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Abstract. In this paper a contribution to the practice of path planning using a new hierarchical
extension of the D∗ algorithm is introduced. A hierarchical graph is stratified into several abstraction
levels and used to model environments for path planning. The hierarchical D∗ algorithm uses a down-
top strategy and a set of pre-calculated trajectories in order to improve performance. This allows
optimality and specially lower computational time. It is experimentally proved how hierarchical
search algorithms and on-line path planning algorithms based on topological abstractions can be
combined successfully.
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1. Introduction

Until now, maps managed by mobile robotic systems based on topological maps
(graphs) usually involved no more than 100 nodes approximately. Mobile robots
are usually prototypes or industrial robots that work in a reduced environment.
Metric maps are mainly used in local path planning and obstacle avoidance where
environments are not quite big.

However, sometimes the path planner of a mobile robot must face large and
structured environments where traditional branch&bound or genetic algorithms
are not efficient enough. To face this problem, hierarchical search is a very effec-
tive alternative. Firstly, a hierarchical algorithm needs a hierarchy of abstractions
representing different views of an environment where a mobile robot has to work.
Highest levels in that hierarchy represent a global view of an environment and
deepest levels show the most detailed views. Secondly, refinement processes are
applied to the hierarchy in order to obtain a path� free of obstacles. There are also
reconstruction processes that link partial paths obtained after refinement.

Hierarchical search has been applied in large static environments where a path
must be re-planned until the mobile robot reaches its goal. Little attention has been
given in mobile robotics to systems that need on-line hierarchical path planning

� It will be used path or trajectory either.
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algorithms. This work is also an on-line path planning extension of the hierarchical
path search algorithm described in [3].

In Section 2 previous studies made in hierarchical path planning and on-line
path planning are briefly reviewed. In Section 3 it is described the abstract world
model and the algorithm proposed. A previous description of the fundamentals of
the D∗ algorithm is also commented. In Section 4 experimental results obtained
with the hierarchical algorithm proposed are analysed and compared with other
algorithms.

2. Previous Studies

2.1. HIERARCHICAL PATH PLANNING

In Artificial Inteligence (AI) hierarchical problem solving consist of some steps
that can be summed up into three:

− Abstraction: a space search is modelled by a hierarchy of abstractions divided
in several sublevels. In mobile robotics abstractions are called maps.

− Resolution: a problem is solved using partial solutions that are refined during
this process. A partial solution is found in one abstraction level and then it
is refined in the next abstraction level. In mobile robotics, solutions and/or
partial solutions are called paths or trajectories.

− Reconstruction: partial solutions are linked until a global solution is achieved.

Hierarchical mobile robot path planning is not the most used strategy in robot
path planning. Traditional path planning techniques (specially Dijkstra’s or A∗ al-
gorithm) are still the most used techniques in robot path planning. This is a direct
consequence of problems faced in mobile robotics. Autonomous mobile robots
are just prototypes that move in small areas due to their navigation restrictions.
Small robot environments do not need hierarchical path planning. AGV (automated
guided vehicles) are the only industrial mobile robots used widely but they are
always guided in reduced industrial areas.

However, some special robotic systems that have computational time restric-
tions (not necessary real-time) and/or large/complex environments, could be ben-
efited from hierarchical path planning. A TetraNauta wheelchair is one of these
examples. TetraNauta [4] is a controller for standard wheelchairs that permits semi-
automatic navigation in close environments such as hospitals. Hospitals are usually
large (with many floors, corridors and rooms inside) and every trajectory must be
generated on-board by the TetraNauta’s wheelchair computer system. Moreover,
that wheelchair computer system must attend several real-time tasks (user interface,
sensors, communications, . . .) and the type of computer load that can be managed
on board is not high. An alternative could be a huge list of precalculated trajectories
from each pair of points inside the hospital. Again, it does not seem to be a very
suitable choice, specially when maps are too big (even thousands of starting/end
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points) and the path planner module must face on-line path planning (multiple
alternative paths between a single pair of points).

Similar reasons (not only in robot path planning) have justified hierarchical
search techniques in some other cases. Thus, in [16] the problem of finding good
abstraction hierarchies is analysed. In [5] a hierarchical multilevel discretization
and a wave front expansion algorithm are used together to solve a robot motion
planning problem. In [19] a hierarchical abstract map is used to speed up the prob-
lem of intercepting a moving object. In [11, 12] the trade off of using abstraction
hierarchies is studied and analysed. In [13] a hierarchical path planning algorithm
is proposed to plan a collision free path for mobile robots and robot manipulators.
In [6, 7, 9] the concept of H-Graph (hierarchical graph) is described and applied to
mobile robot path planning.

2.2. ON-LINE PATH PLANNING

On-line path planning refers to problems where robots must replan their initial
paths because their abstract environment model has been updated due to a change.
This last fact usually happens when an unknown obstacle is found.

Branch&Bound algorithms in dynamic environments are based on RTA∗–
LRTA∗ [17], Dynora [10] and specially D∗ [20] algorithms. The first three are
real-time algorithms that combine execution and calculation cycles. They are not
path length or time optimal algorithms and are focussed on computational time
restrictions.

The D∗ algorithm was first introduced by Stentz (see [20]) and represents a
dynamic version of the A∗ algorithm. A∗ algorithms are widely used in off-line
path planning and robot motion planning (see [18]). It is a path length optimal
algorithm and saves a lot of computational time when comparing with brute-force
methods. Genetic algorithms are a relative novel path planning technique applied
to metric maps that provide flexibility in dynamic environments. Examples can be
found in [2, 1] or [21]. The newest strategies combine genetic and branch&bound
algorithms. Thus, branch&bound algorithms are used to generate an initial popu-
lation of paths for the genetic algorithm or regenerate it when an obstacle is found
(see [15]).

3. Description of the Algorithm Proposed

3.1. D∗ ALGORITHM

First of all, it is going to be briefly described the D∗ algorithm basis. The environ-
ment is modelled by a graph. As it was said, the D∗ algorithm is a dynamic version
of the A∗ algorithm. A D∗ algorithm restart the general process of a A∗ algorithm
every time it is found a “broken” arc Ab in a initial path Pi . Ab is connected to a
node Nc (current node) which represents the current robot position. This happens
when, for example, a mobile robot detects an unknown obstacle in Pi . Pi is an op-
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timal path� between an starting node Ns and a goal node Ng. Every node connected
to the current node Nc is added to the OPEN LIST. The OPEN LIST is the list
where A∗ (or D∗) takes nodes that are expanded. The only not expanded node is
the node connected to node Nc via Ab. The whole process ends when:

1. A node Nx is found, was included in Pi and the rest of partial paths (solutions)
have a higher f value. f = g + h, where g is the accumulated path cost and h

is the heuristic value that estimates path cost to Ng. D∗ algorithm (and A∗) is
an algorithm that tries to minimize f function.

2. The goal node Ng is found and the rest of partial paths have a higher f value.
This is equivalent to a brute-force method and represents the worst case.

3. The OPEN LIST is empty. This means that there are no solutions without Ab.

3.2. ABSTRACT WORLD MODEL

The abstract world model is based on a hierarchical graph (H-Graph). This H-Graph
model was also described in [3] when an off-line version of this hierarchical D∗
path planning algorithm was described. The H-Graph proposed has a sequence L

of hierarchical levels, where L = {L0, L1, L2, . . . , LD}. D is the depth of the
hierarchy. The “root level” is L0 and it represents the highest abstract description
of an environment. On the contrary, LD contains the most detailed description of
an environment. For example, it may contain the internal structure of a room in a
building. In each level Li (0 � i � D) there is a graph Gi = (Ni, Ai, Ci, Wi, Ti),
where Ni is a set of nodes, Ai is a set of arcs, Ci is a set of Cartesian coordinates
for Ni , Wi is a set of weights for Ai and Ti is a set of precalculated paths associated
to Ni . The union of graphs G0, G1, G2, . . . , GD is a graph G = (N, A, C, W, T ),
where N = N0 ∪N1 ∪· · ·∪ND, A = A0 ∪A1 ∪· · ·∪AD, C = C0 ∪C1 ∪· · ·∪CD,
W = W0 ∪ W1 ∪ · · · ∪ WD, T = T0 ∪ T1 ∪ · · · ∪ TD.

An arc a(nJ , nK, wH) ∈ A is defined by three elements nJ , nK, wH , where
nJ , nK ∈ N , nJ �= nK and wH ∈ W . A Cartesian coordinate cI ∈ C is defined
by (x, y), where x, y are natural numbers (x, y ∈ N). A weight wI ∈ W is real
number (wI ∈ R).

Some nodes can represent a cluster (subset) of nodes in a deeper abstraction
level of the hierarchy. These nodes are called submap nodes and the submap node
set contained in N is called SN (SN ⊂ N ). There are some functions/methods
associated to a node nJ ∈ Gj (0 � j � D). The dot notation is used:

− map → nJ .map = nK , where nJ ∈ Lj , nK ∈ Lk, j = k + 1 (0 < j �
D, 0 � k � D) and nJ ⊂ nK in Lk. Namely, it indicates in which node is nJ

included in an upper level of the hierarchy. It is said that nK submap (cluster
or subset) of nJ .

− depth → nJ .depth = x, where nJ ∈ Lx (0 � x � D). Namely, it returns the
level of the hierarchy where nJ belongs.

� Path length or path time are usually the optimised factors.
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Nodes are also classified in four classes: end nodes, cross nodes, submap nodes
(cluster nodes) and bridge nodes. End nodes are starting or goal points that a robot
path planner can select. Cross nodes represent subtargets that indicate turns or
crossroads. Bridge nodes are nodes that connect a submap to a “parent” submap.
The bridge node subset contained in N is called BN. Formally, nI ∈ Gi is a bridge
node (i.e. nI ∈ BN ⊂ N ) if there is a node nJ ∈ Gj and an arc aI (nI , nJ , wX) ∈ A,
where i = j + 1. The concept of bridge node leads to a new function/method:

− get_bridge_nodes → nI .get_bridge_nodes = BNI ⊆ BN, where nI ∈ N ,
nI .depth < D and BNI satisfies that ∀nx ∈ BNI , nx.map = nI . Namely, if nI

is a submap, it obtains its bridge node set included in the next deeper level of
the hierarchy.

Arcs (A) are non-directed: a mobile robot can navigate between two points
(nodes) in both ways. An important difference from other H-Graph models is that
here arcs do not contain other arcs in a deeper abstraction level of the hierarchy.
Cartesian coordinates (C) are attributes associated to every node. They are used
in the heuristic function of the path planner. Weights (W ) are attributes associated
to each arc and indicate the cost of traversing an arc. They are used by the cost
function of the path planning algorithm and represent a length in metres.

A path is defined as a succession of nodes. The whole set of paths contained
in a H-Graph is called P . Formally, a path PI ∈ P of length L is defined by
PI = (n0, n1, n2, . . . , nL), where n0, n1, . . . , nL ∈ N and ∃a0(n0, n1, w(0,1)),
a1(n1, n2, w(1,2)), . . . , aL−1(nL−1, nL, w(L−1,L))∈ A. A path PI has three attributes/
methods:

− cost → PI .cost = x, where x ∈ R. It gets or assigns a path cost to PI .

− length → PI .length = L + 1, where L ∈ N, PI ∈ P and PI = (n0, n1,

n2, . . . , nL). It returns the path length of PI .

− index → PI .index(J ) = nJ , where nJ ∈ PI = (n0, n1, . . . , nJ , . . . , nL),
nJ ∈ N , PI ∈ P , L + 1 = PI .length, 0 � J � L. Namely, it returns the node
of a path in position J .

Each submap node nI ∈ Ni ⊂ N (0 � i < D) has its own precalculated path
set PPSnI

∈ Ti ⊂ T (0 � i < D). Thus, a new method/function associated to a
submap node nI can be defined:

− pre_path → nI .pre_path(nX, nY ) = PZ, where nX, nY ∈ N, PZ = (nX,

nX+1, nX+2, . . . , nY−2, nY−1, nY ), PZ ∈ PPSnI
⊂ P . Namely, a node nI re-

turns a path PZ between nodes nX and nY whether it has an attached pre-
calculated path set PPSnI

that contains PZ. Nodes nX and nY that define a
precalculated path will be usually bridge nodes. If a node nI is not a submap
node or it does not contain the required path, the method/function returns
NULL.
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Precalculated paths in PPSnI
are optimal-length paths and are off-line calcu-

lated. They are grouped in three classes:

1. Paths that link two bridge nodes inside nI .
2. Paths that link the bridge nodes of nI (nI .get_bridge_nodes) with the bride

nodes of its “parent” submap ((nI .map).get_bridge_nodes).
3. Paths that link “brother” submaps contained in nI . Two submap nodes nX, nY ∈

N are “brother” submaps contained in nI if nX.map = nY .map = nI . Namely,
they are “brother” submaps if they have the same “parent” submap in the pre-
vious level of the hierarchy.

Precalculated paths avoid recalculating several subpaths in a hierarchical search
process. This is called materialization of costs [14]. On one hand, materialization
of cost requires extra storage space for paths and costs and off-line path calcu-
lation [8]. On the other hand, it can guarantee optimality in a classic refinement
hierarchical search method.

3.3. PATH PLANNING

The algorithm proposed is not a real-time algorithm. However, depending on the
problem, it could be a feasible alternative (or complement) to classic real-time
algorithms. The heuristic used (h function in f = g +h) is the Euclidean distance.

The general search process is similar to D∗. The “broken” arc Ab connected
to the current node Nc is first erased from the H-Graph. Nodes connected to Nc

are added to an OPEN_LIST and then expanded until the goal node Ng is reached.
Nodes Ng and Nc are supposed to be end, bridge or cross nodes (i.e. everything
except submap nodes). Node processing in MAIN_PROCEDURE is divided into
four parts.

First and fourth parts implement the same subprocesses included in D∗. If a new
candidate node for expansion Na is in the initial path Pinitial, then current path
Pcurrent is completed using the same nodes included in Pinitial, starting in Na and
finishing in Ng (lines 12 to 15). Fourth parth just expands Na , that is to say, gen-
erates new partial paths joining Pcurrent and Na neighbours nodes (lines 37 to 40).
This last subprocess is detailed in D∗_NODE_EXPANSION procedure.

Second and third parts deal with bridge nodes and submap nodes respectively.
Here materialization of costs (precalculated paths) are used to link submaps through
their bridge nodes or used to substitute submap nodes by their precalculated paths.

MAIN PROCEDURE. D∗_HIERARCHICAL_PATH_PLANNING (Node Nc,
Node Ng, Arc Ab, Path Pinitial):

1: {Begin variable declaration:}
2: Node Na, Naux;
3: Path Pcurrent, Pnew;
4: Path_Set Open_List;
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5: {End variable declaration.}
6: Pcurrent = (Nc);
7: Pcurrent.cost = 0;
8: Open_List = (Pcurrent);
9: while (Open_List �= NULL) do

10: Pcurrent = GET_BEST_PATH(Open_List);
11: Na = Pcurrent.index(Pcurrent.length − 1);
12: if (Na ∈ Pinitial) then
13: {The current partial path has intersected the initial path.}
14: Pnew = COMPLETE_PATH(Pcurrent, Na, Pinitial);
15: PROCESS_SOLUTION(Pnew);
16: else if (Na ∈ BN ⊂ N) then
17: {Bridge nodes expansion is processed separately.}
18: if (Na.map �= Ng.map) then
19: {Node expansion using precalculated paths (materialization of costs).}
20: HIERARCHICAL_D∗_NODE_EXPANSION (Pcurrent, Na, Pinitial,

Open_List);
21: else
22: {Both nodes are included in the same submap.}
23: Pnew = (Na.map).pre_paths(Na, Ng);
24: if (Pnew �= NULL) then
25: {There is a precalculated path between Na and Ng.}
26: Pcurrent = Pcurrent ∪ Pnew;
27: Pcurrent.cost = Pcurrent.cost + Pnew.cost;
28: PROCESS_SOLUTION(Pnew);
29: else
30: D∗_NODE_EXPANSION (Pcurrent, Na, Ab, Open_List);
31: end if
32: end if
33: else if (Na ∈ SN ⊂ N) then
34: {Submap nodes expansion is processed separately too.}
35: {Na represents another subgraph in a deeper abstract level of the hier-

archy. Precalculated paths (materialization of costs) are used to avoid
refining paths that cross Na .}

36: D∗_SUBMAP_NODE_EXPANSION (Pcurrent, Na, Open_List);
37: else
38: {D∗ normal node expansion.}
39: D∗_NODE_EXPANSION (Pcurrent, Na, Ab, Open_List);
40: end if
41: end while
42: return BEST_SOLUTION();
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There are some subprocedures in MAIN_PROCEDURE that are not detailed
due to their simplicity.

− GET_BEST_PATH (line 10). It returns and deletes the best path from a list
of partial paths (Open_List). The best path is the path that has the lower f =
g + h value, that is to say, the lower cost.

− COMPLETE_PATH (line 14). It has three arguments: a partial solution path
Pcurrent, a complete solution path Pinitial and a common node Na of both paths.
Returns a new path composed of nodes from Pcurrent and nodes from Pinitial

that start in Na and finish in goal node Ng.
− PROCESS_SOLUTION (line 15). It manages a hidden global variable which

contains the best current solution Psolution. If this global variable was empty,
then this subprocedure just assigns to Psolution the new solution path. If Psolution

was not empty and the new solution path has a lower cost than Psolution, then
it is assigned to Psolution the new solution path.

− BEST_SOLUTION (line 42). It returns the path contained in Psolution. If
Psolution has not any value assigned, then it returns NULL (there is not any
possible solution path). This subprocess expands submap nodes of Psolution.
It is used a similar process to D∗_SUBMAP_NODE_EXPANSION subproce-
dure.

The D∗_NODE_EXPANSION subprocedure is a key part in a D∗ algorithm.
First, it adds to the Open_List new paths composed of nodes from the current
path Pcurrent and nodes connected to the last node Na of Pcurrent. Nodes connected
through a “broken” arc Ab are avoided. Second, it continues the A∗ search three
expansion.

D∗_NODE_EXPANSION (Path Pcurrent, Node Na , Arc Ab, Path_Set Open_List):

{Begin local variable declaration:}
Path Pnew;
Arc Ai;
Node Ni;
{End local variable declaration.}
for all (Ai = a(Na, Ni, w(a,i)) ∈ A, Ai �= Ab, Ni ∈ N ) do

if (Ni == Ng) then
{The goal node Ng has been found:}
Pnew = Pcurrent ∪ Ni;
Pnew.cost = Pnew.cost + w(a,i);
PROCESS_SOLUTION(Pnew);

else if (Pnew.cost + w(a,i) < (BEST_SOLUTION()).cost ) then
Pnew = Pcurrent ∪ Ni;
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Pnew.cost = Pnew.cost + w(a,i);
Open_List = Open_List ∪ Pnew;

end if
end for

The D∗_SUBMAP_NODE_EXPANSION subprocedure expands submap nodes.
This means that a submap node Na in a path is substituted by precalculated paths
that cross Na in a deeper abstract level of the hierarchy. This may be viewed
as a node unrolling. There is the possibility that precalculated paths include
submap nodes too. This does not affect the general path search process.
However, final solution paths have to “unroll” submap nodes. Subprocedure
BEST_SOLUTION in MAIN_PROCEDURE performs a recursive process similar
to D∗_SUBMAP_NODE_EXPANSION before it returns a solution path.

D∗_SUBMAP_NODE_EXPANSION (Path Pcurrent, Node Na , Path_Set Open_List):

1: {Begin local variable declaration:}
2: Node Na−1, Nj , Nk, Nh, Nlast;
3: Path Paux;
4: {End local variable declaration.}
5: Na−1 = Pcurrent.index(Pcurrent.length − 2);
6: Nk ⇐ Nk ∈ BN / ∃a(Na−1, Nk, w(a−1,k)) ∈ A and Nk.map = Na;
7: for all (Nj ∈ Na.get_bridge_nodes, Nj �= Nk) do
8: Paux = Na.pre_paths(Nk, Nj);
9: Nlast = Paux.index(Paux.length − 1);

10: Nh ⇐ Nh ∈ N / ∃a(Nlast, Nh, w(last,h)) ∈ A and Nh.map = Na.map =
Na−1.map;

11: {In Pcurrent the last node (Na ∈ SN ) is substituted by a refined path (Paux)
that crosses that node in a deeper abstract level. It is also added the next
node (Nh) that follows to Na .}

12: Pnew = (Pcurrent − Na) ∪ Paux ∪ Nh;
13: Pnew.cost = Pcurrent.cost + Paux.cost + w(last,h);
14: Open_List = Open_List ∪ Pnew;
15: end for

The HIERARCHICAL_D∗_NODE_EXPANSION subprocedure is another key
part in the hierarchical D∗ algorithm. It implements the linkage process between
different submap nodes and abstract levels. Submap nodes are linked through their
bridge nodes. The same hierarchical levels (and submap nodes) included in the
initial path Pinitial have to be again traversed again but nodes in between may
be different. The subprocedure is divided in three steps. First step finds the next
submap node Nsubmap that has to be reached. Second step finds the submap node
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Nsubmap_pre_paths that stores the precalculated paths necessaries to make the linkage
process. Third step joins current path Pcurrent through its last bridge node Na with
bridge nodes of Nsubmap.

HIERARCHICAL_D∗_NODE_EXPANSION (Path Pcurrent, Node Na , Path Pinitial,
Path_Set Open_List):

1: {Begin local variable declaration:}
2: Node Nsubmap, Naux, Nsubmap_pre_paths;
3: Path Paux;
4: int ind = 0;
5: {End local variable declaration.}
6: {First step: get the next submap (Nsubmap) that the current partial solution path

(i.e. Pcurrent) has to reach.}
7: Naux = Pinitial.index(ind);
8: while (Naux /∈ BN and Naux.map �= Na.map) do
9: ind = ind + 1;

10: Naux = Pinitial.index(ind);
11: end while
12: {Naux is a bridge node, “brother” of Na in the original path (Pinitial). Now it

must be localized the next bridge node after Naux included in Pinitial. It will
indicate the next submap traversed in Pinitial:}

13: repeat
14: ind = ind + 1;
15: Naux = Pinitial.index(ind);
16: until (Naux /∈ BN)
17: Nsubmap = Naux.map;
18: {Second step: get the submap node (Nsubmap_pre_paths) that stores the precal-

culated paths that link Na (i.e. last node of Pcurrent) and the bridge nodes of
Nsubmap (i.e. next submap to reach).}

19: if ((Na.map).map == Nsubmap) then
20: {The linkage process is made from Na to bridge nodes included in the

“parent” submap of Na.map:}
21: Nsubmap_pre_paths = Na.map;
22: else if (Nsubmap.map) == Na) then
23: {Opposite case. The linkage process is made from Na to bridge nodes

included in a “children” submap of Na.map:}
24: Nsubmap_pre_paths = Nsubmap;
25: else
26: {Na.map and Nsubmap are “brother” submaps. Precalculated paths are stored

in their “parent” submap:}
27: Nsubmap_pre_paths = Nsubmap.map;
28: {The sentence Nsubmap_pre_paths = (Na.map).map; is valid too:}
29: end if
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30: {Third step: linkage process. New partial solution paths are obtained joining
Pcurrent to a set of precalculated paths contained in Nsubmap_pre_paths.}

31: for all (Naux ∈ Nsubmap.get_bridge_nodes) do
32: Paux = Nsubmap_pre_paths.pre_paths(Na, Naux);
33: Pnew = Pcurrent ∪ Paux;
34: Pnew.cost = Pcurrent.cost + Paux.cost;
35: Open_List = Open_List ∪ Pnew;
36: end for

Some important characteristics of D∗ algorithms remain in this hierarchical
extension. For example, this algorithm is still time optimal when precalculated tra-
jectories are used. Time optimality instead of length optimality is possible because
this D∗ version can take into account robot turns. Mobile robots turns imply stop,
turn and start again. Therefore, that implies a time cost in a path or trajectory.
A robot path planner based on this algorithm associates a fixed length cost to
every turn in a trajectory, and therefore ensures time optimality. Fixed length costs
associated to turns depends on each specific robot system and must be estimated
previously.

3.4. EXAMPLE

Figure 1 contains four schemes and shows an example of different path planning
cases. The schemes represent a H-Graph containing three abstract levels: i − 1,
i and i + 1 (see vertical lines). Submap nodes SMs and SMg are contained in
hierarchical level i and their “parent” submaps are contained in hierarchical level
i + 1. Abstract levels and submaps are connected through bridge nodes (notice
black dots in vertical lines).

An initial path Pi links a starting node Ns and a goal node Ng. Both nodes are
included in hierarchical level i − 1. A robot is positioned in a “current” node Nc. It
can not continue because there is an obstacle. As it was said previously, obstacles
are modelled by “broken arcs” in a H-Graph. In first scheme in Figure 1, the broken
arc in Pi is called Ab.

Scheme A in Figure 1 shows the simplest replanning process. Here no hierarchi-
cal model is needed. This is performed by D∗_NODE_EXPANSION subprocedure
in Section 3.3. A node (bridge node) is found in the same hierarchical level and
function f = g +h (h heuristic, g accumulated cost) invalidate the rest of possible
solutions.

Schemes B and C show general cases where the replanned new path involves
finding new bridge nodes in different abstract levels. This is performed by
HIERARCHICAL_D∗_NODE_EXPANSION subprocedure in Section 3.3. Pre-
calculated paths (materialization of costs) avoid replanning paths between bridge
nodes of different submaps.
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Figure 1. Three different examples of replanning processes using the hierarchical D∗
algorithm proposed.
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Figure 1. (Continued.)

3.5. VERTICAL PATH PLANNING

In some robot indoor environments, paths may start in a floor but end in another
different floor of the same building. This is what we call vertical path planning.
To adapt A∗ or D∗ algorithms (plain or hierarchical) to these environments with-
out radical and costly changes, it is necessary to add some new elements to the
H-Graph and to the path planning algorithm. These new elements are the vertical
bridge nodes.

Thus, bridge nodes defined in section are divided in two classes: horizontal
bridge nodes and vertical bridge nodes. Horizontal bridge nodes follow the de-
finition given in Section 3. Vertical bridge nodes are almost equal to horizontal
bridge nodes but conceptually they connect two submaps that represent two floors
in a building. In fact, elevator entrances are modelled as vertical bridge nodes in a
H-Graph. These nodes allow path planning between different floors of a building.
This strategy allows to use the Euclidean distance heuristic, and therefore, function
f = g + h of D∗ algorithm is still valid.

Nevertheless, there is another problem that a path planner has to solve: the
elevator entrance selection. There are two possibilities: select again the elevator
entrance in the initial path or select an alternative elevator entrance if it exists.
The second option implies a total path recalculation process and it does not take
advantage of the D∗ algorithm. In addition, it does not guarantee completeness
(i.e. it does not ensure a solution). However, if no path is found when selecting
the elevator entrance in the initial path, an alternative elevator entrance must be
selected.

4. Experimental Results

4.1. DESCRIPTION OF EXPERIMENTS

These experiments take into account not only continuous horizontal environments,
but also vertical environments such as buildings. Path planning experiments are
grouped into three categories:
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Table I. Characteristics of the abstraction models based on a
hospital and two industrial buildings

Number of: Hospital Industrial buildings

Buildings 1 2

Floors 4 5

Nodes 2349 417

Arcs 2422 463

Precalculated paths 3165 281

Arcs per node 1.9 2.1

Broken arcs 1 2

Initial calculated trajectories

HPP paths 100 137

VPP paths 100 288

Replanned paths (solutions found)

HPP paths 75 137

VPP paths 81 299

1. Horizontal path planning (HPP): paths between nodes connected in a horizon-
tal way.

2. Vertical path planning (VPP): paths between nodes connected in a vertical way.
Paths begin in one floor and finish in another floor of the same building.

Four maps have been tested in order to check the performance of the hierarchical
D∗ algorithm proposed. The first map is an abstract model of a hospital. The second
map represents two industrial buildings. The third map is an Airport and the fourth
map is the central building of a telephone company.

Characteristics of the maps and the trajectories tested are showed in Tables I
and II.

The hierarchical D∗ path planning algorithm with and without attached arrays
of precalculated paths (materialization of costs) is compared to other path planning
algorithms. These algorithms (or similar versions) have been traditionally used by
most of the robot path planners. In order to perform these experiments, several ini-
tial paths are calculated between pairs of random nodes. Then, one or more arcs are
deleted from each path (“broken arcs”) to simulate obstacles. Each algorithm must
find an alternative path. Path lengths (L) and computational time (T ) needed in
each algorithm are finally summed. These algorithms and their basic characteristics
are as follows:
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Table II. Characteristics of the abstraction models based on the
central building of a telephone company and an airport

Number of: Central building Airport

Buildings: 1 2

Floors 5 2

Nodes 2794 369

Arcs 3188 401

Precalculated paths 12841 123

Arcs per node 2.1 2.1

Broken arcs 1 1

Initial calculated paths

HPP paths 100 100

VPP paths 100 100

Replanned paths (solutions found)

HPP paths 79 64

VPP paths 85 70

− D∗: it uses the same heuristic as the rest of algorithms: Euclidean distance.
− D∗ with prunes: a version of a D∗ algorithm. Useful when computational

speed-up is needed. The D∗ algorithm with prunes (and its A∗ brother version)
shows here an approximation of the total calculation time needed by another
algorithm, widely used in mobile robotics: the RTA∗ algorithm.

− Hill climbing D: a dynamic version of a hill climbing algorithm. It has the
same backtracking process as D∗ with prunes algorithm. This last process
guarantees the property of completeness. That is to say, a solution/path (if it
exists) will always be found.

− Genetic Algorithm D1: a dynamic version of a genetic algorithm. Initial pop-
ulations are generated randomly.

− Genetic Algorithm D2: same as before but now paths from an initial popula-
tion are generated using an analogous method based on [15]. It uses branch&
bound algorithms to speed-up an initial population generation.

4.2. RESULTS ANALYSIS

In Appendix A are showed the experimental results obtained with the experiments
described in Section 4.1.
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Figure 2. Industrial buildings results. Genetic algorithms are included. It can be noticed that
computational time needed by genetic algorithms is high.

Figure 3. Central building of a telephone company results.

The first significant result that must be pointed out is the high calculation time
cost needed by genetic algorithms. See Figure 2. Similar results are obtained using
other maps. For simplicity only the results for the industrial buildings are showed.
Although length of trajectories achieved are similar to other algorithms, the huge
calculation time needed with these algorithms make genetic algorithms a not suit-
able choice. The main reason for this result is the abstract world model proposed
(H-Graphs). Strings or trajectories/paths in this case, have variable length. The
design of a genetic algorithm with a variable length coding scheme is usually ad
hoc and complicated [21]. That is an important reason why genetic algorithms are
mainly used in metric maps and not graphs.
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Figure 4. Central building of a telephone company results using only 3290 precalculated
trajectories. Here hierarchical D∗ uses 74% less of precalculated trajectories than in Figure 3.
Length of path solutions (L) increase 6%.

Figure 5. Hospital results.

Hierarchical D∗ algorithms have an excellent calculation time (T ) performance.
Up to 85% calculation time reduction is obtained when comparing with the classic
D∗ algorithm and the hospital map (see Figure 5). It is also evident that not always
increasing precalculated trajectories, solutions can be improved significantly. For
example, with the telephone company building map (Figures 3 and 4), when decre-
menting precalculated trajectories from 12841 to 3290 (74% fewer trajectories),
only 6% of computational time increment (T ) is obtained. Sum of trajectories
length (L) remain similar.

In general, quality of paths/solutions with hierarchical D∗ algorithms are very
close to optimal in vertical path planning (VPP). It must be pointed out that the hi-
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Figure 6. Industrial building results. Vertical path planning results show an overhead in hier-
archical D∗ algorithm without precalculated paths: computational time (T ) is higher than its
plain D∗ version.

Figure 7. Airport results.

erarchical D∗ algorithm with precalculated paths, as well as its plain version, gen-
erates time-optimal paths/solutions in HPP. The rest of algorithms can not ensure
optimality in HPP.

Results using the hierarchical D∗ algorithm without precalculated trajectories
are also quite interesting and up to 75% calculation time reduction is achieved when
comparing with the D∗ algorithm. Sum of trajectories length (L) is very close to
trajectories achieved with D∗ algorithm. These results depends also on abstract
world models (maps) which is now discussed.

In Figure 6 (results achieved with the industrial buildings map) it can be noted
some type of overhead. The computational time with hierarchical D∗ algorithm
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without precalculated trajectories is higher than D∗ algorithm in HPP experiments.
The node density in each floor (bones per floor) in both maps is the lowest among
the four maps. Moreover, hierarchical D∗ with or without precalculated trajecto-
ries must made more operations due to the complex of the abstract world models
(H-Graph) it uses. A simple D∗ algorithm just work with a plain graph. In this
case, it is experimentally proved that the hierarchical D∗ algorithm proposed is
more effective in environments where a large search space can compensate any
overhead caused by working with complex abstract models like H-Graphs. The
Hierarchical D∗ algorithm with precalculated trajectories is not so easily affected
by overheads as its brother algorithm without precalculated trajectories. This hap-
pens because precalculated trajectories (materialization of costs) speed up search
processes. They also help to avoid finding local minimums in a search process.

On one hand, results using the D∗ algorithm with prunes do not show good
calculation time reductions (T ) as it was expected. On the other hand, sum of
trajectories (L) are always above D∗. The dynamic hill climbing algorithm can
reach up to 50% computational time reductions (T values) but also up to 35%
increments when comparing with the D∗ algorithm. Nevertheless, it always obtain
longer (worse) trajectories (L values). This is again a direct consequence of the
example maps used in these experiments. Algorithms and search strategies are
very sensitive to maps and local minimums. Fortunately, as it was said before,
hierarchical D∗ algorithms can avoid easily this problems because it divides more
efficiently any environment information.

5. Conclusions

Hierarchical techniques have been mainly used in static or off-line robot path plan-
ning but can be also extended to dynamic or on-line path planning successfully.
Thus, D∗ algorithm can be adapted to work in complex environment abstractions.
In the solution described in this paper, traditional top-down refinement strategies
used in hierarchical search are inverted in order to obtain optimal (time or length)
solutions.

Moreover, experimental results have proved that the hierarchical D∗ algorithm
proposed can reduce calculation time significantly (specially if materialization of
costs are used). Hierarchical on-line path planning in continuous or 2 dimension
environments is also extended to not continuous or 3 dimensions environments
where elevators are taken into account. Here no optimal solutions are generated
but time calculation reductions and quality of solutions obtained make this hier-
archical D∗ algorithm a quite interesting choice. Other traditional techniques and
algorithms (Hill Climbing or Genetic Algorithms, for example) do not seem to be
appropriate solutions in this case because need more calculation time or just return
worse solutions. Maybe better results could be achieved using hierarchical metric
abstractions instead of using hierarchical topological abstractions (graphs).
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In this context, type of abstractions used in path planning are experimentally
proved to be a critical performance factor. Some algorithms can be very sensitive
to this factor. However, it can be concluded that hierarchical D∗ algorithm exten-
sions are a feasible solution in dynamic robot navigation systems. Robot navigation
systems that must work in large environments with not high computer requirements
can be highly improved.

Appendix A. Experimental Results

L indicates total path length of random experiments. T indicates total computa-
tional time needed. Graphics help to compare quality of solutions found (L) with
CPU time needed to obtain solutions (T ). The lower L or T values, the better
algorithm performance.
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