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Abstract This paper presents a framework for decentralized control of self-orga-
nizing swarm systems based on the artificial potential functions (APFs). In this
scheme, multiple agents in a swarm self-organize to flock and achieve formation con-
trol through attractive and repulsive forces among themselves using APFs. In partic-
ular, this paper presents a set of analytical guidelines for designing potential functions
to avoid local minima for a number of representative scenarios. Specifically the fol-
lowing cases are addressed: 1) A non-reachable goal problem (a case that the po-
tential of the goal is overwhelmed by the potential of an obstacle, 2) an obstacle
collision problem (a case that the potential of the obstacle is overwhelmed by the
potential of the goal), 3) an obstacle collision problem in swarm (a case that the
potential of the obstacle is overwhelmed by potential of other robots in a group
formation) and 4) an inter-robot collision problem (a case that the potential of the
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robot in a formation is overwhelmed by potential of the goal). The simulation results
showed that the proposed scheme can effectively construct a self-organized swarm
system with the capability of group formation, navigation and migration in the
presence of obstacles.

Key words group behavior · potential functions · swarm systems

1. Introduction

Potential field methods have been studied extensively for path planning of auton-
omous mobile robot in the past decade [3, 7, 9, 14, 17]. In this method, a robot is
modeled as a moving particle inside an artificial potential field that is generated by su-
perposing an attractive potential that pulls the robot to a goal configuration and a
repulsive potential that pushes robot away from obstacles. The negative gradient of
the generated global potential field is interpreted as an artificial force acting on the
robot and dictating its motion. In [5], it was reported that the usage of a sequence of
basic behavior such as random wandering, obstacle avoidance and light following was
able to direct a single robot to achieve complicated behavior by using the potential
function field generated from coupled oscillators. However, these behavior-based
computational approaches are often limited in fundamental theoretical understand-
ing and as a result sometimes exhibit unpredicted and undesirable performances.
Moreover, these approaches need extensive training for the selection of proper para-
meter values for different working environments [5]. Since none of these approaches
can present a general solution to the problem of designing cooperative mobile agents,
it makes sense to combine these schemes with certain trade-offs so as to render a hi-
erarchical architecture and a multi-strategy adaptive approach for swarm systems of
inhomogeneous mobile agents.

More recently some of the studies have extended potential field methods to the
maneuvering of group behaviors such as formation, migration and obstacle avoidance
in distributed swarm systems consisting of a large number of autonomous agents
[2]. A fundamental problem in the application of potential field method is how to
deal with the local minima that may occur in a potential field environment. In this
aspect, how to select scaling parameters in APFs representing the sizes of attractive
and repulsive forces to avoid the local minima has remained a challenge. Many of
the potential field-based methods are heuristically oriented and the lack of analytical
design guidelines can be problematic in applications. For instance, if the attractive
and repulsive potentials are defined as commonly used, the repulsive force will be
much larger than the attractive one [4, 11]. In this case, if the goal is near the obstacle,
the robot cannot reach the goal due to the larger repulsive force coming from the
obstacle, i.e. the goal position is not the global minimum of the total potential. One
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approach to provide a solution to this problem is to increase the ratio of scaling para-
meters (attractive force versus repulsive one) beyond a certain threshold. However,
in doing so, it will cause problem for the situation that the obstacle lies between
the robot and the goal, i.e., the robot may collide with the obstacle due to the large
attractive force of the nearby goal [9]. Therefore, the ratio of scaling parameters has
to be between a lower bound and an upper bound. In this paper, we present a set of
analytical design guidelines of this nature for representative scenarios.

Some of the more challenging scenarios have to do with multi-agent swarm systems
in which the suitable scaling parameters for group formation are required in addition
to the ratios of scaling parameters for group migration and obstacle avoidance. In
the absence of judiciously chosen design parameters, collision may occur among the
agents as well as between the agents and the obstacles. Two representative scenarios
are that 1) a case that the potential of the obstacle is overwhelmed by potential of
other robots in a group formation and 2) a case that the potential of the robot in
a formation is overwhelmed by the potential of the goal. In these cases, the robotic
agents collides with each other and run into the obstacle and there has been few ana-
lytical studies on these problems. There are, however, increased number of studies on
stability analysis of swarms [3, 7]. The focus of these studies is on collective conver-
gence and its bound. In most of these studies, there are some prevailing assumptions,
for example, the goal position is set relatively far away from obstacles.

In this paper, we present a framework for decentralized control of self-organizing
multi-agent swarm systems based on the APFs. Our framework for APFs alleviates
the above assumptions by the help of multiplicative and additive configuration be-
tween APF for group migration and APF for obstacle avoidance. The goal is not
to tackle all possible local minima and collision problems in APF configurations,
instead we focus our attention on a set of analytical guidelines for designing APFs
for a number of representative scenarios in swarm systems. The framework enables
agents to maintain a flexible formation, while migrating as a group and avoiding any
obstacles. Different from previous studies on target-following strategies [13, 20], the
purpose of this study is to explore the global behaviors such as group formation and
obstacle avoidance as well as group migration to target by using APFs for a number
of representative scenarios. Specifically the following cases are addressed: 1) A case
that the potential of the goal is overwhelmed by the potential of an obstacle, 2) a case
that the potential of the obstacle is overwhelmed by the potential of the goal, 3) a
case that the potential of the obstacle is overwhelmed by potential of other robots
in a group formation and 4) a case that the potential of the robot in a formation is
overwhelmed by potential of the goal.

This paper is organized as follows. Section 2 discusses the environment and agent
model and introduces the problem statement. In Section 3, we study a progressive
sequence of scenarios involving designing potential force laws to maintain group
migration and avoid obstacles. Also, our path planning method is compared with



372 J Intell Robot Syst (2006) 45: 369–394

a conventional additive configuration of potential functions. Section 4 describes an
extension to the group formation, and design guideline for its corresponding scaling
parameters are proposed. In Section 5 prey-pursuit mission simulations using the pro-
posed method are carried out. Finally concluding remarks are collected in Section 6.

2. Swarm Model, Notation and Problem Statement

2.1. Environment and Agent Model

The formation and maintenance of coherent group movement has long been studied
in natural systems, and more recently efforts have been made to reproduce this type
of behavior in artificial systems. There has been extensively simulation studies [16]
that has led to successful synthesis of birds’ behaviors such as collision avoidance,
velocity matching and flock centering. For instance, it is learned that to avoid collision
with other birds and obstacles, a bird uses a steer-to-avoid rule. However, theoretical
treatment or analysis of flocking behavior was not presented. Rather computer mod-
els of coordinated animal motion such as bird flocks and fish schools for simulating
visually satisfying flocking and schooling behaviors were developed for the animation
industry. The models were based on three dimensional computational geometry of
the sort normally used in computer animation or computer aided design. The generic
simulated flocking creatures are referred as boids. Other experiments by the author
of [16] involved evolving groups of artificial creatures. In [15] it studied the evolving
control system of a group of creatures placed in an environment with static obstacles
and a manually programmed predator for the ability to avoid obstacles and predation.
Though the results described in the paper were rather preliminary, evidences indicate
that coordinated motion strategies began to emerge.

The phenomena of swarming in nature have inspired the interest to engineer large-
scale artificial swarms. A typical artificial swarm system is a large-scale fleet of coop-
erative robots. Each robot in such a robotic swarm can be viewed as an agent. The
omni-directional robot without nonholonomic constraints can be one of such proto-
type agent model [8, 18]. They will likely possess only basic capabilities and mission
specific sensors. Direct communication between agents may or may not exist. The
environment model is very ‘object-oriented’ in its approach to agent construction.
Sensors and behaviors are encapsulated when possible. This approach allows individ-
ual components to be added and/or removed from the model as if the corresponding
physical components were being added to or removed from a real agent. We restrict
the workspace to two-dimensional space where each agent moves in [xy] plane. A
conceptional figure of distributed swarm agents in two-dimensional potential fields is
shown in Figure 1. The proposed method can be extended to more complex three-
dimensional space.
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goal obstacle swarm agents

Figure 1 Distributed swarm agents in two-dimensional potential fields.

A swarm system may consist of anywhere from two to hundreds or more au-
tonomous robots. The costs of production of robots are going down, and the robots
are getting more capable in compact packages. Hence in the near future, many indus-
trial and military applications of swarm systems in tasks such as hazardous inspection,
patrolling, guarding and attacking are envisioned. In this paper, the model of a swarm
agent is constructed by building upon an autonomous agent object. In abstract pro-
gramming terms it may also be thought of as an object with some general capabilities.
The basic agent possesses only locomotion as an innate capability. Neighbor position
information may be used for group behaviors such as flocking and migration.

2.2. Notations

In this section, we introduce the notations used in this paper.

ψ Relative position vector
U Potential function
F Force corresponding to potential function
c Strength distance for exponential function
l Correlation distance in exponential function
d Positive constant for distance

Superscripts
g Group migration
o Obstacle avoidance
og General configuration for group migration and obstacle avoidance
ogg Proposed configuration for group migration and obstacle avoidance
f Group formation
ogg f Proposed configuration for group formation, migration and obstacle

avoidance
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go Relation between a goal and an obstacle
ro Relation between a robot and an obstacle

Subscripts
i Individual agent index
j Obstacle index
k Other individual agent index
1x First index in x-axis
1y First index in y-axis
m Minimum value
g Group migration
o Obstacle avoidance
0 Zero total force
r Repulsion between two agents
a Attraction between two agents
f Group formation

2.3. Problem Statement

We start with a point mass model in which an individual agent’s motion is governed
by Newton’s law mi ai = Fi where the subscript i denotes the ith agent, and mi , ai ,
and Fi are the mass and acceleration of the agent and the force acting on the agent,
respectively. This gives rise to the following equations of motion

Ṗi = vi

mi v̇i = ui (1)

where Pi and vi are the position and velocity of the ith agent, respectively. ui = Fi is
total force acting on individual agent.

Now, suppose there is a velocity damping term of the form −kvvi in ui , where
kv > 0. In other words, assume that we have

ui = −kvvi + ūi . (2)

ūi is the output of controller and described by

ūi = −∇Ui (3)

where Ui is the artificial potential energy in the system and is given by Section 3.
Now, note that for organism such as bacteria we have mi very small (i.e. we have

mi ≈ 0) and the viscosity of the environment for them is high. Therefore, we can take
mi = 0. Substituting this in the above system of equations we obtain

Ṗi = −
1

kv
∇Ui . (4)
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Figure 2 Behavior
architecture.
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If we consider in the article with kv = 1, we have the equation of motion of each
individual i described by

Ṗi = −∇Ui . (5)

Each of the individuals in the swarm moves so as to minimize the total artificial
potential energy in the system. For a planar formation on multiple vehicles, similar
dynamics are used in [12].

Once a set of individual behaviors has been developed, a framework or architec-
ture must be constructed to initiate behavioral responses and coordinate multiple
behaviors. The behavior of the swarm system in the proposed algorithm is largely
divided into three parts: Group migration, collision avoidance and group formation
as shown in Figure 2. We deal with global behaviors, not separate behaviors by
subsumption coordination based on priority in [6]. We describe several artificial
potential field techniques satisfying such behaviors. Path planning using artificial
potential fields is based on an intuitive analogy. The robot is treated as a particle
acting under the influence of a potential field U, which is modulated to represent the
structure of free space [10]. Typically, obstacles are modeled as carrying electrical
charges, and the resulting potential field is used to represent the free space. In this
paper, localized distributed controls based on APFs are utilized throughout group
behaviors such as group migration, formation and obstacle avoidance.

3. Path Planning

In this section, a self-organized swarm system controlled by the APFs is presented for
the group migration and obstacle avoidance. The behavior of migration in this study
is distinct from that of formation control (e.g. [1]), because the goal of migration
issimply to achieve and maintain coherent group movement rather than to govern
well organized inter-agent position relationships. Also, formation control is not



376 J Intell Robot Syst (2006) 45: 369–394

an end in itself, but rather can be used as a component of a multi-agent system,
organizing the nodes of a distributed sensing system. The formulation of the APFs
is extended to group formation in Section 4.

3.1. APFs for Group Migration and Obstacle Avoidance

Before we describe artificial potential fields, relative position vectors between the
robots and the goal are defined as

ψ
g
i = Pi − Pgoal (6)

where Pgoal is the goal position.
This relative position vector physically means that the formation is independent of

the absolute position of the group. That is why each robot controls its position based
on its relative position to others and it never has any reference point in its working
environment.

Attraction towards the goal is modeled by attractive fields, which in the absence
of obstacles, draws the charged robot towards the goal. The simple APF for group
migration is modeled as following.

Ug
i = cg

(
1 − e

−
‖ψ

g
i ‖

2

lg 2

)
(7)

where cg and lg are the strength and correlation distance for group migration. The
second term cg in the right side of (7) acts to make Ug

i zero when ψ g
i =0.

Its corresponding force is then given by the negative gradient of (7).

F g
i = −∇Ug

i = −
2cgψ

g
i

lg
2 e

−
‖ψ

g
i ‖

2

lg 2 . (8)

Relative position vectors between the robots and the obstacles are defined as

ψo
j = Pi − O j (9)

where O j is the position of obstacle j which is a neighbor of agent i .
Collisions between the obstacles and the robot are avoided by the repulsive force

between them, which is simply the negative gradient of the potential field. We employ
the agorithm that prevents collisions with obstacles by calculating the repulsive
potential, based on the shortest to an object. The simple APF for obstacle avoidance
is modeled as following.

Uo
i =

∑
j∈Noi

{
coe−

‖ψo
j ‖

2

lo2

}
(10)

where co and lo are the strength and correlation distance for obstacle avoidance. Noi

denotes the set of labels of those obstacles which are neighbors of agent i .
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Figure 3 Group migration to a goal near obstacles using Equation (13).

-5 0 5
0

0.5

1

1.5

2

2.5

3

3.5
(a)

ψ g
1x

P
ot

en
tia

l

- 5 0 5
- 15

- 10

- 5

0

5

10

15
(b)

ψ g
1x

F
or

ce

m
1

m
2

m
1

m
2

Figure 4 Potential and force for group migration to a goal near an obstacle using Equations (12) and
(13), respectively, in a 1-D space.
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Its corresponding force is then given by the negative gradient of (10).

Fo
i = −∇Uo

i =

∑
j∈Noi

{
2coψ

o
j

lo
2 e−

‖ψo
j ‖

2

lo2

}
. (11)

3.2. Total APFs for Path Planning

The total potential of conventional configuration that the potential for group migra-
tion and the potential for obstacle avoidance are combined together has an additive
structure as following.

U og
i = Uo

i + Ug
i

=

∑
j∈Noi

{
coe−

‖ψo
j ‖

2

lo2

}
− cge

−
‖ψ

g
i ‖

2

lg 2
+ cg. (12)

Its corresponding force is

Fog
i = −∇Uo

i − ∇Ug
i

=

∑
j∈Noi

{
2coψ

o
j

lo
2 e−

‖ψo
j ‖

2

lo2

}
−

2cgψ
g
i

lg
2 e

−
‖ψ

g
i ‖

2

lg 2 . (13)

If the above potential and force are used, each agent has common problems [11]
such as a narrow passage between closely spaced obstacles and a non-reachable goal
with obstacles nearby. Figure 3 shows such an example where cg = 1, lg = 2, co = 3,
and lo = 0.2 are used. Figure 4 illustrates its corresponding potential and force,
respectively, when goal (0,0) is near the obstacle (−0.1,0). The potential plot in
Figure 4 reveals two local minima as shown in Figure 3 whose cause is described
in Section 3.2.1. One is due to a non-reachable goal problem with obstacles nearby,
and the other is due to a narrow passage between closely spaced two obstacles.

For this reason, following configuration for total potential is proposed to overcome
such local minimum problems. The total potential has a multiplicative and additive
structure between the potential for group migration and the potential for obstacle
avoidance.

Uogg
i =

1

cg
Uo

i · Ug
i + Ug

i

=

∑
j∈Noi

{
coe−

‖ψo
j ‖

2

lo2

}(
1 − e

−
‖ψ

g
i ‖

2

lg 2

)
− cge

−
‖ψ

g
i ‖

2

lg 2
+ cg. (14)
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Figure 5 Group migration to a goal near obstacles using Equation (15).
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Its corresponding force is

Fogg
i = −∇Uogg

i

=

∑
j∈Noi

{
2coψ

o
j

lo
2 e−

‖ψo
j ‖

2

lo2

} (
1 − e

−
‖ψ

g
i ‖

2

lg 2

)

+

∑
j∈Noi

{
coe−

‖ψo
j ‖

2

lo2

} (
−

2ψ g
i

lg
2 e

−
‖ψ

g
i ‖

2

lg 2

)
−

2cgψ
g
i

lg
2 e

−
‖ψ

g
i ‖

2

lg 2 . (15)

Figure 5 shows that each robot starting from different initial points reaches the
target near an obstacle while avoiding obstacles. Figure 6 illustrates the potential and
force using Equations (14) and (15) when goal (0,0) is near an obstacle (−0.1, 0).

Now let us consider a number of problems that the proposed potential function
may cause for group migration and obstacle avoidance, and then analyze how to
design APFs’ parameters to overcome such problems.

3.2.1. A Non-Reachable Goal Problem: A Case that the Potential of the Goal

is Overwhelmed by the Potential of the Obstacle

First, consider the case that the potential of the goal is affected excessively by
potential of the obstacle, i.e. when the robot and the goal are within the distance
of the obstacle.

If we use the force of standard configuration (13), the robot will be trapped at the
minimum where the total force becomes zero, not a goal position. Even though there
is no obstacle in its way, the robot cannot reach the goal as shown in Figure 3. Suppose
that the robot, obstacle and goal are collinear, with the robot lying on a different side
of the obstacle and the goal as shown in Figure 7 where we do not need to consider
the variables in y-axis due to ψ g

1y = ψo
1y = 0. When the robot reaches the goal, ψ g

1x

becomes zero. Thus, the second component of the force in (13) is zero. However, the

first component
2coψ

o
j

lo
2 e−

|ψo
j |

2

lo2 is not zero. Therefore, the conventional configuration for
APFs followed by an additive structure does not enable the robot to reach the goal if

Figure 7 When the robot,
goal and obstacle are collinear
in order.
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the goal is near obstacles. For this reason, goal (0,0) near the obstacle has no lowest
potential as shown in Figure 4.

In order to overcome this problem, a new configuration for APFs is proposed in
(14) and (15). As the robot reaches the goal, i.e. ψ g

1x becomes zero, all the terms in
(15) are also zero, which drives the robot to the goal. Thus, the proposed method can
overcome the non-reachable goal problem appealing from the conventional potential
configuration followed by an additive structure.

Now let us consider the guideline of design parameters for the above local
minimum problem. Suppose that the robot, goal and obstacle are collinear, with the
obstacle lying on a different side of the robot and goal as shown in Figure 7 where
ψo

1x = −
∣∣ψo

1x

∣∣ andψ g
1x = −|ψ

g
1x| until the robot reaches the goal. Following conditions

are needed so that the robot reaches the goal. First, until the robot reaches the goal,
Fogg

1 should be larger than zero because the robot moves from 0 to (+) direction in
x-axis. Second, if the robot reaches the goal, i.e. ψ g

1x = 0, Fogg
1 should be zero. For

latter one, we already mentioned. Now, we prove that Fogg
1 ≥ 0 until the robot

reaches the goal. By Equation (15), we obtain

Fogg
1 =

2co
∣∣ψo

1x

∣∣
lo

2 e−
|ψo

1x|
2

lo2

(
e
−

|ψ
g
1x|

2

lg 2
− 1

)
+ coe−

|ψo
1x|

2

lo2

(
2
∣∣ψ g

1x

∣∣
lg

2 e
−

|ψ
g
1x|

2

lg 2

)

+
2cg

∣∣ψ g
1x

∣∣
lg

2 e
−

|ψ
g
1x|

2

lg 2

= 2co

(∣∣ψo
1x

∣∣
lo

2 +

∣∣ψ g
1x

∣∣
lg

2

)
e
−

|ψo
1x|

2

lo2 −
|ψ

g
1x|

2

lg 2
−

2co
∣∣ψo

1x

∣∣
lo

2 e−
|ψo

1x|
2

lo2

+
2cg

∣∣ψ g
1x

∣∣
lg

2 e
−

|ψ
g
1x|

2

lg 2 . (16)

To eliminate the free path local minima, Fogg
1 should be pointing the goal, i.e. Fogg

1 ≥0.
So the question is whether Fogg

1 ≥ 0, i.e.

co

(∥∥ψo
j

∥∥
lo

2 +

∥∥ψ g
i

∥∥
lg

2

)
e
−

‖ψo
j ‖

2

lo2 −
‖ψ

g
i ‖

2

lg 2
−

co

∥∥∥ψo
j

∥∥∥
lo

2 e−
‖ψo

j ‖
2

lo2 +
cg
∥∥ψ g

i

∥∥
lg

2 e
−

‖ψ
g
i ‖

2

lg 2
≥ 0. (17)

PROPOSITION 1. For
∣∣ψ g

1x

∣∣ in the force (16), there exist positive constants cg, lg, co

and lo satisfying following inequality.

cg/o ≥
lg

2∣∣ψ g
1x

∣∣e−
|ψo

1x|
2

lo2 α
(∣∣ψ g

1x

∣∣) (18)

where cg/o = cg/co and α
(∣∣ψ g

1x

∣∣) is given in (20) afterward.
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Sketch of proof: For Fogg
1x > 0 and Fogg

1y = 0, the following inequality can be obtained.

cg/o ≥

[∣∣ψo
1x

∣∣
lo

2 e−
|ψo

1x|
2

lo2 −

(∣∣ψo
1x

∣∣
lo

2 +

∣∣ψ g
1x

∣∣
lg

2

)
e
−

|ψo
1x|

2

lo2 −
|ψ

g
1x|

2

lg 2

]/(∣∣ψ g
1x

∣∣
lg

2 e
−

|ψ
g
1x|

2

lg 2

)

≥
lg

2

lo
2

∣∣ψo
1x

∣∣∣∣ψ g
1x

∣∣e−
|ψo

1x|
2

lo2 +
|ψ

g
1x|

2

lg 2
−

lg
2∣∣ψ g

1x

∣∣
( ∣∣ψo

1x

∣∣
lo

2 +

∣∣ψ g
1x

∣∣
lg

2

)
e−

|ψo
1x|

2

lo2

≥
lg

2∣∣ψ g
1x

∣∣e−
|ψo

1x|
2

lo2 α
(
ψ

g
1x, ψ

o
1x

)
(19)

where α
(
ψ

g
1x, ψ

o
1x

)
=

[
|ψo

1x|

lo
2 e

|ψ
g
1x|

2

lg 2
−

(
|ψo

1x|

lo
2 +

|ψ
g
1x|

lg
2

)]
.

Let dgo be a positive constant for the distance between the goal and the obstacle.
We have

∣∣ψo
1x

∣∣ =
∣∣ψ g

1x

∣∣+ dgo. Let us denote dgo
m as the minimum distance of dgo, i.e.

the diameter of permissible goal region. Since (19) demands large cg/o for small dgo,
we can replace dgo by dgo

m after substituting
∣∣ψ g

1x

∣∣ for
∣∣ψo

1x

∣∣ in (19). Through some sim-
ple algebraic manipulations, we have

α
(∣∣ψ g

1x

∣∣) =

∣∣ψ g
1x

∣∣+ dgo
m

lo
2 e

|ψ
g
1x|

2

lg 2
−

(∣∣ψ g
1x

∣∣+ dgo
m

lo
2 +

∣∣ψ g
1x

∣∣
lg

2

)
.

{
≤ 0, i f

∣∣ψ g
1x

∣∣ ≤ dgo
o

> 0, i f dgo
o <

∣∣ψ g
1x

∣∣ (20)

where dgo
o is the distance when the total of repulsive force from the obstacle and

attractive force from the goal is zero.
Since α

(∣∣ψ g
1x

∣∣) ≤ 0 when
∣∣ψ g

1x

∣∣ ≤ dgo
o , the lower bound of cg/o is chosen when

dgo
o <

∣∣ψ g
1x

∣∣. The details of the choice for the lower bound of cg/o are dealt with in
Section 3.2.3. �

Consider the repulsive force coming from the obstacle versus the distance of the

goal and obstacle. Since the first term −e
−

‖ψ
g
i ‖

2

lg 2
+ 1 in (14) reduces to zero, the agent

is not under the influence of the potential term by the obstacle. Thus, even though
the obstacle is near to the goal, the robot is relatively affected less by the repulsive
force coming from the obstacle. When the robot and the goal are out of the distance
of the obstacle, the inequality of (18) is guaranteed for any cg, lg, co and lo, that is,
Fogg

i > 0 until the robot reaches the goal. If the robot reaches the goal, Fogg
i = 0 and

Uogg
i = 0.
In [9], the non-reachable goal problem with obstacles nearby has been presented

for the path planning of mobile robot for the first time. Design guideline for
scaling parameters of the attractive and repulsive potential functions are proposed.
However, since only the lower boundary of the scaling parameters are considered,
the robot may collide with its obstacle nearby due to large attractive force coming
from the goal when the obstacle lies between the robot and its goal. In Section 3.2.2



J Intell Robot Syst (2006) 45: 369–394 383

we deal with such a problem and propose the design guideline for the upper bound
of the scaling parameters for the attractive and repulsive forces.

3.2.2. An Obstacle Collision Problem: A Case that the Potential of the Obstacle

is Overwhelmed by the Potential of the Goal

Suppose that the robot, obstacle and goal are collinear, with the obstacle lying
between the robot and its own goal as shown in Figure 8 where ψo

1x = −
∣∣ψo

1x

∣∣ and
ψ

g
1x = −

∣∣ψ g
1x

∣∣ until the robot reaches the point S. In Figure 8, dro
0 is the distance

between the obstacle and the robot when the total of repulsive force from the obstacle
and attractive force from the goal is zero. There exists a point (denoted the point S
here) where the forces coming from repulsive force by the obstacle and attractive
force by the goal are zero. Following conditions are needed so that the robot avoids
collision with the obstacle. Until the robot starting from (0,0) reaches the point near
the obstacle, Fogg

1 should be larger than zero. If the robot reaches the point, Fogg
1

should be zero. And then the robot can turn around the obstacle and go toward the
goal by the negative gradient of the generated potential field.

Now, we will prove that Fogg
1 ≤ 0 after the robot reaches the point S., i.e.

co


∥∥∥ψo

j

∥∥∥
lo

2 +

∥∥ψ g
i

∥∥
lg

2

 e
−

‖ψo
j ‖

2

lo2 −
‖ψ

g
i ‖

2

lg 2
−

co

∥∥∥ψo
j

∥∥∥
lo

2 e−
‖ψo

j ‖
2

lo2 +
cg
∥∥ψ g

i

∥∥
lg

2 e
−

‖ψ
g
i ‖

2

lg 2
≤ 0 (21)

Otherwise the robot may collide with the obstacle due to stronger attractive force
by the goal than repulsive force by the obstacle. Thus, using the same procedure as
3.2.1, we propose a guideline for the upper bound of cg/o so that the robot does not
collide with the obstacle.

PROPOSITION 2. For dro
m <

∣∣ψo
1x

∣∣ ≤ dro
0 in the force (16), there exist positive

constants cg, lg, co and lo satisfying following inequality.

cg/o ≤
lg

2

dro
m + dgo

m
e−

dro m
2

lo2

[
dro

m

lo
2 e

(dro m+dgo m)2

lg 2
−

(
dro

m

lo
2 +

dro
m + dgo

m

lg
2

)]
. (22)

Figure 8 When the robot,
obstacle and goal are collinear
in order.
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where dro is a positive constant for the distance between the robot and the obstacle,
and dro

m is the minimum distance of dro, i.e. the minimum distance avoiding collision
between the robot and the obstacle.

Sketch of proof: After the robot reaches the point S where the total of repulsive
force from the obstacle and attractive force from the goal is zero, Fogg

1 should be less
than zero for dro

m <
∣∣ψo

1x

∣∣ < dro
0 so that the robot does not approach the obstacle any

more.
The closer the goal is to the obstacle, the higher the probability that the robot

collides with the obstacle is. We have
∣∣ψ g

1x

∣∣ =
∣∣ψo

1x

∣∣+ dgo. Thus we can replace dgo by
dgo

m and substitute
∣∣ψo

1x

∣∣+ dgo
m for

∣∣ψ g
1x

∣∣.
co

(∣∣ψo
1x

∣∣
lo

2 +

∣∣ψo
1x

∣∣+ dgo
m

lg
2

)
e
−

|ψo
1x|

2

lo2 −
(|ψo

1x|+dgo m)
2

lg 2
−

co
∣∣ψo

1x

∣∣
lo

2 e−
|ψo

1x|
2

lo2

+
cg
(∣∣ψo

1x

∣∣+ dgo
m
)

lg
2 e

−
(|ψo

1x|+dgo m)
2

lg 2
≤ 0 (23)

Using the same procedure as Proposition 3.2.1, similarly we have

cg/o ≤
lg

2∣∣ψo
1x

∣∣+ dgo
m

e−
|ψo

1x|
2

lo2

[∣∣ψo
1x

∣∣
lo

2 e
(|ψo

1x|+dgo m)
2

lg 2
−

(∣∣ψo
1x

∣∣
lo

2 +

∣∣ψo
1x

∣∣+ dgo
m

lg
2

)]
. (24)

The smaller
∣∣ψo

1x

∣∣ is, the smaller cg/o is required in (24). Thus, replacing
∣∣ψo

1x

∣∣ by dro
m

in (24) we obtain (22). The details of the choice for the upper bound of cg/o are dealt
with in Section 3.2.3. �

REMARK 1. The purpose of Proposition 2 let the robot not to collide with the
obstacle by excessive potential fields from the goal. The robot may be trapped in the
point S in the case that the robot, obstacle and goal are collinear exactly. [14] suggests
for a single robot to escape local minimum using escape-force function if a local
minimum is identified when some conditions are satisfied. In dynamic situation where
a target is moving, the problem is solved easier than the stationary environment [8].
Such a problem can also be solved by group formation followed by next section. The
vector that robot trapped at local minimum directs can be changed by the attractive
or repulsive forces coming from neighboring robots. Thus, the trapped robot can
be easily escaped by the help of neighboring robots in self-organization problem of
swarm robots which is called a ‘waiting time’ strategy.

3.2.3. Design Guideline of Potential Functions for Path Planning

To derive the lower bound of cg/o from a given distance dgo
m in (20), we choose lg and

lo first. Since lg and lo are design parameters related with the distance of influence
from the goal and obstacle, respectively, they are chosen first. Then depict the graph
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(
ψ

g
1x

)
and cg/o when lg = 2 and lo = 0.2.

of cg/o using a computer software such as MATLAB [19] and find the maximum value
of cg/o = cg/co. For example, with dgo

m = 0.2, lg = 2 and lo = 0.2, the graphs of α
(
ψ

g
1x

)
and cg/o are illustrated in Figure 9. We can get dgo

o = 0.122 and cg/o > 0.022. If there
is no permissible region of the goal, i.e. dgo

m = 0, we can get cg/o > 0.151. If the robot

is far from the obstacle, the lower bound of cg/o is zero due to e−
|ψo

1x|
2

lo2 in (19).
For the higher bound of cg/o, we can get dro

0 = 0.281 and cg/o < 0.383 with dro
m = 0.2

and dgo
m = 0.2 in (22). Thus we can choose co and cg satisfying to 0.022 < cg/co <

0.383. Finally, we choose cg = 1 and co = 3.

REMARK 2. This study suggests that the lower and upper bounds for design
parameters to solve the non-reachable goal problem and its corresponding obstacle
avoidance. The selection of optimal design parameters within the bounds depends
on physical plants or missionary tasks. Thus, the optimization problem for design
parameters within the bounds is beyond the intention of this paper.

4. An Extension to Group Formation

Artificial potential methods have been previously used for obstacle-avoidance path
planing [9, 14, 17]. In the last decade, they have been extended to group behaviors
such as swarming or aggregation of autonomous mobile agents. The purpose of this
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section proposes the formulation of the APFs for group formation and then solve
possible local minimum and collision problem in potential function configuration.
Thus, our focus is different from previous studies [2, 3, 5] and [21].

4.1. APF for Group Formation

The group formation behavior seeks to establish a specific relationship between ad-
jacent neighbors. A swarm of N robots(agents) are considered. Relative position
vectors among the robots are defined as

ψ
f

k = Pi − Pk. (25)

Robots flock together and arrange their formation through attractive and repulsive
forces among themselves using APFs. The potential function of each robot for group
formation is designed as following.

U f
i =

∑
k∈N f i

{
cr e−

∥∥∥ψ f
k

∥∥∥2

lr 2 − cae−

∥∥∥ψ f
k

∥∥∥2

la 2 + c
′

a

∥∥∥ψ f
k

∥∥∥2
+ c f

}
(26)

whereN f i denotes the set of labels of those agents which are neighbors of agent i . cr ,
ca , lr , and la are the strengths and correlation distances of the repulsive and attractive
force, respectively. c

′

a is the strength of the auxiliary attractive force.

c f = −cr e−
c′f

lr 2 + cae−
c′f

la 2 − c
′

ac′

f (27)

where c′

f =
lr 2la

2

lr 2
−la

2 ln ca c
′

a l2
r

cr l2
a

. c f acts to make the minimum of the potential function zero.

The distance between two agents at the point where U f
i (k) is minimum is d f

=

√
c′

f .
The corresponding force is then given by the negative gradient of (26)

F f
i = −∇U f

i =

∑
k∈N f i

{
2crψ

f
k

lr
2 e−

∥∥∥ψ f
k

∥∥∥2

lr 2 −
2caψ

f
k

la
2 e−

∥∥∥ψ f
k

∥∥∥2

la 2 − 2c
′

aψ
f

k

}
. (28)

Let us analyze the cohesive behavior for the above potential function and force.

PROPOSITION 3. For formation force (28), Pi (t) → Bε

(
P̄i (t)

)
as t → ∞, where

Bε

(
P̄i (t)

)
=
{
Pi :

∥∥Pi − P̄
∥∥ ≤ ε

}
(29)

and the center of swarm agents is defined as P̄i =
1
N

∑N
i=1 Pi .

Sketch of proof: The distance between Pi and the center of swarm is defined as
ei = Pi − P̄. From the definition of the center of swarm, we have

∑N
i=1 Pi = NP̄i .

Subtracting from both sides NPi , we obtain

N∑
k=1

(Pi − Pk) = N
(
Pi − P̄

)
= Nei . (30)
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The error equation can be written as

ėi = −∇U f
i +

1

N

N∑
i=1

∇U f
i . (31)

Defining a Lyapunov function as Vi =
1
2 ‖ei‖

2
=

1
2 ei

Tei and using (31), we obtain

V̇i = −

[
∇U f

i −
1

N

N∑
i=1

∇U f
i

]T

ei = −

[
∇U f

i

]T
ei (32)

since we obtain
∑N

i=1 ∇U f
i = 0 which follows from the fact that ∇U f

i are odd
functions. Using (28) and (30), we obtain

V̇i = −2c
′

a N ‖ei‖
2
+

∑
k∈N f i

{
2crψ

f
k

lr
2 e−

∥∥∥ψ f
k

∥∥∥2

lr 2 −
2caψ

f
k

la
2 e−

∥∥∥ψ f
k

∥∥∥2

la 2

}
‖ei‖ . (33)

For the second term to be negative semi-definite, note that
∥∥∥ψ f

k

∥∥∥ e−

∥∥∥ψ f
k

∥∥∥2

lr 2 and
∥∥∥ψ f

k

∥∥∥
e−

∥∥∥ψ f
k

∥∥∥2

la 2 are bounded functions whose maximum are given by lr√
2
e−

1
2 and la√

2
e−

1
2 ,

respectively. Substituting this in the above equation we obtain

V̇i ≤ −2c
′

a N ‖ei‖
2
+

√
2(N − 1)e−

1
2

(
cr

lr
+

ca

la

)
‖ei‖

≤ −2c
′

a N ‖ei‖ (‖ei‖ − ε) (34)

where ε =
(N−1)
√

2c ′

a N
e−

1
2

(
cr
lr

+
ca
la

)
.

There exists a constant ε such that for ‖ei‖ > ε we obtain V̇i < 0. Thus, it
is guaranteed that in that region ‖ei‖ is decreasing and eventually ‖ei‖≤ε is
achieved. �
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4.2. APFs for Group Formation, Migration, and Obstacle Avoidance

Total potential for group formation, migration, and obstacle avoidance is

Uogg f
i =

1

cg
Uo

i · Ug
i + Ug

i + U f
i

=

∑
j∈Noi

{
coe−

‖ψo
j ‖
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}
·
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. (35)

Its corresponding force is
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f
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f
k

la
2 e−
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. (36)

Now let us consider and analysis the collision problems that the proposed potential
function may cause for group formation, migration, and obstacle avoidance.

4.2.1. An Obstacle Collision Problem in Swarm: A Case that the Potential of the

Obstacle is Overwhelmed by the Potential of the Other Robots in Formation

In the existence of an obstacle, if ca and cr are excessively larger than co, the robot
might collide with obstacles. Suppose that a robot is located in different side of the
obstacle and the other robots, and P1 and P2 are closest to the obstacle for flocking as
shown in Figure 10. To define maximum attractive force by P2, we suppose P2 is the
closest to the obstacle. The robot P1 is affected by repulsive force F1 by the obstacle,
attractive force F2 by the robot P2 and the other attractive forces F3 by the robots

Figure 10 The robot P1
affected by repulsive force F1
from the obstacle, attractive
force F2 from the robot P2 and
the other attractive forces F3
from the robot P3 − P6.

P P

P

P P

attractive forces by the other robots

repulsive force by the other obstacles

3 2
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P4
F1 
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P3 − P6. F1 should be larger than F2 + F3 so that the robot does not collide with the
obstacle. This case appears in no goal situation, because the robots P2 − P6 migrate
to the goal if there is a goal.

PROPOSITION 4. For
∥∥∥ψo

j

∥∥∥ ≥
lo√

2
, there exist positive constants co, lo, ca, la, cg, c

′

a

and cp satisfying following inequality.

co

lo
> cp

(
ca

la
+ c

′

alae
1
2

)
(37)

where cp is a positive constant and chosen afterward.

Sketch of proof: From (11) and (28), we obtain

2co

∥∥∥ψo
j

∥∥∥
lo

2 e−
‖ψo

j ‖
2

lo2 >
∑

k∈N f i (k)

2ca

∥∥∥ψ f
k

∥∥∥
la

2 e−

∥∥∥ψ f
k

∥∥∥2

la 2 + 2c
′

a

∥∥∥ψ f
k

∥∥∥
 (38)

since the repulsive force term crψ
f

k

lr 2 e−

∥∥∥ψ f
k

∥∥∥2

lr 2 in (28) is a negative term in the right term
of (38).

In order to maximize the right term in (38), the robots can be positioned as shown
in Figure 11 where Np denotes the set of labels of those robots which are collinear
to the obstacle. Let us denote np as the number of robots in Np, i.e. the number of
columns that compose 2p − 1 agents in sequence. Denoting cp = np + 1 +

N−np−1
2 to

maximize the right term in (38) gives

co

∥∥∥ψo
j

∥∥∥
lo

2 e−
‖ψo

j ‖
2

lo2 > cp

ca

∥∥∥ψ f
k

∥∥∥
la

2 e−

∥∥∥ψ f
k

∥∥∥2

la 2 + c
′

a

∥∥∥ψ f
k

∥∥∥
 . (39)

Let us design the APFs’ parameters so that the repulsive force by the obstacle
should be larger than the attractive force by agents on the basis of the distance
between the agent P1 and the obstacle decreasing to ‖ψo‖ =

lo√
2
. At this distance,

maximum repulsive force is induced. To maximize the right term in (39), maximum
attractive force is applied when

∥∥ψ f
∥∥ =

la√
2
. Thus, replacing ‖ψo‖ and

∥∥ψ f
∥∥ by lo√

2

and la√
2
, respectively, and simple manipulation give (37). �

Figure 11 The structure for
maximizing the right term
in (38).
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Figure 12 The robot P1 is
affected by the attractive force
F2 from the goal and the
repulsive force F1 from
the robot P2.
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attractive forces by the goal

repulsive force by the other robot

goal position

4.2.2. An Inter-Robot Collision Problem: A Case that the Potential of the Robot

in Formation is Overwhelmed by the Potential of the Goal

When the robots migrate, if the attractive force from the goal is larger than the
repulsive force among the robots, the robots might collide with each other. Suppose
that the robot P2 is located in the goal position, and the other robot P1 is affected by
the attractive force F2 from the goal and the repulsive force F1 from the robot P2 as
shown in Figure 12. F1 should be larger than F2 so that the robot P1 does not collide
with the other robot P2.

PROPOSITION 5. For
∥∥∥ψ f

k

∥∥∥ > d f
m, there exist positive constants cr , lr , cg and lg

satisfying following inequality.

cr >
cgdr lr

2

d f
mlg

2
e
−
(dr )2

lg 2 +
d f

m
lr 2 (40)

where dr is the radius of the robot. d f
m is a positive constant and chosen afterward.

Sketch of proof: To guarantee F1 > F2 from (8) and (28), we obtain

cr

∥∥∥ψ f
k

∥∥∥
lr

2 e−

∥∥∥ψ f
k

∥∥∥2

lr 2 >
cgdr

lg
2 e

−
(dr )2

lg 2 (41)

since the attractive force term caψ
f

k

la
2 e−

∥∥∥ψ f
k

∥∥∥2

la 2 + c
′

aψ
f

k in (28) is a positive term in the left
term of (41).

Replacing
∥∥∥ψ f

k

∥∥∥ by d f
m and simple manipulation give (40). Since the robot collides

with the other robot when
∣∣∣ψ f

1x

∣∣∣ = 0, we choose d f
m =

1
10 d f as the minimum distance

that maintains a safe distance between the robots. As an example, if we take
lo = 1/5, lg = 2, la = 1/2, lr = 1, co = 3, cg = 1, ca = 1/2, cr = 1/3, c

′

a = 0.1 and N = 10,
both (37) in Section 4.2.1 and (40) are effective. �

Proposition 5 covers the case that the robot P1 is affected by the repulsive forces
from more than two robots because the repulsive forces are larger than F1 in (41).
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Use of the APFs to keep a formation has a lot of flexibility. While maintaining
the characteristic of swarm, each agent wanders about flexibly, i.e. it has a nature of
self-organized flocking that each agent makes a formation dynamically without ex-
plicit reorganization contrary to [1]. Since the proposed approach does not explicitly
use the alignment of other group members, individual agents were not commanded
to be located to any positions for alignment. Also if they encounter with obstacles,
they reorganize their formation to avoid the obstacle without external command. For
example, if their formation encounter a tunnel, they change their maintenance to a
kind of line as themselves while keeping a formation. Moreover, this approach has a
good scalability which adds or removes any number of agents easily. In prey-pursuit
scenario of next Section, these characteristics are shown specifically.

5. Prey-Pursuit Simulation

As the well-known collective behavior of ants attacking a larger insect than them
with cooperation, self-organized swarm robots are designed as agents which migrate
to a designated place or follow a moving target while keeping a formation. The
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Figure 13 Snap shots of prey-pursuit for a static goal (dot: agent, astral mark: static goal, circle:
obstacle).



392 J Intell Robot Syst (2006) 45: 369–394

-5 -4 -3 -2 -1 0 1
-3

-2

-1

0

1

2

3
k = 1

x

y

-5 -4 -3 -2 -1 0 1
-3

-2

-1

0

1

2

3
k = 50

x

y

-5 -4 -3 -2 -1 0 1
-3

-2

-1

0

1

2

3
k = 100

x

y

-5 -4 -3 -2 -1 0 1
-3

-2

-1

0

1

2

3
k = 200

x

y

Figure 14 Snap shots of prey-pursuit for a moving goal (dot: agent, astral mark: moving target, circle:
obstacle).

task is due to motivations related to the biological inspirations behind cooperative
systems. Each agent in this task is to migrate to a static goal or follow a moving
target, while avoiding obstacles, keeping away from colliding with other agents and
maintaining a formation. The agents used in the proposed approach would also have
the following characteristics: All agents are physically and functionally identical.
Therefore, they can be manufactured inexpensively in large numbers, which would
be the case. Furthermore, new agents can be added to the team whenever necessary.
They can be adapted to various tasks with minimal structural changes. Individually,
agents have limited capabilities and limited knowledge of the environment. However,
as a swarm, they can exhibit ‘intelligent behavior’. Simple individual behavior will
result in an intelligent swarm behavior provided that some type of direct or indirect
communications between agents exists.

Figure 13 and 14 illustrate the different snap shots of a migration process of 10
agents for a static goal and a moving target, respectively. Each agent is randomly
initialized on the left side of x = −2, and the static goal and the moving target are
initialized on (0,0). In Figure 14, it is assumed that the target moves slower than
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the maximum speed of the agent. Design parameters are set to lo = 1/5, lg = 2, la =

1/2, lr = 1, co = 3, cg = 1, ca = 1/2 and cr = 1/3. In Figures 13 and 14, the swarm
agents spontaneously divide into several parts by themselves to surpass the blocking
area when meeting the obstacle, and finally form a certain kind of group pattern at
the neighborhood of the static goal and the moving target, respectively.

6. Conclusions

This paper presents a design framework based on APFs for group formation,
migration and obstacle avoidance in autonomous swarm systems. One of the main
contributions is to solve the non-reachable goal problem, caused by excessive poten-
tial of the obstacles, and the obstacle collision problem, caused by excessive potential
of the goal, together to render the lower and upper bounds for selecting the scaling
parameters of potential functions. Moreover, collision problems in formation, that
is, the obstacle collision problem caused by excessive potential of the other agents,
and the agent collision problem caused by excessive potential of the goal, are also
proposed and addressed. The results form a set of analytical guidelines for designing
APFs for swarm systems. The framework enables the agents in a swarm to maintain
a flexible formation, while migrating as a group and avoiding any obstacles. In the
presence of obstacles the formation of migrating agents can change shape, split and
merge. Although in this paper we have focused on cooperative behaviors in swarm
systems in 2D environment, the underlying method can be extended to scenarios in
3D setting.
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