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can reconfigure machine sequences dynamically, the work-
pieces coming from different sequences will scramble for a 
machine if they own the same operations that can be pro-
cessed by the machine.

The above-mentioned problem has been recognized as 
the job-shop scheduling problem (JSSP). The key features 
of JSSP come from both the job side and the machine side:

1) The operation sequence of a job (e.g., a workpiece) is 
predefined and should be strictly obeyed;

2) A scheduling instance consists of a set of jobs different 
in operation sequence and quantity;

3) A machine can only process one operation at a time;
4) A machine is not allowed to preempt when processing 

an operation;
5) All machines turn on at the start of scheduling;
6) Transportation time of jobs and setup time of machines 

are negligible.

The scheduling solver is responsible for arbitrating the com-
petition by determining the processing order of the competi-
tive operations. Despite the constraints introduced by jobs 
and machines, multiple feasible solutions to a schedul-
ing instance still exist, as the operations sharing the same 

Introduction

In a discrete manufacturing environment, producing a 
workpiece generally requires a set of machines to process 
a sequence of operations. An intuitive and efficient solution 
to this production requirement is the flow line. In a flow 
line, each operation is assigned a dedicated machine and 
these machines are arranged in the same sequence as the 
operations. Consequently, the workpieces of the same type 
can be naturally queued and processed one by another by 
the flow line. However, when a set of workpieces differ-
ing from each other in operation sequence and operation 
quantity, the flow line is no longer feasible as it hardwires 
the sequence. Although a flexible material handling system 
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machine can be queued in different ways if they come from 
different jobs. However, the feasible scheduling solutions 
generally differ in performance metrics such as makespan, 
tardiness, machine utilization, energy consumption, and 
carbon emission. This leaves space for a scheduling solver 
to optimize a given performance indicator or indicator com-
bination. Therefore, production scheduling is an important 
production optimization technique.

JSSPs are inherently a subclass of NP-hard combinato-
rial optimization problems (Garey et al., 1976). For simple 
and small-scale problems, optimal solutions can be obtained 
using either the exact mathematical models or the exhaustive 
methods. On the other hand, approximate methods, e.g., heu-
ristic rules (Panwalkar & Iskander, 1977) and meta-heuristics 
(Kato et al., 2018; Parjapati & Jain, 2015), are widely used to 
search for suboptimal solutions to complicated or large-scale 
problems as they can trade off efficiency and performance. The 
above-mentioned approximate methods are highly adaptable, 
but they cannot generalize solving experience to new problems, 
which means the solving experience cannot be reused to facili-
tate the solving of a different scheduling instance. To overcome 
this drawback, deep reinforcement learning (DRL) (Arulkuma-
ran et al., 2017) based scheduling methods have attracted the 
researchers’ interest due to their outstanding advantages, more 
specifically, fast computation and strong generalization ability 
(Li et al., 2023).

The DRL models have some common components, i.e., 
agent, environment, state, action, and reward. These compo-
nents need specific designs when constructing DRL models 
for JSSP problems. In this paper, typical design patterns for 
the DRL scheduling models were identified and compared by 
reviewing representative literature. A DRL scheduling model 
needs training to become an applicable DRL scheduling solver. 
Therefore, the architecture and procedure of training deep rein-
forcement learning scheduling models and applying resultant 
scheduling solvers were established as well. Furthermore, 
the statistical analysis of the typic design patterns and pattern 
combinations was performed to highlight the popularity. The 
key evaluation indicators were summarized and the promising 
research areas were outlined to promote the research and appli-
cation of DRL-based scheduling methods. This review pro-
vides insight to perfect the design of DRL scheduling models 
for the JSSP problems and inspires innovative DRL scheduling 
models for a wider range of scheduling problems.

Review process

This section describes in detail the review process including 
the objective, the search methods, the inclusion and exclu-
sion criteria, and the search results. The results of this sec-
tion screen out several related recent high-quality research 

articles for the follow-up analysis, which in turn enables us 
to answer the objective questions in the conclusion section.

Objective (review questions)

The question of this review is “What are the optional design 
patterns of DRL models when solving the JSSPs?” and it 
aims to shape a framework to facilitate the design and com-
parison of DRL models used to solve the JSSPs. Specific 
objectives are:

To recognize which design patterns have been applied to 
each component of a DRL model that is specially designed 
for solving the JSSPs.

To rank the popularity of the pattern combinations of 
the DRL models that are specially designed for solving the 
JSSPs.

To outline the further application of DRL models to solve 
production-related problems.

Search methods for identification of studies

Aveyard et al. (2016) state that it is important to use a sys-
tematic search strategy to retrieve all the relevant materials to 
answer the review questions. Similarly, Smith et al. (2011) also 
point out that an appropriate literature search method is the 
foundation of correct information retrieval and can determine 
whether the systematic review is successful or not. This com-
prehensive search method is not only essential to guarantee that 
the review author has identified and located the related primary 
research as many as possible, but can ensure that the sample 
is as unbiased and transparent as possible as well (Bettany-
Saltikov, 2012). Therefore, both electronic searches and hand 
searches were applied to maximize the quantity of literature.

Search terms

In order to search as widely as possible, it is necessary to 
identify as many synonyms that have the same meaning as 
the key terms as possible (Bettany-Saltikov, 2012). What is 
more, wildcard characters are also recommended to be used 
to account for different spellings or terminologies to search 
as much literature as possible (Aromataris & Riitano, 2014).

As shown in Table 1, the search terms were divided into 
three parts. The “Methods” terms listed general concepts 
related to deep reinforcement learning, the “Algorithm” 
terms presented the implementation varieties of the DRL 
methods, and the “Problems” terms limited the application 
of DRL to the production scheduling problems. The key-
words in each column were used with the Boolean operator 
OR, and then three columns were combined as “(Method 
OR Algorithm) AND Research subject”.
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Scientific and technological database

The following electronic databases were searched: Web of 
Science, EI-Village, SCOPUS, IEEE/IEE, Springer, and 
Wiley, as these databases contain a variety of engineering-
related articles and are accessible from the authors’ facility.

Backward/forward search

Based on the review structure proposed by Webster and 
Watson (2002), backward/forward search is an important 
supplement to keyword search, capable of identifying inter-
disciplinary literature that extends beyond the scope of a 
user-defined search. Therefore, after applying the inclusion 
and exclusion criteria, the remaining papers were processed 
using a backward/forward search to find more related 
papers.

Inclusion and exclusion criteria

Inclusion criteria, also termed eligibility criteria, indicate what 
specific traits a study should have if it can be included in the 
review. By contrast, exclusion criteria refer to the attributes 
that make the studies unqualified for inclusion (Boland et al., 
2017). The clear inclusion and exclusion criteria are beneficial 
for focusing on the review question and selecting studies more 
appropriately. For this review, studies are selected based on the 
following inclusion and exclusion criteria.

Regions, languages, and published date

This review did not limit the regions of the studies; there-
fore, studies all over the world were considered within the 
scope of inclusion. However, it was impractical to translate 
papers published in other languages into English. Consider-
ing the significant developments of DRL since 2013, only 

English literature published between 2013 and 2023 was 
included.

2.3.2 Types of studies

The papers categorized as “Article”, “Conference paper” 
or “Meeting” were included to ensure a thorough investi-
gation of original research findings, but those published in 
non-peer-reviewed journals or conferences were excluded 
to guarantee the research quality.

Types of methods and algorithms

DRL and its related algorithms (e.g., Deep Q-learning) are 
more sophisticated than traditional reinforcement learning 
and the related algorithms (e.g., Q-learning). Due to the 
high complexity of JSSPs, only papers that use DRL and its 
related algorithms were included.

Types of problems

JSSP is a specific type of production scheduling problem 
that can cover the majority of current production settings. 
Although the more complex flexible job-shop schedul-
ing problem (FJSP) has already been identified, very few 
papers use DRL to solve FJSPs. Therefore, only JSSPs were 
included.

Types of data

To enable comparison and verification, the papers using 
publicly available or generated datasets were included, and 
those validated only in specific production scenarios were 
excluded.

Results of the search

A total of 67,081 studies were retrieved through several 
different databases (149 from SCOPUS, 8103 from EI-Vil-
lage, 186 from Web of Science, 4726 from IEEE/IEE, 966 
from Springer, and 52,951 from Wiley). As shown in Fig. 1 
(adapted from the PRISMA Group (Moher et al., 2009), 
after applying the inclusion and exclusion criteria and back-
ward/forward search, a total of 44 papers remained.

DRL-based scheduling for job-shop 
scheduling problem

The mathematical model of JSSP and the execution process 
of DRL scheduling models are presented in this section. 
The terms and symbols can then be used in the following 

Table 1 Search terms
Methods Algorithms Problems
deep reinforcement 
learning

OR deep q-network AND production 
scheduling

DRL DQN shop 
scheduling

reinforcement 
learning

proximal policy 
optimization

job-shop 
scheduling 
problem

RL PPO JSSP
machine learning actor-critic flexible 

job-shop 
scheduling

artificial 
intelligence

AC FJSP

intelligent DDPG
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Taking a 3× 3  JSSP as an example, the Mk for and the 
pi,j of each operation are given in Table 2. The disjunctive 
graph shown in Fig. 2(a) utilizes the directed arcs to illus-
trate the operation order of the jobs. The undirected arcs 
are used to present the share of machines among different 

sections. In this section, the formulation of JSSP is intro-
duced firstly, to make sense of the scheduling concepts and 
principles that are used subsequently. Then a more detailed 
description of the DRL-based solving model for the sched-
uling problem formulated above is provided.

Formulation of job-shop scheduling problem

A JSSP scheduling instance deals with a job set J  consist-
ing of |J |  jobs. A job Ji ∈ J  has ni  operations, while 
Oi,j  denotes the j th operation of Ji . Therefore, all the 
operations belonging to J  form an operation set O  with 
|O| =

∑|J |
i=1 ni  operations. A set of machines, M , compris-

ing |M|  machines, is prepared to process the operations. 
Therefore, the JSSP size is generally defined as |J | × |M|
. The scheduling solvers aim to determine the start time Si,j , 
and the completion time Ci,j = Si,j + pi,j  for each operation 
Oi,j , where the pi,j  denotes the processing time of operation 
Oi,j .

Table 2 A JSSP scheduling instance
Job Due time Operation Available Mk  and  

corresponding pi,j
M1 M2 M3

J1 20 O1,1 2 -- --

O1,2 -- 3 --

O1,3 -- -- 5

J2 15
O2,1

3 -- --
O2,2 -- -- 3

O2,3 -- 3 --

J3 25 O3,1 -- 3 --

O3,2
4 -- --

O3,3 -- -- 3

Fig. 1 Paper screening 
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a feasible scheduling solution is generated after several 
iterations.

The Environment is a temporary scheduling solution 
(TSS), i.e., an initial scheduling solution, an incomplete 
scheduling solution, or a complete scheduling solution 
under optimization. The state is the Environment descrip-
tion while the current state st  is generated by the state gen-
eration function included in the analysis link based on the 
data sampled from the Environment:

st = s (sensations) (1)

where sensations  denotes the data sampled via the percep-
tion link.

The role of the decision link is to select an action at  cor-
responding to the state st  using the policy function πθ :

p (at) = πθ (at| st) (2)

where p (at) is the probability of the action at  being 
selected. The policy function πθ  is a probability distribution 
function with respect to state st  and action at . After the 
action at  is executed on the Environment, the TSS will be 
updated through the control and execution links. Finally, the 
state is transferred from the current st  to the next st+1, and 
the reward rt  is produced.

The reward rt  indicates the change of the scheduling 
objective between the adjacent decision steps t  and t− 1 

operations. Once the scheduling solver queues the sharing 
operations, the Si,j  and Ci,j  of Oi,j  can be determined by 
a specific decoding algorithm. The result is generally visu-
alized via a Gantt chart, as shown in Fig. 2(b), where the 
makespan, Cmax = max

i
Ci,ni , is 16, which is the end time of 

the latest finished operation, O3,3 .

Architecture and procedure of deep reinforcement 
learning-based scheduling

A DRL scheduling model features a Markov decision pro-
cess (MDP) (Sutton & Barto, 2018) with parametric equa-
tions, and the parameters are assigned values during model 
training process. Therefore, the DRL scheduling model 
becomes an applicable scheduling solver after training. The 
architecture (Li et al., 2023) and execution process of a DRL 
scheduling solver is illustrated in Fig. 3. A cycle between 
the Agent and the Environment is established through five 
links: perception, analysis, decision making, control, and 
execution. The Agent obtains raw information from the 
Environment via the perception module and concludes the 
state and reward through the analysis module. In the next 
step, the agent selects an action based on the state via the 
decision-making module and supervises the execution of 
the chosen action through the control and execution mod-
ules. Therefore, the Agent interacts with the Environment 
repeatedly updating the state, action, and reward; this way, 

Fig. 3 The DRL production scheduling process

 

Fig. 2 Graph representation and scheduling solution of the JSSP 
instance in Table 2. (a) Disjunctive graph for the inter-operation rela-
tionship. (b) Scheduling solution Gantt chart
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Typical design patterns of DRL components

A DRL scheduling model mainly comprises five compo-
nents: an Agent, an Environment, a state set, an action set, 
and a reward function. The typical design patterns of each 
component are described in the following subsections.

Design patterns of the Agent

The DRL is a sequential decision process consisting of mul-
tiple decision steps. Combining the state and action of each 
step results in a trajectory τ :

τ = (s1, a1, s2, a2, . . . , sT−1, aT−1, sT )  (6)

where T  denotes the termination step; s1  and sT  are the 
initial and the terminate states, respectively.

The DRL optimization objective is to obtain the maxi-
mum cumulative reward R (τ ):

R (τ ) = r1 + r2 + · · · + rT−1 =

T−1∑

t=1

rt  (7)

Currently, DRL algorithms can be divided into three catego-
ries: value-based (Wang et al., 2016; Van et al., 2016), pol-
icy-based (Sutton et al., 1999), and actor-critic (Bhatnagar 
et al., 2009). The design patterns of the agent are closely 
related to the DRL algorithm classification.

Value-based agent

A value function refers to either the state value function 
Vπ (st) or the state-action value function Qπ (st, at) , indi-
cating the R (τ ) expectation obtained from the state st  and 
the state-action pair (st, at) , respectively. Therefore, Vπ (st) 
can be used for the comparison of states, and Qπ (st, at)  is 
further used for the action comparison of the same state.

The value-based agent consists of two parts: one is a 
policy function (e.g., the ε -greedy policy) and the other is a 
value function, as shown in the ‘Structure’ row of Table 3. 
The ε -greedy policy selects the action for which Qπ (st, at)  

generated by the reward generation function in the analysis 
link:

rt = r (sensations) (3)

As shown in Eq. 4, the next state st+1 is determined with the 
probability p (st+1) defined as:

p (st+1) = p (st+1| st, at) (4)

where p (st+1| st, at) is a probability distribution function of 
components st , at , and st+1, reflecting the randomness of 
TSS. It should be noted that p (st+1| st, at) reflects the inher-
ent Environment characteristic – it is not controllable from 
the outside, i.e., by the Agent. Therefore, the Agent must 
find a well-matched policy other than change p (st+1| st, at)
. By iterating the above-presented process until the stop 
criterion is satisfied, a feasible scheduling solution will be 
generated.

The training process resembles the above-described 
application process. However, training a DRL scheduling 
model does not focus on finding a feasible solution for a 
specific scheduling instance. Instead, it starts with a ran-
domly initialized policy function πθ , which is continuously 
optimized through the Agent-Environment interaction under 
several scheduling instances to sample a large amount of 
data (st, at, rt, st+1). Consequently, these sampled data are 
used to optimize πθ  by updating the parameter set θ :

θi+1 = θi + f (st, at, rt, st+1) (5)

By repeatedly sampling data and updating the parameters, 
θ  will converge towards the optimal value θ∗ , which corre-
sponds with the optimal policy πθ∗ . In the application stage, 
πθ∗  is directly adopted, remaining unchanged, to generate a 
feasible solution for a given scheduling instance. However, 
as the optimal policy πθ∗  is obtained using training instances 
that differ from the application instances, πθ∗  may present a 
suboptimal solution rather than the optimal one.

Table 3 Comparison of the DRL 
Agent
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Partial solution-based environment

The DRL scheduling model successively queues the opera-
tions of a given scheduling instance. As shown in Fig. 4(a), 
one operation is selected in the first decision step and another 
operation is selected in the second step, and so forth. There-
fore, |O|  steps are needed to determine a feasible schedul-
ing solution. The partial solution design pattern is adopted 
by most studies (Wang et al., 2021b); therefore, design pat-
terns of state, action, and reward are only elaborated for this 
pattern if not specifically stated.

Whole solution-based environment

A complete and feasible TSS is initialized randomly (Palom-
barini & Martinez, 2021) or by some traditional scheduling 
methods, e.g., metaheuristic algorithms (Gu et al., 2023) and 
heuristic rules (Chen & Tian, 2018). At each decision step, 
DRL scheduling model generates a new TSS by modifying 
the previous one, and both solutions are complete feasible 
solutions, as shown in Fig. 4(b). To solve the rescheduling 
problem, Palombarini and Martinez (2021) randomly ini-
tialized the Gantt chart, and then they used DRL to modify 
the positions and the start time of the selected operations. 
Magalhães et al. (2021) initialized the operation sequence 
with a meta-heuristic algorithm and used DRL to select 
operations and change their position to update the TSS.

Comparison and discussion

The partial solution-based DRL scheduling features an 
episodic task with a definite number of cycles, while the 
whole solution-based DRL scheduling is a continuous task. 
The number of cycles is determined by either the human 

outputs the maximum value with probability 1-ε , while ran-
domly picking up an action with probability ε . The greater 
ε  value entices the Agent to explore unseen states, while the 
lower value urges the Agent to exploit the known optimal 
states. The optimal policy is eventually obtained by alterna-
tively tuning ε  and updating the value function represented 
as a deep neural network (DNN).

Policy-based agent

The value functions are not used in this design pattern. A 
DNN is designed to fit the policy function instead of a ε
-greedy like random policy, as shown in Table 2 (see the 
‘Structure’ row). Furthermore, the DNN is optimized by 
maximizing R (τ ).

Actor-critic agent

This design pattern can be regarded as a synthesis of the 
value-based and the policy-based patterns. It uses two DNNs 
to fit the policy function and the value function respectively, 
and the two DNNs are updated alternately to achieve opti-
mal output (see Table 2, ‘Structure’ row).

Comparison and discussion

A comparison of the three types of agents is shown in Table 2. 
Both the value-based and the actor-critic agent require two 
parts: a policy function and a value function. However, the 
former mechanism uses a random policy, while the latter 
uses a DNN to approximate the policy function.

Both the policy-based and the actor-critic agents use a 
DNN to approximate the policy function. However, they 
are trained differently; the former optimizes the policy 
function using the trajectory dependent R (τ ) as the objec-
tive, while the latter utilizes the output of a value function, 
which is in turn optimized via the trajectory insensitive data 
(st, at, rt, st+1).

Design patterns of the environment

The Environment is represented by the temporary schedul-
ing solution, which updates and evolves during the DRL 
scheduling process; a deliverable feasible scheduling 
solution is determined when the stop criterion is satisfied. 
Currently, there are two primary design patterns of the Envi-
ronment: partial solution-based Environment versus whole 
solution-based Environment.

Fig. 4 Design pattern illustrations of the DRL Environment. (a) Partial 
solution-based Environment. (b) Whole solution-based Environment
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requirement does not have to be strictly satisfied, the state 
design will greatly affect the decision-making quality. Cur-
rently, there are three main state design patterns: matrix-
based, statistic-based, and graph-based.

Matrix-based state

As shown in Fig. 5(a), the information related to the TSS is 
classified and stored in several matrices, mainly describing 
the job and machine features. Matrices resemble the RGB 
channels of an image, meaning that the high-dimension state 
features can be extracted via convolutional neural networks 
(Liu et al., 2020; Wang et al., 2021a; Wu & Yan, 2023). Han 
and Yang (2020) used three matrices to describe the infor-
mation regarding the processing time, scheduling results, 
and machine utilization; matrix height and width corre-
sponded to the numbers of jobs and machines, respectively.

experience or the testing results. The solution is incomplete 
during the partial solution-based DRL scheduling process; 
thus, the accurate performance indicators cannot be deter-
mined, making the reward design more difficult.

In contrast, all the TSSs in the whole solution-based DRL 
scheduling process are both complete and feasible, easing 
the reward function design. Additionally, the classical pro-
duction scheduling methods such as genetic algorithms, 
simulated annealing algorithms, and distribution estimation 
algorithms, utilize complete TSSs. Therefore, it is easy to 
integrate these algorithms with the whole solution-based 
DRL scheduling (Du et al., 2022).

Design patterns of the state

In general, the MDP requires that the current state can fully 
describe the Environment evolution process. Although this 

Fig. 5 Design pattern illustra-
tions of the DRL state. (a) 
Matrix-based state representa-
tion and processing. (b) 
Graph-based state representation 
and processing
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Comparison and discussion

The matrix-based design pattern is intuitive and easy to cal-
culate; however, the information type limits make it difficult 
to represent states of complicated problems. Additionally, 
the matrix size is related to the scheduling problem scale 
hindering the generalization of the DRL scheduling model 
to a scheduling instance with the different size.

The statistic-based design pattern describes various attri-
butes which are quick to calculate. Compared to matrices, 
statistical indicators have the potential to fully represent the 
states of complicated scheduling problems. However, the 
redundant use of statistical indicators will waste computa-
tional resources. Further, different problems might require 
different indicators, weakening the generalization ability of 
statistic-based state design. Unfortunately, there are no reli-
able methods for indicator selection, meaning that statisti-
cal indicators are designed mainly based on experience and 
intuition.

Compared to the statistic-based design, the graph-based 
design pattern extracts rich state features from the graph-
structured data. This way, the improper selection of statis-
tical indicators is avoided, which contributes to the DRL 
generalization; however, two challenges remain. Firstly, 
there are no available graph presentations for complicated 
problems, e.g., flexible job-shop scheduling problem (Fat-
tahi et al., 2007), since the disjunctive graph has limited 
expressiveness. Secondly, the adoption of graph neural net-
works requires significant computational resources and time 
during the training stage (Park et al., 2021b).

Design patterns of the action

Actions are used to update the TSS. In the partial solution-
based DRL scheduling, executing an action corresponds to 
selecting an operation for TSS, while in the whole solution-
based DRL scheduling, executing an action results in a new 
TSS. Currently, there are four action design patterns: rule-
based, operation-based, attribute-based, and graph-based.

Rule-based action

In this pattern (Fig. 6(a)), the policy πθ  outputs the possibil-
ity of each rule for the state st :

Statistic-based state

A set of statistical indicators describing the static and dynamic 
job and machine attributes are defined as states (Chang et al., 
2022; Han & Yang, 2021; Luo et al., 2021b; Xu et al., 2022). 
Statistical indicators are roughly divided into three categories:

Gross indicators reflect the total quantity of jobs, machines, 
and other production factors in the scheduling environment 
within a certain period. Indicators such as the total number of 
machines, the total number of jobs, the total processing time, 
and the total tardiness, among others, reflect the initial over-
all scale of the scheduling problem. Furthermore, indicators 
such as the number of completed jobs, the number of remain-
ing operations, the remaining job processing time, their delay 
time, and machine payloads reflect the current scheduling 
environment in terms of work hours and load distribution.

Relative indicators like the completion rate of each job, 
the delay rate, and the total machine utilization rate vary 
with the scheduling process. They reflect the scheduling 
progress in the form of ratios.

Average indicators such as the average processing time 
of remaining operations, the average job completion rates, 
and the average machine utilization rate balance the impact 
of the problem scale on dynamic indicators.

Statistical indicators and matrices can be used together. 
For example, Luo et al. (2021a) stated that statistical indi-
cators could describe numerical information regarding the 
state, while the matrix could describe constraints among 
production resources.

Graph-based state

Generally, the whole solution-based DRL scheduling model 
uses the Gantt chart as the state (Ni et al., 2021), while its 
partial counterpart utilizes the disjunctive graph or its vari-
ants (Liu & Huang, 2023; Song et al., 2023). The graph-
based state pattern extracts node and graph features as the 
high-dimension state features (Seito & Munakata, 2020; 
Zeng et al., 2022) based on graph learning methods, e.g., 
graph neural network (GNN) and attention mechanism, as 
shown in Fig. 5(b). Compared to the multilayer perceptron 
(MLP), GNN is more suitable for complicated problems 
since it provides better implicit inductive bias in terms of 
the extraction of state features (Hameed & Schwung, 2020).

Fig. 6 Design pattern illustrations of the DRL action. (a) Rule-based (b) Operation-based (c) Attribute-based (d) Graph-based

 

1 3



Journal of Intelligent Manufacturing

the predicted value set is calculated. This way, the operation 
whose value set is closest to the predicted value set will be 
selected as the action for the state st . The attributes gen-
erally have continuous value ranges (Park & Park, 2021a; 
Samsonov et al., 2021) and the number of attributes is inde-
pendent of the number of operations, jobs, or machines.

Graph-based action

In this pattern (Fig. 6(d), the attributes of each operation are 
structured in the form of graph, e.g., the disjunctive graph, 
and their values are extracted using a graph learning method 
(e.g., GNN). Next, the policy πθ  outputs the possibility of a 
given operation Oi,j  for a state-operation pair (Chen et al., 
2022; Elsayed et al., 2022; Yuan et al., 2023):

p (Oi,j) = πθ(st, attr_value(Oi,j )) , i = 1 . . . n, j = ni  (11)

where attr_value (Oi,j) is the attribute value of the opera-
tion Oi,j .

Comparison and discussion

The operation-based action pattern is primitive. The 
rules and attributes have definite semantics, contribut-
ing to improve the interpretability of the DRL decision 
process. However, the rules and attributes are in most 
cases selected based on empirical knowledge; therefore, 
designing a set of rules or attributes with strong optimi-
zation ability and wide adaptation to various scheduling 
problems remains a challenge. The graph-based action 
uses the GNN to extract operation features based on the 
initially defined attributes and graph, lessening the attri-
bute selection recline.

In the rule-based and attribute-based action patterns, the 
action should be mapped to operations in a way that an oper-
ation is selected based on the winning rule or the predicted 
attribute value set. In contrast, the operation-based and the 
graph-based action patterns directly output operation possi-
bilities; therefore, an operation can be selected in a simpler 
way.

The rule-based, the attribute-based, and the graph-based 
action designs are all independent of the scheduling prob-
lem scale, which contributes to the generalization ability. In 
contrast, the operation-based action design is coupled with 
the number of jobs or operations. To overcome this problem, 
recurrent neural networks (RNNs) are often adopted in the 
literature (Monaci et al., 2021; Ren et al., 2020). However, 
the states are mapped to the serial number of operations in 
the operation-based action design. Consequently, the encod-
ing method will affect scheduling performance, which con-
tributes another factor to harm the generalization ability.

[p (Rule1) , p (Rule2) , . . . )] = πθ( st) (8)

where 
∑

l=1 p (Rulel) = 1. Consequently, the rule with 
the maximum probability will be selected as the action for 
the state st . Following the action execution, an operation 
will be selected. The number of rules is independent of the 
number of operations, jobs, or machines. The primitive or 
compound heuristic rules, such as the shortest processing 
time (SPT) (Lin et al., 2019; Zhao et al., 2021; Sun et al., 
2023) and genetic-programming-based rules (G&P) (Li et 
al., 2022; Luo et al., 2021c) are generally used with the 
partial solution. In contrast, the manipulation methods such 
as crossover and mutation that are borrowed from genetic 
algorithms can be used to update the whole solution (Chen 
et al., 2020).

Operation-based action

In this pattern (Fig. 6(b)), the policy πθ  outputs the possibil-
ity of each operation for the state st :
[
p (O1,1) , p (O1,2) , . . . , p (O1n1) , . . . , p

(
O|J |n|J |

)
] = π

θ

(
st) (9)

where 
∑|J |

i=1

∑ni
j=1p (Oi,j) = 1. In this all-operation design, 

the action set size is equal to the number of operations (Lee 
et al., 2020; Workneh & Gmira, 2023). Consequently, the 
operation with the maximum probability will be selected as 
the action for the state st .

It should be noted that at any decision step, only the first 
unscheduled operation of each job can be the scheduling 
candidate. This feature enables a variant of all-operation-
based action design, i.e., the partial-operation-based design 
(Liao et al., 2023; Tassel et al., 2021; Turgut & Bozdag, 
2020), which only selects feasible operations as πθ  outputs. 
Therefore, the size of the action set in the partial-operation 
design is no greater than the number of jobs. This is because 
only the unfinished jobs have unscheduled operations and 
each unfinished job contributes only one candidate opera-
tion (i.e., its first unscheduled operation)

Attribute-based action

In this pattern (Fig. 6(c)), some attributes are selected to 
describe operations, and each operation has a definite value 
set for the attribute set. The policy πθ  outputs the predicted 
value of each attribute under the state st :

[value (Attr1) , value (Attr2) , . . . ] = πθ( st) (10)

where value (Attri)  denotes the output value of Attri . 
Thereafter, a distance between the operation value set and 
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Finally, the cumulative reward R (τ ) can be obtained 
according to Eq. (7):

R (τ ) = CLB
max (s1)− CLB

max (sT ) = CLB
max (s1)− Cmax (15)

where CLB
max (s1) is a constant for a given scheduling instance 

as it is determined in the initial state in which no operation 
has been scheduled; CLB

max (sT ) is determined in the last state 
where a complete scheduling solution is resolved so that 
CLB

max (sT ) is exactly the makespan Cmax . Therefore, maxi-
mizing R (τ ) is consistent with minimizing Cmax .

Final value-based reward

This pattern suits the whole solution-based DRL schedul-
ing, where the TSS is both complete and feasible so that 
the actual optimization objective values can be obtained and 
used to design the reward function. For example, taking the 
makespan Cmax (t) as the optimization objective, the imme-
diate reward rt  can be designed as:

rt = Cmax (st)− Cmax (st+1) , t = 1 . . . T − 1 (16)

Ni et al. (2021) noticed that the above-presented reward 
function tended to neglect the long-term effect of an action 
in the way that an action may still positively contribute to 
R (τ ) even if its rt  is lower or negative. Therefore, it is 
advised to reshape the immediate rewards; an example is 
described in Fig. 7.

Cmax  tends to fluctuate rather than monotonically 
change during the training as shown in Fig. 7. Reward 
reshaping first figures out a set of minimal points 
maintaining a strict monotonic decrease relationship: 

Design patterns of the reward

In the DRL, a reward is a scalar that can be either posi-
tive, negative, or zero, reflecting the immediate effect of the 
action executed in the current state. It must be related to the 
optimization objectives of the underlying scheduling prob-
lem so that maximizing cumulative reward corresponds to 
optimizing the objectives. Currently, there are three primary 
reward design patterns: temporary value-based, final value-
based, and discrete value-based.

Temporary value-based reward

This pattern applies to the partial solution-based DRL 
scheduling, where the actual optimization objective values 
cannot be obtained until the last step since the TSS is not 
complete (i.e., there are unscheduled operations). There-
fore, the reward in the partial solution-based DRL schedul-
ing will be quite sparse if it relies on the actual optimization 
objective values, as the reward can only be calculated once 
for each episode other than each step. Reward sparsity will 
cause difficulties in the convergence of the DRL algorithm 
(van Ekeris et al., 2021; Zhao et al., 2022). To overcome 
this problem, the estimated optimization objective values 
are used instead, aiming to generate an immediate reward 
for each step.

Zhang et al. (2020) proposed a method for computing 
the lower-bound completion time CLB(Oi,j, st) of operation 
Oi,j  at state st  corresponding the step t . For the sched-
uled operations, CLB(Oi,j, st) equals to the completion time 
determined by the scheduling decoding algorithm. For the 
unscheduled operation Oi,j+1, CLB (Oi,j+1, st) is calculated 
as:

CLB (Oi,j+1, st) = CLB (Oi,j, st) + pi,j+1, i = 1 . . . n, j = n′ . . . ni − 1 (12)

where CLB (Oi,0, st) = 0 and n′  denotes the number of 
scheduled operations. Using iterative calculations, the 
lower-bound completion time of every operation can be 
determined.

Next, the lower-bound makespan in the state st  is deter-
mined as follows:

CLB
max (st) = max

i
CLB (Oi,ni, st) , i = 1 . . . n  (13)

The immediate reward rt  obtained in state st  is defined as:

rt = CLB
max (st)− CLB

max (st+1) , t = 1 . . . T − 1 (14)

Fig. 7 History of Cmax
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Statistical analysis of DRL design patterns

The authors so far identified three Agent design patterns, 
two Environment design patterns, three state design pat-
terns, four action design patterns, and three reward design 
patterns, as summarized in Table 4.

A total of 216 different combinations can be constructed 
by the combination law. However, some of them are not 
applicable. Table 5 presents the design patterns used in the 
references, reflecting the popularity of each design pattern 
and pattern combination.

Statistical analysis of individual patterns

Figure 8 summarizes the number of times each design 
pattern occurs in Table 5. The value-based agent is the 
most popular because of the broad impact of DQN and 
its excellent performance on discrete tasks. In terms of 
the Environment, the partial solution-based design is 
adopted by most studies. Consequently, the temporary 
value-based reward is used in a greater proportion. As for 
the state, the statistic-based design is the most prevalent, 
while the rule-based and operation-based designs are the 
most common action design patterns. The popularity is 
affected by the characteristics which are compared in 
Sect. 3. Besides, we believe that the current research 
focuses on the development efficiency and interpretability 
of DRL-based scheduling models.

The end-to-end architecture for a partial solution-based 
Environment is more flexible than the iterative optimization 
required by the whole solution-based Environment. The 
statistic-based state design requires only an MLP network 
in most cases consuming less computational resources com-
pared to GNNs and CNNs. Besides, the rule-based action 
design can provide a reliable interpretation of the output 
of the DRL scheduling model. The temporary value-based 
reward design can intuitively clarify the link between the 
optimization direction of the scheduling model and the 
scheduling objectives.

[( t1, Cmax (t1)), (t2, Cmax (t2)) . . . (ta, Cmax (ta) )]

, where t1 < t2 < t3 < · · · < ta  and 
Cmax (t1) < Cmax (t2) < · · · < Cmax (ta) . In the next step, it 
defines the immediate reward rt  as follows:

rt =
Cmax (tp)− Cmax (tp+1)

tp+1 − tp
, tp ≤ t < tp+1, p = 0 . . . a  (17)

where tp  denotes the time step when the p th minimal point 
appears so that several time steps (at least two) may expire 
from tp  to tp+1 .

Then, the cumulative reward R (τ ) can be obtained via 
Eq. (7):

R (τ ) = Cmax (1)− Cmax (T ) (18)

where Cmax (1) and Cmax (T ) denote the TSS makespan at 
the first and the last decision steps, respectively. Thus, R (τ ) 
will be maximized by gradually reducing Cmax  of the TSS 
along with the DRL advance, which is consistent with the 
scheduling problem optimization objectives.

Discrete value-based reward

In this pattern, the reward value range is a set of discrete 
values. Therefore, the mapping rules of these discrete val-
ues to the optimization objectives are the essence of the 
reward design. Generally, both the direction and magnitude 
of objective variation are considered. Luo (2020) calculated 
the reward according to tardiness and machine utilization; 
the rewards + 1, -1, or 0 were given based on the value com-
bination patterns of these two indicators.

Comparison and discussion

The temporary and final value-based rewards can be 
directly and tightly coupled with some optimization 
objectives. Therefore, the cumulative reward can be used 
to assess whether the reward design is reasonable. The 
reward function is reasonable if maximizing the cumu-
lative reward corresponds to optimizing the scheduling 
objectives. On the other hand, the discrete value-based 
reward is loosely coupled with the optimization objec-
tives since it uses only a few discrete values to code the 
changes of optimization objective. Therefore, the discrete 
value-based reward is quite a coarse-grained design pat-
tern; however, it is applicable to both partial and whole 
solution-based DRL scheduling. On the contrary, the 
temporary value-based and final value-based rewards 
suit the partial solution and whole solution-based DRL 
respectively.

Table 4 A summary of design patterns of DRL scheduling model
Component Pattern
Agent Value-based Policy-based Actor-Critic
Environ-
ment

Partial 
solution-
based

Whole 
solution-based

State Matrix-
based

Statistic-based Graph-based

Action Rule-based Operation-
based

Attribute-based Graph-
based

Reward Temporary 
value-based

Final 
value-based

Discrete 
value-based
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statistic-based state design, an operation-based action 
design, and a temporary value-based reward design.

 ● FPC2: the value-based agent with a partial solution de-
sign, a statistic-based state design, an rule-based action 
design, and a temporary value-based reward design.

 ● FPC3: the policy-based agent with a partial solution de-
sign, a graph-based state design, a graph-based action 
design, and a temporary value-based reward design.

Statistical analysis of full pattern combinations

The 44 references shown in Table 5 involve only 28 pattern 
combinations with different ratios as shown in Fig. 9. The 
three most popular combinations are (in descending order):

 ● FPC1 (the first full pattern combination): the pol-
icy-based agent with a partial solution design, a 

Table 5 DRL design patterns shown in the references
Reference Agent Environment State Action Reward
Chang et al. (2022) Value-based Partial solution-based Statistic-based Rule-based Temporary value-based
Chen et al. (2020) Value-based Whole solution-based Statistic-based Rule-based Final value-based
Chen et al. (2022) Policy-based Partial solution-based Graph-based Graph-based Final value-based
Chen and Tian (2018) Actor-Critic Whole solution-based Graph-based Rule-based Final value-based
Du et al. (2022) Value-based Whole solution-based Statistic-based Rule-based Discrete value-based
Elsayed et al. (2022) Actor-Critic Partial solution-based Graph-based Graph-based Temporary value-based
Gu et al. (2023) Value-based Whole solution-based Statistic-based Rule-based Final value-based
Gebreyesus et al. (2023) Policy-based Partial solution-based Graph-based Graph-based Temporary value-based
Hameed and Schwung (2020) Actor-Critic Partial solution-based Graph-based Graph-based Temporary value-based
Han and Yang (2020) Value-based Partial solution-based Matrix-based Rule-based Temporary value-based
Han and Yang (2021) Policy-based Partial solution-based Statistic-based Operation-based Final value-based
Lee et al. (2020) Value-based Partial solution-based Statistic-based Operation-based Temporary value-based
Li et al. (2022) Value-based Partial solution-based Statistic-based Rule-based Temporary value-based
Liao et al. (2023) Policy-based Partial solution-based Statistic-based Operation-based Temporary value-based
Lin et al. (2019) Value-based Partial solution-based Statistic-based Rule-based Temporary value-based
Liu et al. (2020) Actor-Critic Partial solution-based Matrix-based Rule-based Temporary value-based
Liu and Huang (2023) Policy-based Partial solution-based Graph-based Graph-based Temporary value-based
Luo et al. (2021a) Policy-based Partial solution-based Statistic-based Operation-based Temporary value-based
Luo (2020) Value-based Partial solution-based Statistic-based Rule-based Discrete value-based
Luo et al. (2021b) Value-based Partial solution-based Statistic-based Rule-based Discrete value-based
Luo et al. (2021c) Policy-based Partial solution-based Statistic-based Rule-based Discrete value-based
Magalhães et al. (2021) Value-based Whole solution-based Statistic-based Operation-based Discrete value-based
Monaci et al. (2021) Policy-based Partial solution-based Statistic-based Operation-based Temporary value-based
Ni et al. (2021) Policy-based Whole solution-based Graph-based Rule-based Final value-based
Palombarini and Martinez (2021) Policy-based Whole solution-based Graph-based Rule-based Final value-based
Park and Park (2021a) Actor-Critic Partial solution-based Statistic-based Attribute-based Temporary value-based
Park et al. (2021b) Policy-based Partial solution-based Graph-based Graph-based Temporary value-based
Ren et al. (2020) Actor-Critic Partial solution-based Statistic-based Operation-based Final value-based
Samsonov et al. (2021) Actor-Critic Partial solution-based Statistic-based Attribute-based Final value-based
Seito and Munakata (2020) Value-based Partial solution-based Graph-based Graph-based Final value-based
Song et al. (2023) Value-based Partial solution-based Graph-based Rule-based Temporary value-based
Sun et al. (2023) Value-based Partial solution-based Matrix-based Rule-based Temporary value-based
Tassel et al. (2021) Policy-based Partial solution-based Statistic-based Operation-based Temporary value-based
Turgut and Bozdag (2020) Value-based Partial solution-based Statistic-based Operation-based Temporary value-based
van Ekeris et al. (2021) Policy-based Partial solution-based Statistic-based Operation-based Final value-based
Wang et al. (2021a) Policy-based Partial solution-based Matrix-based Operation-based Temporary value-based
Workneh and Gmira (2023) Value-based Partial solution-based Statistic-based Operation-based Temporary value-based
Wu and Yan (2023) Policy-based Partial solution-based Matrix-based Rule-based Temporary value-based
Xu et al. (2022) Value-based Partial solution-based Statistic-based Rule-based Temporary value-based
Yuan et al. (2023) Policy-based Partial solution-based Graph-based Graph-based Temporary value-based
Zeng et al. (2022) Value-based Partial solution-based Graph-based Rule-based Temporary value-based
Zhang et al. (2020) Policy-based Partial solution-based Graph-based Graph-based Temporary value-based
Zhao et al. (2022) Policy-based Partial solution-based Statistic-based Operation-based Temporary value-based
Zhao et al. (2021) Value-based Partial solution-based Statistic-based Rule-based Temporary value-based
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and generalization of graph-based design patterns (Zhang 
et al., 2020). However, very few graph presentations for 
the production scheduling problems are available cur-
rently, which means new graph presentations are needed 
to deal with the complex scheduling problems.

Evaluation indicators of DRL scheduling 
models

The effect of DRL production scheduling models is gener-
ally evaluated using the following four metrics, i.e., optimi-
zation objective, efficiency, convergence and stability, and 
generalization ability.

Optimization objective

Makespan, maximum/average tardiness, and maximum/
average machine utilization are commonly used schedul-
ing objectives. Their optimal extent determines the algo-
rithm effectiveness. It is difficult to obtain the optimal 
value of the production scheduling objective since it is 
a type of NP-hard problem. Therefore, DRL scheduling 
methods are usually compared to heuristic rules, meta-
heuristic algorithms, and exact optimization methods 
(e.g., integer programming and branch and bound) to 
evaluate their optimization ability. Experimental results 
provided in referenced studies show that the DRL sched-
uling methods are better than the heuristics rules and 
roughly equivalent to the meta-heuristics algorithms. 
Finally, they yield results that are rather close to the exact 
optimization methods.

The remaining 25 pattern combinations account for approx. 
70.4% and each of them is only adopted in one or two 
studies.

All the components in the dominant combinations 
FPC1, FPC2, and FPC3 utilize the popular design pat-
terns as shown in Fig. 8. The partial solution-based Envi-
ronment and the temporary value-based reward are most 
often used together. The Actor-critic-based agent has 
received less attention than the value-based or policy-
based agent. However, the Actor-critic-based agent can 
take advantage of value functions to aid in policy optimi-
zation. It has also the ability to deal with both continuous 
and discrete problems. In the future, the Actor-critic-
based agent has even greater potential to explore the per-
formance of scheduling models.

Furthermore, from FPC1 to FPC3, it can be seen 
that the state and action design gradually evolved from 
straightforward simple patterns to graph-based patterns. 
Table 5 confirms that the publication dates of the graph-
based design patterns are newer than the other patterns. 
Many research projects have demonstrated the superiority 

Fig. 9 Ratio of full pattern combinations

 

Fig. 8 Statistics of individual patterns
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instances. It is also rather compatible with emerging IT 
technologies such as cloud computing, big data, and digi-
tal twins. Therefore, integrating DRL algorithms with smart 
manufacturing technologies to solve new scheduling prob-
lems or enable new properties seems a promising scheme.

Flexible job shop scheduling problems

Currently, DRL production scheduling studies mainly focus 
on the classical job shop scheduling problems. However, 
the flexible job shop scheduling (FJSP) is more in line with 
the consumption trends characterized by mixed-flow pro-
duction of multi-variety, small-lot, and customized products 
(Kocsi et al., 2020), as the FJSP allows high flexibilities 
in both manufacturing resources and jobs. However, the 
FJSP also introduces great complexities. The jobs in a FJSP 
instance generally require different operations and/or differ-
ent operation sequences and the operations have a many-
to-many relationship with the machines, i.e., an operation 
can be processed by multiple machines and a machine can 
process multiple operations. Therefore, DRL scheduling 
methods for FJSP have both theoretical value and broad 
application prospects.

Multi-objective optimization problems

Production scheduling has an important role in multi-objec-
tive optimization (Mokhtari & Hasani, 2017); however, 
these optimization objectives are generally contradictory 
to each other. In other words, the improvement of one 
objective might degrade others. The key to multi-objective 
optimization problems is to achieve a trade-off between 
the objectives to maximize the overall performance. As 
one inherent property, DRL algorithms aim to maximize a 
cumulative reward. Therefore, the optimization objectives 
must be associated with the reward. However, the reward 
is a simple one-dimensional scalar which limits its ability 
to solve multi-objective optimization problems. Therefore, 
a significant breakthrough is needed to develop DRL-based 
multi-objective scheduling methods.

Multi-agent scheduling problems

The continuous advancement of vertical, horizontal, and 
end-to-end integration will significantly increase the com-
plexity of the smart production system. Complex scheduling 
problems may also involve collaborative decision making 
and reliance from multiple parties (Ouelhadj & Petrovic, 
2009). Therefore, it is difficult for a single agent to solve 
scheduling problems quickly, effectively, and economically. 
Consequently, the idea of multi-agent distributed comput-
ing and collaborative optimization provides an advanced 

Efficiency

The algorithm execution speed affects the practical produc-
tion scheduling. As shown in Fig. 3, the DRL scheduling 
methods comprise several links:

t = N (ts + tr + tπ + tce) (19)

Thus, the execution time t  is equal to the number of epi-
sodes N  times the sum of the state generation time ts , the 
reward generation time tr , the policy decision-making time 
tπ , and the action control and execution timetce .

The heuristic rules can quickly present a solution for a sched-
uling problem with no guarantee of the solution quality. The 
meta-heuristic and exact optimization methods will generally 
figure out a better solution when given a longer execution time 
which however is unacceptable for a real production scenario. 
DRL scheduling methods successfully trade off the efficiency 
and quality due to their generalization ability. In other words, 
the DRL scheduling methods can determine a better schedul-
ing solution than the heuristic rules, in a shorter time than the 
meta-heuristic algorithms or the exact optimization methods.

Convergence and stability

The objective change curves concerning the training progress 
can be obtained from TSSs to describe the algorithm execu-
tion process. For a minimum optimization problem, a decline 
curve exhibits convergence, while a low amount of fluctua-
tion presents stability. Experimental results have shown that 
the convergence and stability of DRL scheduling methods are 
comparable to that of the meta-heuristic algorithms.

Generalization ability

DRL scheduling models should be trained using a set of 
scheduling instances. After training, the DRL solvers can be 
applied to solve new scheduling instances. The execution 
time in the application stage is much lower than the training 
time. Such behavior suggests that the DRL model can utilize 
the learned experience to efficiently solve new scheduling 
instances without model rebuilding and retraining. In con-
trast, the meta-heuristic algorithms solve scheduling prob-
lems independently, indicating that the experience cannot be 
reused to facilitate the solution-seeking process.

Open issues

Among the available models and algorithms for solving 
production scheduling problems, deep reinforcement learn-
ing is unique as it can be generalized to new scheduling 
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robustness to uncertainties and system perturbations, and 
learning how to make optimal decisions in dynamic and 
uncertain environments (Pahwa & Starly, 2021). Therefore, 
DRL has great potential in this area.

Conclusion

Based on the review results, the objective-related review 
questions can be answered. The related papers reflect that 
the design of each DRL component, i.e., the Agent, the 
Environment, the state, the action, and the reward, follows 
two to four patterns when solving the JSSP. However, the 
design patterns and pattern combinations have different lev-
els of popularity. The features and popularity summarized 
in this review help developers form their specific design 
scheme to cope with the underlying JSSPs.

Furthermore, it is necessary to deeply integrate deep 
reinforcement learning algorithms with smart manufactur-
ing technologies to solve complicated production schedul-
ing problems. These include flexible job shop scheduling, 
multi-objective optimization, multi-agent scheduling, and 
self-adaptive scheduling. In addition, the DRL general-
ization ability requires further exploration in terms of the 
underlying mechanism, the production scheduling specific 
manifestation, and a comprehensive evaluation protocol.

This review mainly focuses on the DRL scheduling mod-
els for the job-shop scheduling problems due to the lack of 
literature for other production scheduling problems. How-
ever, our classification of design patterns and pattern com-
binations can broadly inspire the design of DRL models for 
advanced production scheduling problems.
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vision for solving complicated and large-scale problems. 
Although studies on multi-agent DRL algorithms were car-
ried out (Waschneck et al., 2018; Lang et al., 2020), apply-
ing them to solve production scheduling problems remains 
challenging.

Adaptive scheduling problems

Many scheduling algorithms are not applicable to practical 
scenarios, especially to complex and large-scale problems, 
even if they can greatly optimize key performance indica-
tors. There are multiple reasons behind this phenomenon; 
for example, some algorithms require complex parameter 
settings making it difficult for a user to carry out. The users 
expect a scheduling solver to run and evolve without their 
intervention. Therefore, the production scheduling solvers 
should be, in addition to optimization ability and efficiency, 
easy to use. It is possible to integrate DRL-based scheduling 
algorithms with smart manufacturing technologies such as 
digital twin (Fang et al., 2019) to reduce setting effort and 
improve the adaptability (Moon et al., 2021).

DRL scheduling specific generalization theory

Most advantages of DRL production scheduling models 
are related to their generalization ability (Gebreyesus et al., 
2023), which is an important characteristic distinguishing 
deep reinforcement learning algorithms from meta-heuristic 
algorithms. The generalization ability empowers a trained 
DRL scheduling model to solve new scheduling instances 
efficiently and effectively, although training a DRL model 
may require both computational resources and time. How-
ever, currently available studies are exclusively focused on 
the generalization of small-scale instances to large-scale 
ones. Therefore, the complete DRL production schedul-
ing-specific generalization theory is necessary. It will also 
enable new insights into the scheduling problems and the 
DRL-based scheduling methods.

DRL-based cloud manufacturing resource 
scheduling

Cloud manufacturing, as a service-oriented manufacturing 
mode, aims to provide consumers with on-demand manu-
facturing services. In an advanced cloud manufacturing 
environment, demand, supply, and production conditions 
change dynamically, such as changes in orders, machine 
breakdowns, or supply chain disruptions. Therefore, 
resource scheduling in cloud manufacturing environments 
is a complex problem. The DRL-based approach is able to 
continuously improve its performance through self-learn-
ing and self-adaptive mechanisms, demonstrating strong 
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