin δφ

cos δφ

)
. (18)

Therefore, if we have an estimate for the average (or maximum) roll attitude
error, and there is a desired orbit radius, e.g., the minimum turn radius, then Eq. 18
indicates the appropriate altitude for minimizing the sensitivity of the geo-location
estimate to errors in the roll attitude measurement.

In addition, the computer vision algorithm may require a specific number of pixels-
on-target to effectively track the target. In order to talk more generally about the
notion of pixels-on-target, we define the pixel density to be the number of pixels
imaging a square meter of area on the ground. Let μ denote pixel density in units

Figure 11 A plot of the
geo-location error as a
function of altitude for a fixed
radius and a fixed roll attitude
error. The optimal altitude h∗
in indicated by a circle.
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of pixels per meters squared. If η is the field of view of the lens (assumed equal in
both directions) then the area imaged by the camera can be computed by referencing
Figure 12. The total area is given by

Area = (d1 + d2)(R2 − R1)

= (R2 + R1)(R2 − R1) tan
η

2

= h2

⎛
⎜⎝ 1

tan2
(
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2

) − 1

tan2
(
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2

)
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⎟⎠ tan
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2

= 4h2 tan φ tan2 η
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2

)
(
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= 4h2 h
R

tan2 η
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= 4h2 (1 − sin δφ)
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tan2 η
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⎡
⎢⎢⎢⎢⎢⎣

(
1 + (1 − sin δφ)2

cos2 δφ

) (
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)
(

(1 − sin δφ)2

cos2 δφ
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)2
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�= h2A,

where we have used the relation tan φ = h
R and Eq. 18. If P is the number of pixels

on the camera, then the average pixel density is given by

μ = P
h2A . (19)

Figure 12 Assuming a flat
earth model, the area imaged
by the camera can be
computed by knowledge of the
roll angle φ the lens
field-of-view η, and the
altitude h.
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Suppose that the computer vision algorithm requires a desired average pixel
density of μd, then using Eqs. 19 and 18 we get that the optimal altitude and orbit
radius are given by

h∗ =
√

P
μdA

R∗ = h∗
(

cos δφ

1 − sin δφ

)
.

3.4 Wind Estimation

For MAVs, winds that are a significant percentage of the airspeed are almost always
present. Therefore, the airframe is typically required to “crab” into the wind, causing
the course (direction of travel) to deviate from the heading (direction of the body
frame x-axis). Since the camera is mounted to the body, the difference between
course and heading, if it is not accounted for, will cause significant errors in the geo-
location estimates. In this section, the heading angle is denoted by ψ and the course
angle will be denoted by χ .

To illustrate the effect of wind, Figure 13 shows the error in the geo-location
estimate generated by a simulation of a complete orbit in significant wind. The
simulated MAV has an airspeed of 18 m/s and the wind is from the East at 9 m/s. Note
that since the MAV must crab right into the wind, the geo-location errors shown in
Figure 13 are significantly biased to the South. We note that wind does not introduce
a constant bias in the estimate and can therefore not be removed by the techniques
discussed in Section 3.2. To compensate for wind, the direction and magnitude of the
wind is estimated on-line from flight data and is used to modify ψ in Eq. 13. We will

Figure 13 Effect of wind on
geo-location estimates.
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assume that GPS measurements are available but that the MAV is not equipped with
magnetometers.

The relationship between windspeed, groundspeed, and airspeed is illustrated in
Figure 14, where Vw is the windspeed, Vg is the groundspeed, Va is the airspeed, and
ξ is the wind direction, and can be expressed as

Vg = Va cos (ψ − χ) + Vw cos (ξ − χ) . (20)

The GPS sensor measures Vg and χ , and a differential pressure sensor can be used
to measure Va.

From the law of cosines and Figure 14, we have

V2
g − V2

a + V2
w − 2VgVw cos (ξ − χ) = 0. (21)

To estimate Vw and ξ we collect on-line measurements of Vg, Va, and χ and use a
quasi-Newton nonlinear equation solver to minimize the objective function

n∑
i=0

(
V2

gi
− V2

ai
+ V2

w − 2Vgi Vw cos (ξ − χi)
)2

, (22)

where the index i denotes a measurement sample.
To quantify the effectiveness of our wind estimation scheme, we flew a MAV

in windy conditions in an orbit pattern. Since we do not have the instrumentation
to measure true wind speed at the elevations that the MAV is flying (100–200 m),
to measure the accuracy of our wind estimation method, we used the estimated
windspeed and the measured airspeed to estimate ground speed, and compared
the estimate with the measured GPS ground speed. Figure 15 shows actual flight

Figure 14 Relationship
between ground, air, and
wind velocities.
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Figure 15 Wind solution for a
dataset taken in high-wind
conditions Vw ≈ 9 m/s.
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data recorded while the MAV was flying in winds of approximately 9 m/s from the
north. Figure 15 shows the efficacy of our method by plotting the raw estimates of
ground speed taken from GPS measurements (the scattered points), together with
the ground speed predicted for a constant air speed and the estimated wind speed
(the solid curve). Results demonstrating the efficacy of the wind correction scheme
for geo-location are discussed in Section 4.2.

The wind estimation scheme discussed in this section estimates a constant wind
and does not account for gusts. On the other hand, flight test data suggest that the
gusts are essentially normally distributed about the constant wind and are therefore
removed by the RLS filter.

4 Results

4.1 Hardware Testbed

BYU has developed a reliable and robust platform for testing unmanned air vehi-
cles [1]. Figure 16 shows the key elements of the testbed. The first frame shows the
Procerus1 Kestrel autopilot (originally developed at BYU) which is equipped with a
Rabbit 3400 29 MHz processor, rate gyros, accelerometers, absolute and differential
pressure sensors. The autopilot measures 3.8 × 5.1 × 1.9 cm and weighs 17 g.

The second frame in Figure 16 shows the airframe used for the flight tests reported
in this paper. The airframe is a flying wing with expanded payload bay and servo-
driven elevons designed at the BYU Magicc Lab. It has a wingspan of 152 cm, a
length of 58 cm, and a width of 12 cm. It weighs 1.1 kg unloaded and 2.0 kg fully
loaded. It is propelled by a brushless electric motor which uses an electronic speed
control and is fueled by four multi-cell lithium polymer batteries. Typical speeds for
the aircraft are between 15 and 20 m/s (33 and 45 miles/h). Maximum flight time for

1http://procerusuav.com/.

http://procerusuav.com/
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Figure 16 a Procerus’ Kestrel autopilot. b MAV airframe. c Ground station components.

this aircraft is between 1 and 2 h depending on external conditions and the mission it
is required to fly.

The third frame in Figure 16 shows the ground station components. A laptop runs
the Virtual Cockpit software that interfaces through a communication box to the
MAV. An RC transmitter is used as a stand-by fail-safe mechanism to ensure safe
operations.

The gimbal and camera used for this paper are shown in Figure 17. The gimbal
was designed and constructed at the BYU Magicc Lab. It weighs 150 g, and has a
range of motion of 135◦ in azimuth (at 333◦/s) and 120◦ in elevation (at 660◦/s). The
camera is a Panasonic KX-141 with 480 lines of resolution. The field of view of the
lens is 60◦.

4.2 Geo-location Accuracy

Using the MAV system described above, in conjunction with the geo-location
techniques described in this paper, we have repeatedly (15–20 experiments in a
variety of weather conditions) geo-located well defined visual objects, with errors
ranging between 2 and 4 m. (The true value of the target is measured using the

Figure 17 The gimbal and
camera used for the results in
the paper are shown
unmounted from the MAV
and without its protective
dome.
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Figure 18 Localization results
in high-wind conditions.
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same commercial grade GPS receiver used on the MAV. Note that the geo-location
techniques discussed in this paper do not remove GPS bias. A military grade GPS,
or differential GPS would remove this bias.) The results of two particular flight tests
are shown in Figures 8 and 18. The outer blue dots represent the GPS location of
the MAV, while the inner green dots are the raw geo-location estimates. All location
values are in reference to the true location of the target (as measured by GPS). The
flight tests shown in Figure 8 were performed on a day with relatively little wind,
while the flight tests shown in Figure 18 were performed in extremely high-wind
conditions (>10 m/s). Note that the high-wind conditions cause the irregular flight
pattern shown in Figure 18. In both Figures, the accuracy of the raw geo-location

Figure 19 Efficacy of RLS
algorithm.
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estimates is typically less than 20 m, although there are some outliers in the high-
wind case. The black dot in the center of the figures represents the final geo-location
estimate, and is approximately 3 m away from the target in the low-wind case, and
2 m away in the high-wind case.

In Figure 19, we show the effects of using the RLS system to derive the final
geo-location estimate. In this plot, the x-axis denotes different raw estimates of geo-
location (typically estimated about three times per second), while the y-axis denotes
the magnitude of the localization error. The data in this graph corresponds with
the low-wind experiment plotted in Figure 8. As illustrated in Figure 19, the raw
estimates can be up to 20 m in error. However, the RLS filtered estimate quickly
converges to less than 5 m of error.

5 Conclusions

This paper introduces a system for vision-based target geo-localization from a fixed-
wing micro air vehicle. The geometry required to produce raw localization estimates
is discussed in detail. The primary contribution of the paper is the description of
four key techniques for mitigating the error in the raw estimates. These techniques
include RLS filtering, bias estimation, flight path selection, and wind estimation.
The algorithms were successfully flight tested on a micro air vehicle using Procerus’
Kestrel autopilot and a BYU designed gimbal system. Geo-location errors below
5 m were repeatedly obtained under a variety of weather conditions. Throughout the
paper we have assumed a flat earth model and a stationary target. Future research
will include generalizing the techniques to non-flat terrain and to moving ground
targets.
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