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Abstract Localization, i.e., estimating a robot pose relative to a map of an environ-
ment, is one of the most relevant problems in mobile robotics. The research commu-
nity has devoted a big effort to provide solutions for the localization problem. Several
methodologies have been proposed, among them the Kalman filter and Monte
Carlo Localization filters. In this paper, the Clustered Evolutionary Monte Carlo
filter (CE-MCL) is presented. This algorithm, taking advantage of an evolutionary
approach along with a clusterization method, is able to overcome classical MCL filter
drawbacks. Exhaustive experiments, carried on the robot ATRV-Jr manufactured by
iRobot, are shown to prove the effectiveness of the proposed CE-MCL filter.

Key words clustering · genetic algorithms · Monte Carlo integration methods ·
robot localization

1 Introduction

In mobile robotics, one of the most important goal is to realize the complete auton-
omy of the robot. The availability of reliable pose information is fundamental to
achieve such autonomy.
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The localization problem aims to estimate the robot’s pose in an environment,
using data coming from sensors. The interaction between the robot and the
environment, along with the presence of noisy sensors readings make the problem
even more difficult.

The majority of works in literature relies on the probabilistic framework. The
idea underlining such approaches is to recursively maintain a probability distribution,
called Belief, over all poses (state space points) in the environment.

Initially, the research community has been oriented toward the position tracking
problem, successively other problems, such as the global localization and the kidnap
problem have been investigated as well.

Position tracking is the problem of estimating the robot’s pose with prior knowl-
edge about the initial robot’s location. The Kalman filter approach is a widespread
probabilistic framework successfully employed to face this problem [1].

Kalman based methods represent the Belief by means of a Gaussian distribution
over the state space of the robot. The mode of the distribution yields the current
robot position, while the variance represents the accuracy of the estimation.

Gaussian distribution, described by means of only two parameters, has two
important advantages: from a mathematical point of view a discretization of the
state space is no longer required [2], while from a computation standpoint, an on
line implementation can be easily faced [3].

On the other hand, the gaussian assumption limits the Kalman filter usability when
the ability to represent multi-hypotheses is required, as in the Global Localization
problem.

Global Localization is the problem of estimating the robot’s pose without benefit
of prior knowledge of the initial robot’s location. This lack of knowledge makes
the problem even more difficult as environmental ambiguities have to be carefully
considered in order to successfully determine the initial robot’s pose from scratch.

To overcome such limitations, several probabilistic global techniques have been
proposed in literature, relaxing Gaussian assumption and introducing different
methods for the discretization of the state space.

In [4] a grid based discretization of the state space has been proposed to localize
the robot. The underlining idea is to build a prior global occupancy grid to compare
with a local one, built by the robot as time passes. The advantage of the grid-based
approach is that it approximates a more complex distribution. However, it suffers
from excessive computational overhead [5, 6].

A more promising approach is based on sequential Monte Carlo integration
methods [7]. These methods were first investigated in the early 70s [8–10]. However,
because of the lack of computational resources available in that period, these
techniques were neglected till the 90s when, thanks to a substantial technological
improvement, these methods have been rediscovered.

Nowadays, Monte Carlo techniques are successfully applied to solve estimation
problems in several research areas, such as computer vision [11], wireless telecom-
munications [12] and mobile robot localization [13].

The key idea is to use a set of random weighted samples to approximate the
probability distribution. The advantage consists in the possibility to represent a large
number of probability distributions. Furthermore, the higher the number of particles
used, the better the approximation obtained.
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However, Monte Carlo integration methods suffer from degeneracy problem,
i.e., the problem of having most of the particles with a negligible weight after few
iterations [14].

This problem turns out to be critical when using Monte Carlo integration methods
to deal with the kidnap problem, i.e., the problem of having new data that force the
estimation of an already localized robot at a completely different position.

In order to avoid the degeneracy, several approaches have been proposed in the
literature. An easy way to reduce this phenomenon is to use a large number of
particles, however this approach cannot be applied due to the computational effort.

A more effective solution is to introduce a different measure of degeneracy in
order to perform a resampling step whenever a significant degeneracy is observed
[15].

Moreover, to further reduce this phenomenon, a suitable candidate of the impor-
tance function has been suggested in [16]. In particular, the best candidate is the one
who minimizes the variance of the importance weights conditioned upon the data.

Two interesting algorithms have been also proposed in [17] and [18]. These
works extend the classical Monte Carlo integration methods introducing alternative
techniques to obtain particular properties.

The former introduces the idea of clusters of particles to track multiple distinct
hypotheses, where each cluster is considered as an independent hypothesis about
the robot’s pose. The algorithm works on two different levels: at particle level, the
classical Bayesian formulation is adopted to update an hypothesis, while at clus-
ter level, the one with the highest probability is used to determine the robot’s pose.
Despite the ability to maintain distinct hypotheses over time, having a constant
number of clusters limits the possibility to solve the kidnap problem because, as the
robot moves, the coverage of the environment is no longer guaranteed.

The latter introduces an alternative re-sampling schema, based on genetic algo-
rithms, to mitigate the sample impoverishment problem. The algorithm is able to
maintain the diversity of particles during the resampling process by means of the
crossover genetic operator. However, it has been conceived only to solve the position
tracking problem on a landmark-based framework.

In this paper, an alternative Monte Carlo Filter is proposed. This algorithm, taking
advantage of an evolutionary approach along with a clusterization method is able
to solve both the global localization problem and maintain the multi-hypotheses.
The idea is to exploit a dyanamical clustering for a better data-driven exploration
of the search space, and apply a local evolutionary approach, within each subset, for
a quicker location of the best solutions. In fact, performing a smart partition of the
search space leads to a more efficient use of the evolutionary approach. In detail,
from a local point of view, performing a research of the best hypotheses in a subset,
results in a faster location of the maxima as well as in a reduction of the probability
to stall in a local solution. Again, from a global standpoint, having several clusters
in which the evolutionary approach can be run, leads to an implicit parallelization of
the exploration. Moreover, the dynamical nature of clusters, can guarantee a better
coverage of the environment, allowing at each iteration to focus the attention only
where the probability to find the real robot is higher. A preliminary analysis of this
approach has been accomplished in [19].
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The paper is organized as follows. In Section 2 an introduction to the basic
concepts exploited in this work is provided. In Section 3 the proposed Clustered
Evolutionary Monte Carlo filter (CE-MCL) filter is explained. In Section 4 the
experimental results are shown and discussed. Finally, in Section 5 conclusions are
presented and future works are proposed.

2 Theoretical Background

2.1 Probabilistic Framework

A suitable framework for the localization problem can be devised exploiting the
probability theory. From a probabilistic point of view, the robot’s pose can be
described by a probability distribution called Belief. As a result, the localization
problem consists of estimating the Belief over the state space conditioned on the
data.

A Bayesian framework to estimate this probability distribution, called Markovian
Framework, has been introduced in [20]. The key idea is to recursively compute the
Belief by means of the Bayes rule as new sensors measurement comes.

In literature the Belief is defined as:

Bel(xk) = p(xk | Dk), x ∈ �, (1)

It represents the probability to have the robot at location xk at time k, given all the
data Dk up the time, where � is the set of all poses.

In mobile robotics, data can be broken down into control data and perceptual data.
Control data represents the inputs of the system and, as they are not always known,
are retrieved by encoders or other proprioceptive sensors. Perceptual data represents
information about the environment, such as laser measurements.

As a consequence, prior and a posterior belief can be defined as follow:

Bel−(xk) = p(xk | Uk−1, Zk−1). (2)

that it is the belief the robot has got, after the integration of the control data uk−1,
and before it receives the perceptual data zk.

Bel+(xk) = p(xk | Uk−1, Zk). (3)

that is the belief the robot has got once the perceptual data zk has been integrated.
Regarding to the integration data, several considerations need to be made:

1) Using the Total Probability Theorem the Bel−(xk) can be rewritten as:

Bel−(xk) =
∫

�

p(xk | xk−1, Uk−1, Zk−1)

×p(xk−1 | Uk−1, Zk−1)dxk−1. (4)

The equation states that the prior belief of being in state xk is the sum of the
probabilities of coming from state xk−1 to state xk given all the earlier sensor
measurements. The second term of the integral represents the Belief at time
(k − 1), as the robot pose at generic step k does not depend on the action that is
performed at the same step. To further simplify the formulation, the assumption
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to have a Markov environment can be introduced. The key idea is to considerthe
past and future data independent, with the knowledge of the current state [20].
As a consequence the prior can be written as:

Bel−(xk) =
∫

�

p(xk | xk−1, uk−1)

×Bel+(xk−1)dxk−1. (5)

2) Using the Bayes rule the posterior can be rewritten as:

Bel+(xk) = p(zk | xk, Uk−1, Zk−1)

× p(xk | Uk−1, Zk−1)

p(zk | Uk−1, Zk−1)
(6)

The equation states that the posterior belief is the conditional probability of
observing zk, weighted by the ratio of the prior belief of being in state xk,
Bel−(xk), and the probability of observing measurement zk conditioned on all
information so far. To further simplify the formulation, the Markov assumption
can be adopted again. As a result the Posterior can be rewritten as:

Bel+(xk) = p(zk | xk) Bel−(xk)

p(zk | Uk−1, Zk−1)
(7)

3) As a combination of the equations mentioned above, the recursive formulation
for localization is:

Bel+(xk) = ηp(zk | xk)

×
∫

�

p(xk | xk−1, uk−1)Bel+(xk−1)dxk−1, (8)

where η represents P(zk | Uk−1, Zk−1) and can be viewed as a normalization
factor.

As the integrals above are not tractable, several efforts have been devoted to
approximate the state space in order to make the recursive equation above simple
to be computed.

2.2 Monte Carlo Integrations Methods

Monte Carlo integrations methods extend the Markovian framework by means of a
sampling approach to represent the posterior distribution (Belief). These methods
have the significant advantage of not being subject to any linearity or Gaussianity
constraints on the model, and they also offer interesting convergence properties. As
a consequence, these methods turn out to be a powerful tool to deal with the global
localization problem.

The Perfect Monte Carlo Sampling draws N independent and identically dis-
tributed random samples {x(1)

k , . . . , x(N)

k } according to Bel+(xk). Consequently, the
approximation of the posterior is given by

Bel+(xk) ≈ 1
N

N∑
i=1

δx(i)
k

(
xk − x(i)

k

)
, (9)
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where δx(i)
k

(
xk − x(i)

k

)
represents the delta-Dirac mass located in x(i)

k .
However, due to the difficulty of efficiently sampling from the posterior distribu-

tion Bel+(xk) at any sample-time k, a different approach is required.
An alternative solution is the Sequential Importance Sampling approach. The

key idea is of drawing samples from a normalized importance sampling distribution
π(xk | dk) which has a support including that of the posterior Bel+(xk). In this case,
the approximation of the posterior is given by

Bel+(xk) ≈
N∑

i=1

w
(i)
k δx(i)

k

(
xk − x(i)

k

)
, (10)

where the importance weight is computed as

w
(i)
k = w

(i)
k−1 ·

P
(

zk | x(i)
k

)
Bel−(xk)

π(xk | dk)
. (11)

In mobile robotics, a suitable choice of the importance sampling distribution
π(xk | dk) is the prior distribution Bel−(xk) [21]. With this choice, the importance
weight can be easily computed as:

w
(i)
k = w

(i)
k−1 · P

(
zk | x(i)

k

)
, (12)

and the importance sampling distribution can be written in a recursive fashion:

π(xk | dk−1) = P(xk | xk−1, uk−1) · Bel+(xk−1). (13)

Such formulation has the advantage of allowing an on-line evaluation of the im-
portance weight as long as new data is available; however it causes the degeneracy
problem, i.e., the problem of having most of the samples with a negligible weight
after few iterations. A common approach to overcome this problem is to provide
a resampling step, which aims to replace particles with small importance weight by
means of a suitable strategy.

The Algorithm 1 shows a typical implementation schema for a Sequential Monte
Carlo filter with resampling step. The majority of works in literature relies on this
schema, with a specialization for the resampling approach adopted.

2.3 Genetic Algorithms

Genetic Algorithms (GAs) are a class of search methods and computational models
inspired by Darwin’s Theory of Evolution. These algorithms, initially investigated in
[22], use a population to explore the search space, by means of probabilistic transition
operators like crossover and mutation, in order to find out the element (chromo-
some) that best fits a given objective function (fitness function). This approach reflects
a possible mathematical model of the nature’s behavior in which the high adaptability
of each creature in its environment is the result of a long evolutionary process, based
on natural selection, mutation, sexual and asexual reproduction [23].

GAs have been applied in several research areas to solve optimization problems
where the presence of non-differentiable or non-continuous objective functions
makes other methodologies almost useless.
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Algorithm 1: Sequential Monte Carlo Filter

Data: Bel+(xk−1) = {xi
k−1, w

i
k−1}, uk−1, zk

Result: Bel−(xk)

/* Importance Sampling */

Compute π(xk | dk−1) = p(xk | xk−1, uk−1) · Bel+(xk−1)

for i = 1 to Ns do

Sample x̃(i)
k ∼ π(xk | dk−1)

Evaluate w
∗(i)
k = w

∗(i)
k−1 · p(zk|x̃(i)

k )Bel−(xk)

π(xk|dk−1)

end

/* Normalization */

for i=1 to Ns do w̃
(i)
k = w

∗(i)
k∑Ns

j=1 w
∗(i)
k

Evaluate Nef f = 1∑Ns
i=1(w̃

(i)
k )2

/* Degeneracy Test */

if Nef f ≥ Nthres then

{x(i)
k , w

(i)
k } = {x̃(i)

k , w̃
(i)
k }

else
/* Resampling */

{x(i)
k , w

(i)
k } = ResamplingProcedure({x̃(i)

k , w̃
(i)
k })

end

Bel+(xk) = {x(i)
k , w

(i)
k }

A simple genetic algorithm, as it is referred to in [24], can be described as a
sequence of the following steps:

• Initialization
• Generation.

Initialization generates an initial population whose elements are encoded by
means of a fixed length string known in literature as genotype, or alternatively
chromosome. Several strategies have been proposed for the initialization; a classical
one is to randomly draw the population. Afterward, the fitness function has to
be evaluated for each element of the population. The identification of a suitable
objective function, able to give a measure of the goodness of an element, is usually
problem-dependent.
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Generation creates a new population through two steps: selection and recombi-
nation. Selection draws an intermediate population where the recombination has
to be applied. A common approach is to pick up elements, belonging to the actual
population, proportionate to their fitness. Recombination acts on this intermediate
population to generate a new one. Probabilistic transition operators crossover and
mutation, are usually applied. In particular, crossover selects two elements from
the intermediate population and creates a new element swapping a portion of their
chromosomes with respect to a crossover point. On the other hand, mutation selects
an element from the intermediate population and creates a new element modifying
some bits of its chromosome.

3 The Clustered Evolutionary Monte Carlo Filter

The Clustered Evolutionary Monte Carlo filter (CE-MCL) has been conceived
following the classical Sequential Monte Carlo filter schema mentioned above. The
algorithm works on two different levels:

• Local level
• Global level.

At local level the algorithm finds out local maxima within each cluster, whereas
at global level the best hypothesis is obtained by a comparison among the optimal
solutions provided by each cluster.

In order to realize such behavior, the algorithm introduces two strategies:

• A dynamical clustering at resampling step
• An evolutionary action at each time-step.

3.1 Dynamical Clustering

The dynamical clustering provides a collection of particles subset that represents
the best partition of the environment and where the probability to find out the real
robot location is higher. Cluster identification is performed by means of the DBscan
algorithm, which relies on a density-based notion of clusters [25]. Such algorithm
offers several good properties, such as the ability of finding out clusters of arbitrary
shapes, the advantage of collecting the noisy points, and an acceptable computational
complexity. In particular, the possibility of collecting all the points belonging to any
clusters turns out to be very useful in this context. In fact, it can be viewed as another
mean to improve the diversity among particles. Moreover, in order to guarantee both
a minimal coverage of the environment and further mitigate the degeneracy problem,
a random action is introduced along with the dynamical clustering at resampling step.
Such action reduces the similarity among particles randomly drawing a percentage of
new samples.
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3.2 Evolutionary Action

The evolutionary action, instead, is introduced to quickly find out local maxima
within each cluster. From a genetic point of view a cluster represents the population,
while the state space vector is the encoding string, e.g., the chromosome. The model
of the sensor P(zk | xk) is adopted as fitness function. This choice makes the local
maxima to be prominent candidates to localize the robot, being the P(zk | xk) part of
the importance weight formulation as well. The evolutionary action is based on the
probabilistic operators:

• Mutation
• Crossover.

Mutation creates a fixed percentage of new particles sampling from a circular area
centered on the selected chromosome (Figure 1), whose radius is defined as follow:

ρk = 1√
w

(i)
k

. (14)

The idea of defining the radius as an inverse function of the importance weight
reflects the consideration that particles, with a considerable importance weight,
should be located closer to the real robot than the others. Therefore, filling this area
should be promising for a quicker localization.

On the other hand, crossover creates a fixed percentage of new particles combin-
ing chromosomes belonging to the same cluster. The idea of selecting parents within
the same subset avoids unlikely recombination to happen, being clusters spatially
organized.

At the end, the Clustered Evolutionary Monte Carlo Filter, taking advantage of
these strategies, is able to both globally localize the real robot location and solve the
kidnap problem, as well as to maintain the multi-hypotheses.

Figure 1 Choice of resampling
area for mutation.

1
(i)ω k
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The Algorithm 2 shows a possible implementation schema for The Clustered
Evolutionary Monte Carlo Filter.

Algorithm 2: Clustered Evolutionary Monte Carlo Filter

Data: Bel+(xk−1) = ⋃Nclust
j=1

{
x(i)

k−1, w
(i)
k−1

}
j
, uk−1, zk

Result: Bel+(xk)

/* Importance Sampling */

Compute π(xk | dk−1) = p(xk | xk−1, uk−1) · Bel+(xk−1)

for i = 1 to Ns do

Sample x̃(i)
k ∼ π(xk | dk−1)

Evaluate w
∗(i)
k = w

∗(i)
k−1 · p(zk|x̃(i)

k )Bel−(xk)

π(xk|dk−1)

end

/* Normalization */

for j = 1 to Ns do w̃
(i)
k = w

−(i)
k∑Ns

j=1 w
∗(i)
k

/* Evolutionary Action */

for j = 1 to Nclust do

{x̄(i)
k , w̄

(i)
k } j ←

⎧⎨
⎩

Mutation({x̃(i)
k , w̃

(i)
k } j)

Crossover({x̃(i)
k , w̃

(i)
k } j)

end

Evaluate Nef f = 1∑Ns
i=1(w̄

(i)
k )2

/* Degeneracy Test */

if Nef f ≥ Nthres then
[{x(i)

k , w
(i)
k } j, Nclust] = [{x̄(i)

k , w̄
(i)
k } j, Nclust]

else
/* Resampling */

/* 1◦ Step: Random action */

{x̂(i)
k , ŵ

(i)
k } ← Random({x̄(i)

k , w̄
(i)
k })

/* 2◦ Step: Re-Clustering */

[{x(i)
k , w

(i)
k } j, Nclust] ← DBScan({x̂(i)

k , ŵ
(i)
k })

end
Bel+(xk) = ⋃Nclust

j=1 {x(i)
k , w

(i)
k } j ;
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3.3 Computational Complexity

In order to evauate the computational complexity of the algorithm, several analyses
have been performed. A detailed theoretical study has been done along with an
empirical validation of the obtained results. According to such a study, two different
cases have to be taken into account:

• simple step
• resampling occurence.

In the first case, when the resampling is not considered, the complexity of the
algorithm turns out to be O(Ns M), where Ns is the number of particles and M is the
number of segments describing the environment. Conversely, when the resampling
occurs, the DBscan effort has to be considered. In this case the overall complexity of
the algorithm is given by max{O(Nslog(Ns)), O(Ns M)}, where O(Nslog(Ns)) is the
computational load of the DBscan [25]. Two remarks are now in order: the first one
is that the number of segments (M) is usually at least one order of magnitude smaller
than the number of particles (Ns); the second is that the resampling step, during a
typical execution, takes less than 10% of the overall number of iterations. Therefore,
it is correct to state that the real complexity that should be considered is the one of
the simple step: O(Ns M).

4 Experimental Results

The proposed algorithm has been tested in both simulated context and with real data
in order to validate its capability to deal with the global localization problem. Several
aspects have been thoroughly investigated. Particular attention has been paid to give
evidence of the ability to carry on multi-hypotheses as well as to prove the ability to
re-localize the robot when a kidnap occurs.

Simulated experiments have been performed using a framework developed under
Matlab, which is able to provide a complete virtual environment. Real experiments
have been executed on the mobile platform ATRV-Jr (All Terrain Robot Vehicle
Junior) manufactured by iRobot. It is a skid steering vehicle mainly designed to
operate in outdoor environments. The ATRV-Jr has four wheels differentially driven
by two DC motors: the motion is achieved by a differential thrust on the wheel pairs
at the opposite sides. The mobile robot is equipped with 17 sonar rangefinders, a
laser scanner (Sick LMS-220), an inertial platform (Crossbow DMU-6X), and a GPS
receiver (Garmin GPS35-HVS). The sensory system is connected to the ATRV-
Jr’s on board PC (Pentium II, 350 MHz) running Linux, through serial port on a
Rockeport multiserial port card. The robot is delivered with a software development
environment called MOBILITY, which provides full access to the software servers
available on the mobile platform. In particular, each server is assigned to control
a specific hardware component (sensors and actuators). In this way all of them are
reachable from the network exploiting a CORBA interface.

Two different types of analysis have been performed. The first one as demon-
strated the global algorithm aptitude to localize the robot as well as to carry on multi-
hypotheses. The second more specialized analysis has proved the local algorithm
ability to converge within each cluster.



166 J Intell Robot Syst (2006) 47: 155–174

Figure 2 Rectangular
environment: CE-MCL
iteration.

Figure 3 Complex environment: CE-MCL estimation result.
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Two indexes of quality have been chosen to evaluate the correctness of the
algorithm: the percentage of estimation failures and the entropy measurement of
the particle set. The first one gives information about the reliability and the accuracy
of the solution, the second one, coming from the information theory [26], provides a
measurement of the uncertainty for a given random, and it is defined as:

H(X ) =
n∑

i=1

pi log2(
1
pi

)

where, pi is the probability of the ith outcome for a given event x. In this context,
entropy can be properly applied to give an evaluation of the persistence of the
diversity among particles.

For the first analysis, several environments have been taken into account to inves-
tigate each aspect of interest. In particular, a simple rectangular environment,shown
in Figure 2, has been used to prove the ability of the algorithm to carry on

Figure 4 Complex environment: CE-MCL entropy measurement.
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multi-hypotheses; a complex environment, shown in Figure 3, has been exploited
to test the algorithm aptitude to solve both the global localization problem and
the kidnap problem; finally, a T-shaped environment, shown in Figure 5, containing
many glass elements, has been adopted to prove the algorithm robustness.

Figure 2 shows a typical CE-MCL iteration step for the rectangular environment.
Points (green) represent particles, whereas circles (red) are located at the center of
the mass of each cluster and, segments (blue) describe the mean orientation for all
particles within each cluster. Due to the environmental symmetries, at each time-
step at least two subset of hypotheses are maintained, in particular the ones located
at the extreme of a segment splitting the environment in two equal parts. Further,
such behavior seems to be reasonable as sensor data support both locations, nothing
that the laser beam range is 8 m.

Figure 3 shows a typical CE-MCL estimation result for the complex environment
previously mentioned. Points (red) represent the most likely hypotheses at each time

Figure 5 T-shaped environment: CE-MCL estimation result.
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step, whereas the line (blue) represents the real robot path. In particular, S is the
robot start point, K is the location at which the robot is kidnapped, R is the start
point after the kidnap and finally, G represents the goal point of the robot.

The algorithm has been able to find out a rough estimation of the robot path
without any knowledge about the starting robot location. Moreover, Figure 3 evi-
dences the algorithm’s ability to realize when a kidnap occurs, thus re-localize the
robot. The remaining noisy points, consequence of a temporary bad estimation,
prove the algorithm’s tendency to explore the whole environment as well as to carry
on the multi-hypotheses at each time step. Further, they might be easily removed, for
instance relying on the kinematic model constraints of the mobile robot.

The algorithm has been runned several times in this environment to estimate the
percentage of failures; the mean value settles around 30%, while the variance is ±4%.

Figure 4 shows the measurement of entropy for the experiment mentioned above.
The red line represents the theoretical maximum entropy for the given set of

Figure 6 T-shaped environment: CE-MCL entropy measurement.
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particles, whereas the blue line describes the entropy during the algorithm execution,
and the black line is its mean value. In order to maintain the diversity among the
particle set, such value should be high. However, the algorithm should also be able
to converge to the real robot location. For the CE-MCL algorithm, the mean value
settles around an intermedian value, giving evidence of the algorithm’s aptitude to
balance both needs.

To evaluate the algorithm robustness, an environment containing many glass
elements and an evident structural ambiguity has been considered. Figure 5 shows a
typical CE-MCL estimation result for such environment. The presence of structural
ambiguities along with the noisiness of laser readings, due to the nature of glass,
make the localization problem more difficult. Despite the fact that the accuracy of
the estimation is lower than the previous experiment, and the percentage of failure
is markedly higher (mean value 40%, variance ±5%) the algorithm has been able to
localize the robot, even under these critical conditions.

Figure 6 shows the measurement of entropy for this environment. As in the pre-
vious experiment, the value settles around the median value, proving the algorithm’s
ability to maintain the diversity among the particles set.

The second type of analysis has been performed at cluster-level to figure out the
local algorithm’s behavior. Two aspects of interest have been considered to study the

Figure 7 Corridor-like environment: CE-MCL variance.



J Intell Robot Syst (2006) 47: 155–174 171

Figure 8 Corridor-like environment: CE-MCL entropy measurement.

convergence of particles within each cluster: a measure of similarity and the state
variables variance.

Figure 9 shows a sequence of CE-MCL iterations for an additional regular envi-
ronment exploited for such analysis. This sequence of images describes the algorithm
behavior between two resampling steps. In particular, when the first resampling
occurs (a), the algorithm recognizes six clusters (the last one is the collection of
noisy points) with a visible dispersion for the elements within the environment. The
following iterations point out the CE-MCL tendency to centralize the hypotheses
around the center of mass of each cluster. Moreover, after few time-steps clusters
are coarsely located along a line crossing the corridor. This deployment underlines
the algorithm tendency to maintain only the most likely hypotheses after a full
exploration of the environment.

From a mathematical standpoint, both the state space variables analysis and the
measurement of entropy give evidence of these considerations. Figure 7 shows a
typical variance trend within a cluster for all three state variables: peaks indicate
the resampling effect, whereas slopes give evidence of the algorithm aptitude to
make particles converge within each cluster. Figure 8 exhibits a typical measurement
of entropy within a cluster: the trend is similar to the previous one due to the
relationship among these concepts, when restricted to a single cluster.
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Figure 9 Corridor-like environment: CE-MCL sequence of iterations.

5 Conclusions

In this paper a new Monte Carlo Filter has been proposed to deal with the local-
ization problem: the Clustered Evolutionary Monte Carlo Filter (CE-MCL). Such
algorithm has been conceived to overcome the classical Monte Carlo Filter draw-
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backs. This goal has been achieved taking advantage of an evolutionary approach
and a clustering method. In particular, the former has been exploited to quickly find
out local maxima, whereas the latter, being dynamical, helps to obtain an effective
exploration of the environment. The ability to provide a smart partition set of the
research space along with the guarantee to converge within each subset, make the
algorithm able to solve the localization problem and maintain the multi-hypotheses.

Note that the combined use of cluster+genetic offers several interesting advan-
tages. At local level, being the size of research space smaller, the localization of
the best solution is faster and the probability to stall on a suboptimal solution is
lower. At global level, being the clustering dynamical and data-driven, an implicit
parallelization of the research is possible and a better coverage of the environment is
obtained, focusing the attention where the probability to find out the real robot pose
is higher.

Exhaustive analyses have been performed on the robot ATRV-Jr manufactured
by the IRobot, with the employment of several environments, to prove the effective-
ness of the proposed algorithm. In particular, two different kinds of experiments
have been considered: the first one has proved the algorithm ability to solve the
global localization problem, even when a kidnap occurs; the second one has given
evidence of the algorithm tendency to converge within each cluster and to guarantee
an efficient exploration of the environment. Such analyses have shown the important
role of the dynamical spatial clustering to provide an effective partion of the research
space on which apply the evolutionary action. Therefore, the CE-MCL can find out
local-maxima, guarantee a convergence to the most likely hypotheses, then maintain
the diversity among particles and localize the robot.

Some interesting challenges remain for future works. For instance, an extension
of the CE-MCL for the multi-robot scenario could be devised exploiting the cluster-
based approach to better distinguish hypotheses. From a computational point of
view, a dynamical number of particles could be introduced, to reduce the complexity
of the algorithm.
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