
Journal of Intelligent Manufacturing
https://doi.org/10.1007/s10845-024-02454-8

can reconfigure machine sequences dynamically, the work-
pieces coming from different sequences will scramble for a
machine if they own the same operations that can be pro-
cessed by the machine.

The above-mentioned problem has been recognized as
the job-shop scheduling problem (JSSP). The key features
of JSSP come from both the job side and the machine side:

1) The operation sequence of a job (e.g., a workpiece) is
predefined and should be strictly obeyed;

2) A scheduling instance consists of a set of jobs different
in operation sequence and quantity;

3) A machine can only process one operation at a time;
4) A machine is not allowed to preempt when processing

an operation;
5) All machines turn on at the start of scheduling;
6) Transportation time of jobs and setup time of machines

are negligible.

The scheduling solver is responsible for arbitrating the com-
petition by determining the processing order of the competi-
tive operations. Despite the constraints introduced by jobs
and machines, multiple feasible solutions to a schedul-
ing instance still exist, as the operations sharing the same

Introduction

In a discrete manufacturing environment, producing a
workpiece generally requires a set of machines to process
a sequence of operations. An intuitive and efficient solution
to this production requirement is the flow line. In a flow
line, each operation is assigned a dedicated machine and
these machines are arranged in the same sequence as the
operations. Consequently, the workpieces of the same type
can be naturally queued and processed one by another by
the flow line. However, when a set of workpieces differ-
ing from each other in operation sequence and operation
quantity, the flow line is no longer feasible as it hardwires
the sequence. Although a flexible material handling system

 Qingsong Jiao
739960684@qq.com

1 School of Mechanical and Automotive Engineering, South
China University of Technology, Guangzhou 510640, China

2 Department of Electronic Business, South China University
of Technology, Guangzhou 510640, China

3 China National Electric Apparatus Research Institute Co.,
Ltd, Guangzhou 510300, China

Abstract
Production scheduling has a significant role when optimizing production objectives such as production efficiency, resource
utilization, cost control, energy-saving, and emission reduction. Currently, deep reinforcement learning-based production
scheduling methods achieve roughly equivalent precision as the widely used meta-heuristic algorithms while exhibiting
higher efficiency, along with powerful generalization abilities. Therefore, this new paradigm has drawn much attention
and plenty of research results have been reported. By reviewing available deep reinforcement learning models for the job
shop scheduling problems, the typical design patterns and pattern combinations of the common components, i.e., agent,
environment, state, action, and reward, were identified. Around this essential contribution, the architecture and procedure
of training deep reinforcement learning scheduling models and applying resultant scheduling solvers were generalized.
Furthermore, the key evaluation indicators were summarized and the promising research areas were outlined. This work
surveys several deep reinforcement learning models for a range of production scheduling problems.

Keywords Production scheduling · Reinforcement learning · Smart manufacturing · Industry 4.0

Received: 21 November 2023 / Accepted: 25 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Design patterns of deep reinforcement learning models for job shop
scheduling problems

Shiyong Wang1 · Jiaxian Li1 · Qingsong Jiao2 · Fang Ma3

1 3

http://orcid.org/0009-0006-6730-0587
http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-024-02454-8&domain=pdf&date_stamp=2024-7-14

Journal of Intelligent Manufacturing

machine can be queued in different ways if they come from
different jobs. However, the feasible scheduling solutions
generally differ in performance metrics such as makespan,
tardiness, machine utilization, energy consumption, and
carbon emission. This leaves space for a scheduling solver
to optimize a given performance indicator or indicator com-
bination. Therefore, production scheduling is an important
production optimization technique.

JSSPs are inherently a subclass of NP-hard combinato-
rial optimization problems (Garey et al., 1976). For simple
and small-scale problems, optimal solutions can be obtained
using either the exact mathematical models or the exhaustive
methods. On the other hand, approximate methods, e.g., heu-
ristic rules (Panwalkar & Iskander, 1977) and meta-heuristics
(Kato et al., 2018; Parjapati & Jain, 2015), are widely used to
search for suboptimal solutions to complicated or large-scale
problems as they can trade off efficiency and performance. The
above-mentioned approximate methods are highly adaptable,
but they cannot generalize solving experience to new problems,
which means the solving experience cannot be reused to facili-
tate the solving of a different scheduling instance. To overcome
this drawback, deep reinforcement learning (DRL) (Arulkuma-
ran et al., 2017) based scheduling methods have attracted the
researchers’ interest due to their outstanding advantages, more
specifically, fast computation and strong generalization ability
(Li et al., 2023).

The DRL models have some common components, i.e.,
agent, environment, state, action, and reward. These compo-
nents need specific designs when constructing DRL models
for JSSP problems. In this paper, typical design patterns for
the DRL scheduling models were identified and compared by
reviewing representative literature. A DRL scheduling model
needs training to become an applicable DRL scheduling solver.
Therefore, the architecture and procedure of training deep rein-
forcement learning scheduling models and applying resultant
scheduling solvers were established as well. Furthermore,
the statistical analysis of the typic design patterns and pattern
combinations was performed to highlight the popularity. The
key evaluation indicators were summarized and the promising
research areas were outlined to promote the research and appli-
cation of DRL-based scheduling methods. This review pro-
vides insight to perfect the design of DRL scheduling models
for the JSSP problems and inspires innovative DRL scheduling
models for a wider range of scheduling problems.

Review process

This section describes in detail the review process including
the objective, the search methods, the inclusion and exclu-
sion criteria, and the search results. The results of this sec-
tion screen out several related recent high-quality research

articles for the follow-up analysis, which in turn enables us
to answer the objective questions in the conclusion section.

Objective (review questions)

The question of this review is “What are the optional design
patterns of DRL models when solving the JSSPs?” and it
aims to shape a framework to facilitate the design and com-
parison of DRL models used to solve the JSSPs. Specific
objectives are:

To recognize which design patterns have been applied to
each component of a DRL model that is specially designed
for solving the JSSPs.

To rank the popularity of the pattern combinations of
the DRL models that are specially designed for solving the
JSSPs.

To outline the further application of DRL models to solve
production-related problems.

Search methods for identification of studies

Aveyard et al. (2016) state that it is important to use a sys-
tematic search strategy to retrieve all the relevant materials to
answer the review questions. Similarly, Smith et al. (2011) also
point out that an appropriate literature search method is the
foundation of correct information retrieval and can determine
whether the systematic review is successful or not. This com-
prehensive search method is not only essential to guarantee that
the review author has identified and located the related primary
research as many as possible, but can ensure that the sample
is as unbiased and transparent as possible as well (Bettany-
Saltikov, 2012). Therefore, both electronic searches and hand
searches were applied to maximize the quantity of literature.

Search terms

In order to search as widely as possible, it is necessary to
identify as many synonyms that have the same meaning as
the key terms as possible (Bettany-Saltikov, 2012). What is
more, wildcard characters are also recommended to be used
to account for different spellings or terminologies to search
as much literature as possible (Aromataris & Riitano, 2014).

As shown in Table 1, the search terms were divided into
three parts. The “Methods” terms listed general concepts
related to deep reinforcement learning, the “Algorithm”
terms presented the implementation varieties of the DRL
methods, and the “Problems” terms limited the application
of DRL to the production scheduling problems. The key-
words in each column were used with the Boolean operator
OR, and then three columns were combined as “(Method
OR Algorithm) AND Research subject”.

1 3

Journal of Intelligent Manufacturing

Scientific and technological database

The following electronic databases were searched: Web of
Science, EI-Village, SCOPUS, IEEE/IEE, Springer, and
Wiley, as these databases contain a variety of engineering-
related articles and are accessible from the authors’ facility.

Backward/forward search

Based on the review structure proposed by Webster and
Watson (2002), backward/forward search is an important
supplement to keyword search, capable of identifying inter-
disciplinary literature that extends beyond the scope of a
user-defined search. Therefore, after applying the inclusion
and exclusion criteria, the remaining papers were processed
using a backward/forward search to find more related
papers.

Inclusion and exclusion criteria

Inclusion criteria, also termed eligibility criteria, indicate what
specific traits a study should have if it can be included in the
review. By contrast, exclusion criteria refer to the attributes
that make the studies unqualified for inclusion (Boland et al.,
2017). The clear inclusion and exclusion criteria are beneficial
for focusing on the review question and selecting studies more
appropriately. For this review, studies are selected based on the
following inclusion and exclusion criteria.

Regions, languages, and published date

This review did not limit the regions of the studies; there-
fore, studies all over the world were considered within the
scope of inclusion. However, it was impractical to translate
papers published in other languages into English. Consider-
ing the significant developments of DRL since 2013, only

English literature published between 2013 and 2023 was
included.

2.3.2 Types of studies

The papers categorized as “Article”, “Conference paper”
or “Meeting” were included to ensure a thorough investi-
gation of original research findings, but those published in
non-peer-reviewed journals or conferences were excluded
to guarantee the research quality.

Types of methods and algorithms

DRL and its related algorithms (e.g., Deep Q-learning) are
more sophisticated than traditional reinforcement learning
and the related algorithms (e.g., Q-learning). Due to the
high complexity of JSSPs, only papers that use DRL and its
related algorithms were included.

Types of problems

JSSP is a specific type of production scheduling problem
that can cover the majority of current production settings.
Although the more complex flexible job-shop schedul-
ing problem (FJSP) has already been identified, very few
papers use DRL to solve FJSPs. Therefore, only JSSPs were
included.

Types of data

To enable comparison and verification, the papers using
publicly available or generated datasets were included, and
those validated only in specific production scenarios were
excluded.

Results of the search

A total of 67,081 studies were retrieved through several
different databases (149 from SCOPUS, 8103 from EI-Vil-
lage, 186 from Web of Science, 4726 from IEEE/IEE, 966
from Springer, and 52,951 from Wiley). As shown in Fig. 1
(adapted from the PRISMA Group (Moher et al., 2009),
after applying the inclusion and exclusion criteria and back-
ward/forward search, a total of 44 papers remained.

DRL-based scheduling for job-shop
scheduling problem

The mathematical model of JSSP and the execution process
of DRL scheduling models are presented in this section.
The terms and symbols can then be used in the following

Table 1 Search terms
Methods Algorithms Problems
deep reinforcement
learning

OR deep q-network AND production
scheduling

DRL DQN shop
scheduling

reinforcement
learning

proximal policy
optimization

job-shop
scheduling
problem

RL PPO JSSP
machine learning actor-critic flexible

job-shop
scheduling

artificial
intelligence

AC FJSP

intelligent DDPG

1 3

Journal of Intelligent Manufacturing

Taking a 3× 3 JSSP as an example, the Mk for and the
pi,j of each operation are given in Table 2. The disjunctive
graph shown in Fig. 2(a) utilizes the directed arcs to illus-
trate the operation order of the jobs. The undirected arcs
are used to present the share of machines among different

sections. In this section, the formulation of JSSP is intro-
duced firstly, to make sense of the scheduling concepts and
principles that are used subsequently. Then a more detailed
description of the DRL-based solving model for the sched-
uling problem formulated above is provided.

Formulation of job-shop scheduling problem

A JSSP scheduling instance deals with a job set J consist-
ing of |J | jobs. A job Ji ∈ J has ni operations, while
Oi,j denotes the j th operation of Ji . Therefore, all the
operations belonging to J form an operation set O with
|O| =

∑|J |
i=1 ni operations. A set of machines, M , compris-

ing |M| machines, is prepared to process the operations.
Therefore, the JSSP size is generally defined as |J | × |M|
. The scheduling solvers aim to determine the start time Si,j ,
and the completion time Ci,j = Si,j + pi,j for each operation
Oi,j , where the pi,j denotes the processing time of operation
Oi,j .

Table 2 A JSSP scheduling instance
Job Due time Operation Available Mk and

corresponding pi,j
M1 M2 M3

J1 20 O1,1 2 -- --

O1,2 -- 3 --

O1,3 -- -- 5

J2 15
O2,1

3 -- --
O2,2 -- -- 3

O2,3 -- 3 --

J3 25 O3,1 -- 3 --

O3,2
4 -- --

O3,3 -- -- 3

Fig. 1 Paper screening

1 3

Journal of Intelligent Manufacturing

a feasible scheduling solution is generated after several
iterations.

The Environment is a temporary scheduling solution
(TSS), i.e., an initial scheduling solution, an incomplete
scheduling solution, or a complete scheduling solution
under optimization. The state is the Environment descrip-
tion while the current state st is generated by the state gen-
eration function included in the analysis link based on the
data sampled from the Environment:

st = s (sensations) (1)

where sensations denotes the data sampled via the percep-
tion link.

The role of the decision link is to select an action at cor-
responding to the state st using the policy function πθ :

p (at) = πθ (at| st) (2)

where p (at) is the probability of the action at being
selected. The policy function πθ is a probability distribution
function with respect to state st and action at . After the
action at is executed on the Environment, the TSS will be
updated through the control and execution links. Finally, the
state is transferred from the current st to the next st+1, and
the reward rt is produced.

The reward rt indicates the change of the scheduling
objective between the adjacent decision steps t and t− 1

operations. Once the scheduling solver queues the sharing
operations, the Si,j and Ci,j of Oi,j can be determined by
a specific decoding algorithm. The result is generally visu-
alized via a Gantt chart, as shown in Fig. 2(b), where the
makespan, Cmax = max

i
Ci,ni , is 16, which is the end time of

the latest finished operation, O3,3 .

Architecture and procedure of deep reinforcement
learning-based scheduling

A DRL scheduling model features a Markov decision pro-
cess (MDP) (Sutton & Barto, 2018) with parametric equa-
tions, and the parameters are assigned values during model
training process. Therefore, the DRL scheduling model
becomes an applicable scheduling solver after training. The
architecture (Li et al., 2023) and execution process of a DRL
scheduling solver is illustrated in Fig. 3. A cycle between
the Agent and the Environment is established through five
links: perception, analysis, decision making, control, and
execution. The Agent obtains raw information from the
Environment via the perception module and concludes the
state and reward through the analysis module. In the next
step, the agent selects an action based on the state via the
decision-making module and supervises the execution of
the chosen action through the control and execution mod-
ules. Therefore, the Agent interacts with the Environment
repeatedly updating the state, action, and reward; this way,

Fig. 3 The DRL production scheduling process

Fig. 2 Graph representation and scheduling solution of the JSSP
instance in Table 2. (a) Disjunctive graph for the inter-operation rela-
tionship. (b) Scheduling solution Gantt chart

1 3

Journal of Intelligent Manufacturing

Typical design patterns of DRL components

A DRL scheduling model mainly comprises five compo-
nents: an Agent, an Environment, a state set, an action set,
and a reward function. The typical design patterns of each
component are described in the following subsections.

Design patterns of the Agent

The DRL is a sequential decision process consisting of mul-
tiple decision steps. Combining the state and action of each
step results in a trajectory τ :

τ = (s1, a1, s2, a2, . . . , sT−1, aT−1, sT) (6)

where T denotes the termination step; s1 and sT are the
initial and the terminate states, respectively.

The DRL optimization objective is to obtain the maxi-
mum cumulative reward R (τ):

R (τ) = r1 + r2 + · · · + rT−1 =

T−1∑

t=1

rt (7)

Currently, DRL algorithms can be divided into three catego-
ries: value-based (Wang et al., 2016; Van et al., 2016), pol-
icy-based (Sutton et al., 1999), and actor-critic (Bhatnagar
et al., 2009). The design patterns of the agent are closely
related to the DRL algorithm classification.

Value-based agent

A value function refers to either the state value function
Vπ (st) or the state-action value function Qπ (st, at) , indi-
cating the R (τ) expectation obtained from the state st and
the state-action pair (st, at) , respectively. Therefore, Vπ (st)
can be used for the comparison of states, and Qπ (st, at) is
further used for the action comparison of the same state.

The value-based agent consists of two parts: one is a
policy function (e.g., the ε -greedy policy) and the other is a
value function, as shown in the ‘Structure’ row of Table 3.
The ε -greedy policy selects the action for which Qπ (st, at)

generated by the reward generation function in the analysis
link:

rt = r (sensations) (3)

As shown in Eq. 4, the next state st+1 is determined with the
probability p (st+1) defined as:

p (st+1) = p (st+1| st, at) (4)

where p (st+1| st, at) is a probability distribution function of
components st , at , and st+1, reflecting the randomness of
TSS. It should be noted that p (st+1| st, at) reflects the inher-
ent Environment characteristic – it is not controllable from
the outside, i.e., by the Agent. Therefore, the Agent must
find a well-matched policy other than change p (st+1| st, at)
. By iterating the above-presented process until the stop
criterion is satisfied, a feasible scheduling solution will be
generated.

The training process resembles the above-described
application process. However, training a DRL scheduling
model does not focus on finding a feasible solution for a
specific scheduling instance. Instead, it starts with a ran-
domly initialized policy function πθ , which is continuously
optimized through the Agent-Environment interaction under
several scheduling instances to sample a large amount of
data (st, at, rt, st+1). Consequently, these sampled data are
used to optimize πθ by updating the parameter set θ :

θi+1 = θi + f (st, at, rt, st+1) (5)

By repeatedly sampling data and updating the parameters,
θ will converge towards the optimal value θ∗ , which corre-
sponds with the optimal policy πθ∗ . In the application stage,
πθ∗ is directly adopted, remaining unchanged, to generate a
feasible solution for a given scheduling instance. However,
as the optimal policy πθ∗ is obtained using training instances
that differ from the application instances, πθ∗ may present a
suboptimal solution rather than the optimal one.

Table 3 Comparison of the DRL
Agent

1 3

Journal of Intelligent Manufacturing

Partial solution-based environment

The DRL scheduling model successively queues the opera-
tions of a given scheduling instance. As shown in Fig. 4(a),
one operation is selected in the first decision step and another
operation is selected in the second step, and so forth. There-
fore, |O| steps are needed to determine a feasible schedul-
ing solution. The partial solution design pattern is adopted
by most studies (Wang et al., 2021b); therefore, design pat-
terns of state, action, and reward are only elaborated for this
pattern if not specifically stated.

Whole solution-based environment

A complete and feasible TSS is initialized randomly (Palom-
barini & Martinez, 2021) or by some traditional scheduling
methods, e.g., metaheuristic algorithms (Gu et al., 2023) and
heuristic rules (Chen & Tian, 2018). At each decision step,
DRL scheduling model generates a new TSS by modifying
the previous one, and both solutions are complete feasible
solutions, as shown in Fig. 4(b). To solve the rescheduling
problem, Palombarini and Martinez (2021) randomly ini-
tialized the Gantt chart, and then they used DRL to modify
the positions and the start time of the selected operations.
Magalhães et al. (2021) initialized the operation sequence
with a meta-heuristic algorithm and used DRL to select
operations and change their position to update the TSS.

Comparison and discussion

The partial solution-based DRL scheduling features an
episodic task with a definite number of cycles, while the
whole solution-based DRL scheduling is a continuous task.
The number of cycles is determined by either the human

outputs the maximum value with probability 1-ε , while ran-
domly picking up an action with probability ε . The greater
ε value entices the Agent to explore unseen states, while the
lower value urges the Agent to exploit the known optimal
states. The optimal policy is eventually obtained by alterna-
tively tuning ε and updating the value function represented
as a deep neural network (DNN).

Policy-based agent

The value functions are not used in this design pattern. A
DNN is designed to fit the policy function instead of a ε
-greedy like random policy, as shown in Table 2 (see the
‘Structure’ row). Furthermore, the DNN is optimized by
maximizing R (τ).

Actor-critic agent

This design pattern can be regarded as a synthesis of the
value-based and the policy-based patterns. It uses two DNNs
to fit the policy function and the value function respectively,
and the two DNNs are updated alternately to achieve opti-
mal output (see Table 2, ‘Structure’ row).

Comparison and discussion

A comparison of the three types of agents is shown in Table 2.
Both the value-based and the actor-critic agent require two
parts: a policy function and a value function. However, the
former mechanism uses a random policy, while the latter
uses a DNN to approximate the policy function.

Both the policy-based and the actor-critic agents use a
DNN to approximate the policy function. However, they
are trained differently; the former optimizes the policy
function using the trajectory dependent R (τ) as the objec-
tive, while the latter utilizes the output of a value function,
which is in turn optimized via the trajectory insensitive data
(st, at, rt, st+1).

Design patterns of the environment

The Environment is represented by the temporary schedul-
ing solution, which updates and evolves during the DRL
scheduling process; a deliverable feasible scheduling
solution is determined when the stop criterion is satisfied.
Currently, there are two primary design patterns of the Envi-
ronment: partial solution-based Environment versus whole
solution-based Environment.

Fig. 4 Design pattern illustrations of the DRL Environment. (a) Partial
solution-based Environment. (b) Whole solution-based Environment

1 3

Journal of Intelligent Manufacturing

requirement does not have to be strictly satisfied, the state
design will greatly affect the decision-making quality. Cur-
rently, there are three main state design patterns: matrix-
based, statistic-based, and graph-based.

Matrix-based state

As shown in Fig. 5(a), the information related to the TSS is
classified and stored in several matrices, mainly describing
the job and machine features. Matrices resemble the RGB
channels of an image, meaning that the high-dimension state
features can be extracted via convolutional neural networks
(Liu et al., 2020; Wang et al., 2021a; Wu & Yan, 2023). Han
and Yang (2020) used three matrices to describe the infor-
mation regarding the processing time, scheduling results,
and machine utilization; matrix height and width corre-
sponded to the numbers of jobs and machines, respectively.

experience or the testing results. The solution is incomplete
during the partial solution-based DRL scheduling process;
thus, the accurate performance indicators cannot be deter-
mined, making the reward design more difficult.

In contrast, all the TSSs in the whole solution-based DRL
scheduling process are both complete and feasible, easing
the reward function design. Additionally, the classical pro-
duction scheduling methods such as genetic algorithms,
simulated annealing algorithms, and distribution estimation
algorithms, utilize complete TSSs. Therefore, it is easy to
integrate these algorithms with the whole solution-based
DRL scheduling (Du et al., 2022).

Design patterns of the state

In general, the MDP requires that the current state can fully
describe the Environment evolution process. Although this

Fig. 5 Design pattern illustra-
tions of the DRL state. (a)
Matrix-based state representa-
tion and processing. (b)
Graph-based state representation
and processing

1 3

Journal of Intelligent Manufacturing

Comparison and discussion

The matrix-based design pattern is intuitive and easy to cal-
culate; however, the information type limits make it difficult
to represent states of complicated problems. Additionally,
the matrix size is related to the scheduling problem scale
hindering the generalization of the DRL scheduling model
to a scheduling instance with the different size.

The statistic-based design pattern describes various attri-
butes which are quick to calculate. Compared to matrices,
statistical indicators have the potential to fully represent the
states of complicated scheduling problems. However, the
redundant use of statistical indicators will waste computa-
tional resources. Further, different problems might require
different indicators, weakening the generalization ability of
statistic-based state design. Unfortunately, there are no reli-
able methods for indicator selection, meaning that statisti-
cal indicators are designed mainly based on experience and
intuition.

Compared to the statistic-based design, the graph-based
design pattern extracts rich state features from the graph-
structured data. This way, the improper selection of statis-
tical indicators is avoided, which contributes to the DRL
generalization; however, two challenges remain. Firstly,
there are no available graph presentations for complicated
problems, e.g., flexible job-shop scheduling problem (Fat-
tahi et al., 2007), since the disjunctive graph has limited
expressiveness. Secondly, the adoption of graph neural net-
works requires significant computational resources and time
during the training stage (Park et al., 2021b).

Design patterns of the action

Actions are used to update the TSS. In the partial solution-
based DRL scheduling, executing an action corresponds to
selecting an operation for TSS, while in the whole solution-
based DRL scheduling, executing an action results in a new
TSS. Currently, there are four action design patterns: rule-
based, operation-based, attribute-based, and graph-based.

Rule-based action

In this pattern (Fig. 6(a)), the policy πθ outputs the possibil-
ity of each rule for the state st :

Statistic-based state

A set of statistical indicators describing the static and dynamic
job and machine attributes are defined as states (Chang et al.,
2022; Han & Yang, 2021; Luo et al., 2021b; Xu et al., 2022).
Statistical indicators are roughly divided into three categories:

Gross indicators reflect the total quantity of jobs, machines,
and other production factors in the scheduling environment
within a certain period. Indicators such as the total number of
machines, the total number of jobs, the total processing time,
and the total tardiness, among others, reflect the initial over-
all scale of the scheduling problem. Furthermore, indicators
such as the number of completed jobs, the number of remain-
ing operations, the remaining job processing time, their delay
time, and machine payloads reflect the current scheduling
environment in terms of work hours and load distribution.

Relative indicators like the completion rate of each job,
the delay rate, and the total machine utilization rate vary
with the scheduling process. They reflect the scheduling
progress in the form of ratios.

Average indicators such as the average processing time
of remaining operations, the average job completion rates,
and the average machine utilization rate balance the impact
of the problem scale on dynamic indicators.

Statistical indicators and matrices can be used together.
For example, Luo et al. (2021a) stated that statistical indi-
cators could describe numerical information regarding the
state, while the matrix could describe constraints among
production resources.

Graph-based state

Generally, the whole solution-based DRL scheduling model
uses the Gantt chart as the state (Ni et al., 2021), while its
partial counterpart utilizes the disjunctive graph or its vari-
ants (Liu & Huang, 2023; Song et al., 2023). The graph-
based state pattern extracts node and graph features as the
high-dimension state features (Seito & Munakata, 2020;
Zeng et al., 2022) based on graph learning methods, e.g.,
graph neural network (GNN) and attention mechanism, as
shown in Fig. 5(b). Compared to the multilayer perceptron
(MLP), GNN is more suitable for complicated problems
since it provides better implicit inductive bias in terms of
the extraction of state features (Hameed & Schwung, 2020).

Fig. 6 Design pattern illustrations of the DRL action. (a) Rule-based (b) Operation-based (c) Attribute-based (d) Graph-based

1 3

Journal of Intelligent Manufacturing

the predicted value set is calculated. This way, the operation
whose value set is closest to the predicted value set will be
selected as the action for the state st . The attributes gen-
erally have continuous value ranges (Park & Park, 2021a;
Samsonov et al., 2021) and the number of attributes is inde-
pendent of the number of operations, jobs, or machines.

Graph-based action

In this pattern (Fig. 6(d), the attributes of each operation are
structured in the form of graph, e.g., the disjunctive graph,
and their values are extracted using a graph learning method
(e.g., GNN). Next, the policy πθ outputs the possibility of a
given operation Oi,j for a state-operation pair (Chen et al.,
2022; Elsayed et al., 2022; Yuan et al., 2023):

p (Oi,j) = πθ(st, attr_value(Oi,j)) , i = 1 . . . n, j = ni (11)

where attr_value (Oi,j) is the attribute value of the opera-
tion Oi,j .

Comparison and discussion

The operation-based action pattern is primitive. The
rules and attributes have definite semantics, contribut-
ing to improve the interpretability of the DRL decision
process. However, the rules and attributes are in most
cases selected based on empirical knowledge; therefore,
designing a set of rules or attributes with strong optimi-
zation ability and wide adaptation to various scheduling
problems remains a challenge. The graph-based action
uses the GNN to extract operation features based on the
initially defined attributes and graph, lessening the attri-
bute selection recline.

In the rule-based and attribute-based action patterns, the
action should be mapped to operations in a way that an oper-
ation is selected based on the winning rule or the predicted
attribute value set. In contrast, the operation-based and the
graph-based action patterns directly output operation possi-
bilities; therefore, an operation can be selected in a simpler
way.

The rule-based, the attribute-based, and the graph-based
action designs are all independent of the scheduling prob-
lem scale, which contributes to the generalization ability. In
contrast, the operation-based action design is coupled with
the number of jobs or operations. To overcome this problem,
recurrent neural networks (RNNs) are often adopted in the
literature (Monaci et al., 2021; Ren et al., 2020). However,
the states are mapped to the serial number of operations in
the operation-based action design. Consequently, the encod-
ing method will affect scheduling performance, which con-
tributes another factor to harm the generalization ability.

[p (Rule1) , p (Rule2) , . . .)] = πθ(st) (8)

where
∑

l=1 p (Rulel) = 1. Consequently, the rule with
the maximum probability will be selected as the action for
the state st . Following the action execution, an operation
will be selected. The number of rules is independent of the
number of operations, jobs, or machines. The primitive or
compound heuristic rules, such as the shortest processing
time (SPT) (Lin et al., 2019; Zhao et al., 2021; Sun et al.,
2023) and genetic-programming-based rules (G&P) (Li et
al., 2022; Luo et al., 2021c) are generally used with the
partial solution. In contrast, the manipulation methods such
as crossover and mutation that are borrowed from genetic
algorithms can be used to update the whole solution (Chen
et al., 2020).

Operation-based action

In this pattern (Fig. 6(b)), the policy πθ outputs the possibil-
ity of each operation for the state st :
[
p (O1,1) , p (O1,2) , . . . , p (O1n1) , . . . , p

(
O|J |n|J |

)
] = π

θ

(
st) (9)

where
∑|J |

i=1

∑ni
j=1p (Oi,j) = 1. In this all-operation design,

the action set size is equal to the number of operations (Lee
et al., 2020; Workneh & Gmira, 2023). Consequently, the
operation with the maximum probability will be selected as
the action for the state st .

It should be noted that at any decision step, only the first
unscheduled operation of each job can be the scheduling
candidate. This feature enables a variant of all-operation-
based action design, i.e., the partial-operation-based design
(Liao et al., 2023; Tassel et al., 2021; Turgut & Bozdag,
2020), which only selects feasible operations as πθ outputs.
Therefore, the size of the action set in the partial-operation
design is no greater than the number of jobs. This is because
only the unfinished jobs have unscheduled operations and
each unfinished job contributes only one candidate opera-
tion (i.e., its first unscheduled operation)

Attribute-based action

In this pattern (Fig. 6(c)), some attributes are selected to
describe operations, and each operation has a definite value
set for the attribute set. The policy πθ outputs the predicted
value of each attribute under the state st :

[value (Attr1) , value (Attr2) , . . .] = πθ(st) (10)

where value (Attri) denotes the output value of Attri .
Thereafter, a distance between the operation value set and

1 3

Journal of Intelligent Manufacturing

Finally, the cumulative reward R (τ) can be obtained
according to Eq. (7):

R (τ) = CLB
max (s1)− CLB

max (sT) = CLB
max (s1)− Cmax (15)

where CLB
max (s1) is a constant for a given scheduling instance

as it is determined in the initial state in which no operation
has been scheduled; CLB

max (sT) is determined in the last state
where a complete scheduling solution is resolved so that
CLB

max (sT) is exactly the makespan Cmax . Therefore, maxi-
mizing R (τ) is consistent with minimizing Cmax .

Final value-based reward

This pattern suits the whole solution-based DRL schedul-
ing, where the TSS is both complete and feasible so that
the actual optimization objective values can be obtained and
used to design the reward function. For example, taking the
makespan Cmax (t) as the optimization objective, the imme-
diate reward rt can be designed as:

rt = Cmax (st)− Cmax (st+1) , t = 1 . . . T − 1 (16)

Ni et al. (2021) noticed that the above-presented reward
function tended to neglect the long-term effect of an action
in the way that an action may still positively contribute to
R (τ) even if its rt is lower or negative. Therefore, it is
advised to reshape the immediate rewards; an example is
described in Fig. 7.

Cmax tends to fluctuate rather than monotonically
change during the training as shown in Fig. 7. Reward
reshaping first figures out a set of minimal points
maintaining a strict monotonic decrease relationship:

Design patterns of the reward

In the DRL, a reward is a scalar that can be either posi-
tive, negative, or zero, reflecting the immediate effect of the
action executed in the current state. It must be related to the
optimization objectives of the underlying scheduling prob-
lem so that maximizing cumulative reward corresponds to
optimizing the objectives. Currently, there are three primary
reward design patterns: temporary value-based, final value-
based, and discrete value-based.

Temporary value-based reward

This pattern applies to the partial solution-based DRL
scheduling, where the actual optimization objective values
cannot be obtained until the last step since the TSS is not
complete (i.e., there are unscheduled operations). There-
fore, the reward in the partial solution-based DRL schedul-
ing will be quite sparse if it relies on the actual optimization
objective values, as the reward can only be calculated once
for each episode other than each step. Reward sparsity will
cause difficulties in the convergence of the DRL algorithm
(van Ekeris et al., 2021; Zhao et al., 2022). To overcome
this problem, the estimated optimization objective values
are used instead, aiming to generate an immediate reward
for each step.

Zhang et al. (2020) proposed a method for computing
the lower-bound completion time CLB(Oi,j, st) of operation
Oi,j at state st corresponding the step t . For the sched-
uled operations, CLB(Oi,j, st) equals to the completion time
determined by the scheduling decoding algorithm. For the
unscheduled operation Oi,j+1, CLB (Oi,j+1, st) is calculated
as:

CLB (Oi,j+1, st) = CLB (Oi,j, st) + pi,j+1, i = 1 . . . n, j = n′ . . . ni − 1 (12)

where CLB (Oi,0, st) = 0 and n′ denotes the number of
scheduled operations. Using iterative calculations, the
lower-bound completion time of every operation can be
determined.

Next, the lower-bound makespan in the state st is deter-
mined as follows:

CLB
max (st) = max

i
CLB (Oi,ni, st) , i = 1 . . . n (13)

The immediate reward rt obtained in state st is defined as:

rt = CLB
max (st)− CLB

max (st+1) , t = 1 . . . T − 1 (14)

Fig. 7 History of Cmax

1 3

Journal of Intelligent Manufacturing

Statistical analysis of DRL design patterns

The authors so far identified three Agent design patterns,
two Environment design patterns, three state design pat-
terns, four action design patterns, and three reward design
patterns, as summarized in Table 4.

A total of 216 different combinations can be constructed
by the combination law. However, some of them are not
applicable. Table 5 presents the design patterns used in the
references, reflecting the popularity of each design pattern
and pattern combination.

Statistical analysis of individual patterns

Figure 8 summarizes the number of times each design
pattern occurs in Table 5. The value-based agent is the
most popular because of the broad impact of DQN and
its excellent performance on discrete tasks. In terms of
the Environment, the partial solution-based design is
adopted by most studies. Consequently, the temporary
value-based reward is used in a greater proportion. As for
the state, the statistic-based design is the most prevalent,
while the rule-based and operation-based designs are the
most common action design patterns. The popularity is
affected by the characteristics which are compared in
Sect. 3. Besides, we believe that the current research
focuses on the development efficiency and interpretability
of DRL-based scheduling models.

The end-to-end architecture for a partial solution-based
Environment is more flexible than the iterative optimization
required by the whole solution-based Environment. The
statistic-based state design requires only an MLP network
in most cases consuming less computational resources com-
pared to GNNs and CNNs. Besides, the rule-based action
design can provide a reliable interpretation of the output
of the DRL scheduling model. The temporary value-based
reward design can intuitively clarify the link between the
optimization direction of the scheduling model and the
scheduling objectives.

[(t1, Cmax (t1)), (t2, Cmax (t2)) . . . (ta, Cmax (ta))]

, where t1 < t2 < t3 < · · · < ta and
Cmax (t1) < Cmax (t2) < · · · < Cmax (ta) . In the next step, it
defines the immediate reward rt as follows:

rt =
Cmax (tp)− Cmax (tp+1)

tp+1 − tp
, tp ≤ t < tp+1, p = 0 . . . a (17)

where tp denotes the time step when the p th minimal point
appears so that several time steps (at least two) may expire
from tp to tp+1 .

Then, the cumulative reward R (τ) can be obtained via
Eq. (7):

R (τ) = Cmax (1)− Cmax (T) (18)

where Cmax (1) and Cmax (T) denote the TSS makespan at
the first and the last decision steps, respectively. Thus, R (τ)
will be maximized by gradually reducing Cmax of the TSS
along with the DRL advance, which is consistent with the
scheduling problem optimization objectives.

Discrete value-based reward

In this pattern, the reward value range is a set of discrete
values. Therefore, the mapping rules of these discrete val-
ues to the optimization objectives are the essence of the
reward design. Generally, both the direction and magnitude
of objective variation are considered. Luo (2020) calculated
the reward according to tardiness and machine utilization;
the rewards + 1, -1, or 0 were given based on the value com-
bination patterns of these two indicators.

Comparison and discussion

The temporary and final value-based rewards can be
directly and tightly coupled with some optimization
objectives. Therefore, the cumulative reward can be used
to assess whether the reward design is reasonable. The
reward function is reasonable if maximizing the cumu-
lative reward corresponds to optimizing the scheduling
objectives. On the other hand, the discrete value-based
reward is loosely coupled with the optimization objec-
tives since it uses only a few discrete values to code the
changes of optimization objective. Therefore, the discrete
value-based reward is quite a coarse-grained design pat-
tern; however, it is applicable to both partial and whole
solution-based DRL scheduling. On the contrary, the
temporary value-based and final value-based rewards
suit the partial solution and whole solution-based DRL
respectively.

Table 4 A summary of design patterns of DRL scheduling model
Component Pattern
Agent Value-based Policy-based Actor-Critic
Environ-
ment

Partial
solution-
based

Whole
solution-based

State Matrix-
based

Statistic-based Graph-based

Action Rule-based Operation-
based

Attribute-based Graph-
based

Reward Temporary
value-based

Final
value-based

Discrete
value-based

1 3

Journal of Intelligent Manufacturing

statistic-based state design, an operation-based action
design, and a temporary value-based reward design.

 ● FPC2: the value-based agent with a partial solution de-
sign, a statistic-based state design, an rule-based action
design, and a temporary value-based reward design.

 ● FPC3: the policy-based agent with a partial solution de-
sign, a graph-based state design, a graph-based action
design, and a temporary value-based reward design.

Statistical analysis of full pattern combinations

The 44 references shown in Table 5 involve only 28 pattern
combinations with different ratios as shown in Fig. 9. The
three most popular combinations are (in descending order):

 ● FPC1 (the first full pattern combination): the pol-
icy-based agent with a partial solution design, a

Table 5 DRL design patterns shown in the references
Reference Agent Environment State Action Reward
Chang et al. (2022) Value-based Partial solution-based Statistic-based Rule-based Temporary value-based
Chen et al. (2020) Value-based Whole solution-based Statistic-based Rule-based Final value-based
Chen et al. (2022) Policy-based Partial solution-based Graph-based Graph-based Final value-based
Chen and Tian (2018) Actor-Critic Whole solution-based Graph-based Rule-based Final value-based
Du et al. (2022) Value-based Whole solution-based Statistic-based Rule-based Discrete value-based
Elsayed et al. (2022) Actor-Critic Partial solution-based Graph-based Graph-based Temporary value-based
Gu et al. (2023) Value-based Whole solution-based Statistic-based Rule-based Final value-based
Gebreyesus et al. (2023) Policy-based Partial solution-based Graph-based Graph-based Temporary value-based
Hameed and Schwung (2020) Actor-Critic Partial solution-based Graph-based Graph-based Temporary value-based
Han and Yang (2020) Value-based Partial solution-based Matrix-based Rule-based Temporary value-based
Han and Yang (2021) Policy-based Partial solution-based Statistic-based Operation-based Final value-based
Lee et al. (2020) Value-based Partial solution-based Statistic-based Operation-based Temporary value-based
Li et al. (2022) Value-based Partial solution-based Statistic-based Rule-based Temporary value-based
Liao et al. (2023) Policy-based Partial solution-based Statistic-based Operation-based Temporary value-based
Lin et al. (2019) Value-based Partial solution-based Statistic-based Rule-based Temporary value-based
Liu et al. (2020) Actor-Critic Partial solution-based Matrix-based Rule-based Temporary value-based
Liu and Huang (2023) Policy-based Partial solution-based Graph-based Graph-based Temporary value-based
Luo et al. (2021a) Policy-based Partial solution-based Statistic-based Operation-based Temporary value-based
Luo (2020) Value-based Partial solution-based Statistic-based Rule-based Discrete value-based
Luo et al. (2021b) Value-based Partial solution-based Statistic-based Rule-based Discrete value-based
Luo et al. (2021c) Policy-based Partial solution-based Statistic-based Rule-based Discrete value-based
Magalhães et al. (2021) Value-based Whole solution-based Statistic-based Operation-based Discrete value-based
Monaci et al. (2021) Policy-based Partial solution-based Statistic-based Operation-based Temporary value-based
Ni et al. (2021) Policy-based Whole solution-based Graph-based Rule-based Final value-based
Palombarini and Martinez (2021) Policy-based Whole solution-based Graph-based Rule-based Final value-based
Park and Park (2021a) Actor-Critic Partial solution-based Statistic-based Attribute-based Temporary value-based
Park et al. (2021b) Policy-based Partial solution-based Graph-based Graph-based Temporary value-based
Ren et al. (2020) Actor-Critic Partial solution-based Statistic-based Operation-based Final value-based
Samsonov et al. (2021) Actor-Critic Partial solution-based Statistic-based Attribute-based Final value-based
Seito and Munakata (2020) Value-based Partial solution-based Graph-based Graph-based Final value-based
Song et al. (2023) Value-based Partial solution-based Graph-based Rule-based Temporary value-based
Sun et al. (2023) Value-based Partial solution-based Matrix-based Rule-based Temporary value-based
Tassel et al. (2021) Policy-based Partial solution-based Statistic-based Operation-based Temporary value-based
Turgut and Bozdag (2020) Value-based Partial solution-based Statistic-based Operation-based Temporary value-based
van Ekeris et al. (2021) Policy-based Partial solution-based Statistic-based Operation-based Final value-based
Wang et al. (2021a) Policy-based Partial solution-based Matrix-based Operation-based Temporary value-based
Workneh and Gmira (2023) Value-based Partial solution-based Statistic-based Operation-based Temporary value-based
Wu and Yan (2023) Policy-based Partial solution-based Matrix-based Rule-based Temporary value-based
Xu et al. (2022) Value-based Partial solution-based Statistic-based Rule-based Temporary value-based
Yuan et al. (2023) Policy-based Partial solution-based Graph-based Graph-based Temporary value-based
Zeng et al. (2022) Value-based Partial solution-based Graph-based Rule-based Temporary value-based
Zhang et al. (2020) Policy-based Partial solution-based Graph-based Graph-based Temporary value-based
Zhao et al. (2022) Policy-based Partial solution-based Statistic-based Operation-based Temporary value-based
Zhao et al. (2021) Value-based Partial solution-based Statistic-based Rule-based Temporary value-based

1 3

Journal of Intelligent Manufacturing

and generalization of graph-based design patterns (Zhang
et al., 2020). However, very few graph presentations for
the production scheduling problems are available cur-
rently, which means new graph presentations are needed
to deal with the complex scheduling problems.

Evaluation indicators of DRL scheduling
models

The effect of DRL production scheduling models is gener-
ally evaluated using the following four metrics, i.e., optimi-
zation objective, efficiency, convergence and stability, and
generalization ability.

Optimization objective

Makespan, maximum/average tardiness, and maximum/
average machine utilization are commonly used schedul-
ing objectives. Their optimal extent determines the algo-
rithm effectiveness. It is difficult to obtain the optimal
value of the production scheduling objective since it is
a type of NP-hard problem. Therefore, DRL scheduling
methods are usually compared to heuristic rules, meta-
heuristic algorithms, and exact optimization methods
(e.g., integer programming and branch and bound) to
evaluate their optimization ability. Experimental results
provided in referenced studies show that the DRL sched-
uling methods are better than the heuristics rules and
roughly equivalent to the meta-heuristics algorithms.
Finally, they yield results that are rather close to the exact
optimization methods.

The remaining 25 pattern combinations account for approx.
70.4% and each of them is only adopted in one or two
studies.

All the components in the dominant combinations
FPC1, FPC2, and FPC3 utilize the popular design pat-
terns as shown in Fig. 8. The partial solution-based Envi-
ronment and the temporary value-based reward are most
often used together. The Actor-critic-based agent has
received less attention than the value-based or policy-
based agent. However, the Actor-critic-based agent can
take advantage of value functions to aid in policy optimi-
zation. It has also the ability to deal with both continuous
and discrete problems. In the future, the Actor-critic-
based agent has even greater potential to explore the per-
formance of scheduling models.

Furthermore, from FPC1 to FPC3, it can be seen
that the state and action design gradually evolved from
straightforward simple patterns to graph-based patterns.
Table 5 confirms that the publication dates of the graph-
based design patterns are newer than the other patterns.
Many research projects have demonstrated the superiority

Fig. 9 Ratio of full pattern combinations

Fig. 8 Statistics of individual patterns

1 3

Journal of Intelligent Manufacturing

instances. It is also rather compatible with emerging IT
technologies such as cloud computing, big data, and digi-
tal twins. Therefore, integrating DRL algorithms with smart
manufacturing technologies to solve new scheduling prob-
lems or enable new properties seems a promising scheme.

Flexible job shop scheduling problems

Currently, DRL production scheduling studies mainly focus
on the classical job shop scheduling problems. However,
the flexible job shop scheduling (FJSP) is more in line with
the consumption trends characterized by mixed-flow pro-
duction of multi-variety, small-lot, and customized products
(Kocsi et al., 2020), as the FJSP allows high flexibilities
in both manufacturing resources and jobs. However, the
FJSP also introduces great complexities. The jobs in a FJSP
instance generally require different operations and/or differ-
ent operation sequences and the operations have a many-
to-many relationship with the machines, i.e., an operation
can be processed by multiple machines and a machine can
process multiple operations. Therefore, DRL scheduling
methods for FJSP have both theoretical value and broad
application prospects.

Multi-objective optimization problems

Production scheduling has an important role in multi-objec-
tive optimization (Mokhtari & Hasani, 2017); however,
these optimization objectives are generally contradictory
to each other. In other words, the improvement of one
objective might degrade others. The key to multi-objective
optimization problems is to achieve a trade-off between
the objectives to maximize the overall performance. As
one inherent property, DRL algorithms aim to maximize a
cumulative reward. Therefore, the optimization objectives
must be associated with the reward. However, the reward
is a simple one-dimensional scalar which limits its ability
to solve multi-objective optimization problems. Therefore,
a significant breakthrough is needed to develop DRL-based
multi-objective scheduling methods.

Multi-agent scheduling problems

The continuous advancement of vertical, horizontal, and
end-to-end integration will significantly increase the com-
plexity of the smart production system. Complex scheduling
problems may also involve collaborative decision making
and reliance from multiple parties (Ouelhadj & Petrovic,
2009). Therefore, it is difficult for a single agent to solve
scheduling problems quickly, effectively, and economically.
Consequently, the idea of multi-agent distributed comput-
ing and collaborative optimization provides an advanced

Efficiency

The algorithm execution speed affects the practical produc-
tion scheduling. As shown in Fig. 3, the DRL scheduling
methods comprise several links:

t = N (ts + tr + tπ + tce) (19)

Thus, the execution time t is equal to the number of epi-
sodes N times the sum of the state generation time ts , the
reward generation time tr , the policy decision-making time
tπ , and the action control and execution timetce .

The heuristic rules can quickly present a solution for a sched-
uling problem with no guarantee of the solution quality. The
meta-heuristic and exact optimization methods will generally
figure out a better solution when given a longer execution time
which however is unacceptable for a real production scenario.
DRL scheduling methods successfully trade off the efficiency
and quality due to their generalization ability. In other words,
the DRL scheduling methods can determine a better schedul-
ing solution than the heuristic rules, in a shorter time than the
meta-heuristic algorithms or the exact optimization methods.

Convergence and stability

The objective change curves concerning the training progress
can be obtained from TSSs to describe the algorithm execu-
tion process. For a minimum optimization problem, a decline
curve exhibits convergence, while a low amount of fluctua-
tion presents stability. Experimental results have shown that
the convergence and stability of DRL scheduling methods are
comparable to that of the meta-heuristic algorithms.

Generalization ability

DRL scheduling models should be trained using a set of
scheduling instances. After training, the DRL solvers can be
applied to solve new scheduling instances. The execution
time in the application stage is much lower than the training
time. Such behavior suggests that the DRL model can utilize
the learned experience to efficiently solve new scheduling
instances without model rebuilding and retraining. In con-
trast, the meta-heuristic algorithms solve scheduling prob-
lems independently, indicating that the experience cannot be
reused to facilitate the solution-seeking process.

Open issues

Among the available models and algorithms for solving
production scheduling problems, deep reinforcement learn-
ing is unique as it can be generalized to new scheduling

1 3

Journal of Intelligent Manufacturing

robustness to uncertainties and system perturbations, and
learning how to make optimal decisions in dynamic and
uncertain environments (Pahwa & Starly, 2021). Therefore,
DRL has great potential in this area.

Conclusion

Based on the review results, the objective-related review
questions can be answered. The related papers reflect that
the design of each DRL component, i.e., the Agent, the
Environment, the state, the action, and the reward, follows
two to four patterns when solving the JSSP. However, the
design patterns and pattern combinations have different lev-
els of popularity. The features and popularity summarized
in this review help developers form their specific design
scheme to cope with the underlying JSSPs.

Furthermore, it is necessary to deeply integrate deep
reinforcement learning algorithms with smart manufactur-
ing technologies to solve complicated production schedul-
ing problems. These include flexible job shop scheduling,
multi-objective optimization, multi-agent scheduling, and
self-adaptive scheduling. In addition, the DRL general-
ization ability requires further exploration in terms of the
underlying mechanism, the production scheduling specific
manifestation, and a comprehensive evaluation protocol.

This review mainly focuses on the DRL scheduling mod-
els for the job-shop scheduling problems due to the lack of
literature for other production scheduling problems. How-
ever, our classification of design patterns and pattern com-
binations can broadly inspire the design of DRL models for
advanced production scheduling problems.

Author contributions SW: Writing-Original Draft; Reviewing; Fund-
ing Acquisition; JL: Writing-Original Draft; Editing; Data Curation;
QJ: Supervision; Conceptualization; FM: Supervision; Investigation.

Funding This work was supported by the National Key R&D Program
of China (Grant No. 2020YFB1708500), the Guangdong Basic and
Applied Basic Research Foundation (Nos. 2023A1515012975 and
2022A1515240061), the Open Project Program of Fujian Key Lab-
oratory of Special Intelligent Equipment Measurement and Control,
Fujian Special Equipment Inspection and Research Institute, China
(No. FJIES2023KF12), and Characteristic and Innovative Project for
Guangdong Regular Universities (Grant No. 2021KTSCX005).

Data availability This is a review paper and the statistical analysis pre-
sented in the paper is based on the published literature. All original
data sources and analysis methods have been mentioned in the paper.
For further information, please contact the corresponding author.

Declarations

Competing interests The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

vision for solving complicated and large-scale problems.
Although studies on multi-agent DRL algorithms were car-
ried out (Waschneck et al., 2018; Lang et al., 2020), apply-
ing them to solve production scheduling problems remains
challenging.

Adaptive scheduling problems

Many scheduling algorithms are not applicable to practical
scenarios, especially to complex and large-scale problems,
even if they can greatly optimize key performance indica-
tors. There are multiple reasons behind this phenomenon;
for example, some algorithms require complex parameter
settings making it difficult for a user to carry out. The users
expect a scheduling solver to run and evolve without their
intervention. Therefore, the production scheduling solvers
should be, in addition to optimization ability and efficiency,
easy to use. It is possible to integrate DRL-based scheduling
algorithms with smart manufacturing technologies such as
digital twin (Fang et al., 2019) to reduce setting effort and
improve the adaptability (Moon et al., 2021).

DRL scheduling specific generalization theory

Most advantages of DRL production scheduling models
are related to their generalization ability (Gebreyesus et al.,
2023), which is an important characteristic distinguishing
deep reinforcement learning algorithms from meta-heuristic
algorithms. The generalization ability empowers a trained
DRL scheduling model to solve new scheduling instances
efficiently and effectively, although training a DRL model
may require both computational resources and time. How-
ever, currently available studies are exclusively focused on
the generalization of small-scale instances to large-scale
ones. Therefore, the complete DRL production schedul-
ing-specific generalization theory is necessary. It will also
enable new insights into the scheduling problems and the
DRL-based scheduling methods.

DRL-based cloud manufacturing resource
scheduling

Cloud manufacturing, as a service-oriented manufacturing
mode, aims to provide consumers with on-demand manu-
facturing services. In an advanced cloud manufacturing
environment, demand, supply, and production conditions
change dynamically, such as changes in orders, machine
breakdowns, or supply chain disruptions. Therefore,
resource scheduling in cloud manufacturing environments
is a complex problem. The DRL-based approach is able to
continuously improve its performance through self-learn-
ing and self-adaptive mechanisms, demonstrating strong

1 3

Journal of Intelligent Manufacturing

Hameed, M. S. A., & Schwung, A. (2020). Graph neural networks-
based scheduler for production planning problems using rein-
forcement learning. ArXiv preprint arXiv: 2009.03836. https://
doi.org/10.48550/arXiv.2009.03836

Han, B. A., & Yang, J. J. (2020). Research on adaptive job shop
scheduling problems based on dueling double DQN. Ieee Access
: Practical Innovations, Open Solutions, 8, 186474–186495.
https://doi.org/10.1109/ACCESS.2020.3029868

Han, B. A., & Yang, J. J. (2021). A deep reinforcement learning based
solution for flexible job shop scheduling problem. International
Journal of Simulation Modelling, 20(2), 375–386. https://doi.
org/10.2507/IJSIMM20-2-CO7

Kato, E. R. R., de Aguiar Aranha, G. D., & Tsunaki, R. H. (2018). A
new approach to solve the flexible job shop problem based on an
hybrid particle swarm optimization and random-restart hill climb-
ing. Computers & Industrial Engineering, 125, 178–189. https://
doi.org/10.1016/j.cie.2018.08.022

Kocsi, B., Matonya, M. M., Pusztai, L. P., & Budai, I. (2020). Real-
time decision-support system for high-mix low-volume produc-
tion scheduling in industry 4.0. Processes, 8(8), 912. https://doi.
org/10.3390/pr8080912

Lang, S., Behrendt, F., Lanzerath, N., Reggelin, T., & Müller, M. (2020).
Integration of deep reinforcement learning and discrete-event
simulation for real-time scheduling of a flexible job shop produc-
tion. In 2020 Winter Simulation Conference (WSC) (pp. 3057–
3068). IEEE. https://doi.org/10.1109/WSC48552.2020.9383997

Lee, S., Cho, Y., & Lee, Y. H. (2020). Injection mold production sus-
tainable scheduling using deep reinforcement learning. Sustain-
ability, 12(20), 8718. https://doi.org/10.3390/su12208718

Li, Y., Gu, W., Yuan, M., & Tang, Y. (2022). Real-time data-driven
dynamic scheduling for flexible job shop with insufficient trans-
portation resources using hybrid deep Q network. Robotics and
Computer-Integrated Manufacturing, 74, 102283. https://doi.
org/10.1016/j.rcim.2021.102283

Li, C., Zheng, P., Yin, Y., Wang, B., & Wang, L. (2023). Deep rein-
forcement learning in smart manufacturing: A review and pros-
pects. CIRP Journal of Manufacturing Science and Technology,
40, 75–101. https://doi.org/10.1016/j.cirpj.2022.11.003

Liao, Z., Chen, J., & Zhang, Z. (2023). Solving job-shop sched-
uling problem via deep reinforcement learning with atten-
tion model. Advances and trends in Artificial Intelligence.
Theory and applications (pp. 201–212). Springer. https://doi.
org/10.1007/978-3-031-36822-6_18

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Sil-
ver, D., & Wierstra, D. (2015). Continuous control with deep rein-
forcement learning. ArXiv Preprint arXiv, 150902971. https://doi.
org/10.48550/arXiv.1509.02971

Lin, C. C., Deng, D. J., Chih, Y. L., & Chiu, H. T. (2019). Smart manu-
facturing scheduling with edge computing using multiclass deep
Q network. IEEE Transactions on Industrial Informatics, 15(7),
4276–4284. https://doi.org/10.1109/TII.2019.2908210

Liu, C. L., & Huang, T. H. (2023). Dynamic job-shop scheduling prob-
lems using graph neural network and deep reinforcement learning.
IEEE Transactions on Systems Man and Cybernetics: Systems,
53(11), 6836–6848. https://doi.org/10.1109/TSMC.2023.3287655

Liu, C. L., Chang, C. C., & Tseng, C. J. (2020). Actor-critic deep rein-
forcement learning for solving job shop scheduling problems.
Ieee Access : Practical Innovations, Open Solutions, 8, 71752–
71762. https://doi.org/10.1109/ACCESS.2020.2987820

Luo, S. (2020). Dynamic scheduling for flexible job shop with new job
insertions by deep reinforcement learning. Applied Soft Comput-
ing, 91, 106208. https://doi.org/10.1016/j.asoc.2020.106208

Luo, P. C., Xiong, H. Q., Zhang, B. W., Peng, J. Y., & Xiong, Z. F.
(2021a). Multi-resource constrained dynamic workshop schedul-
ing based on proximal policy optimisation. International Journal

References

Aromataris, E., & Riitano, D. (2014). Constructing a search strategy
and searching for evidence. American Journal of Nursing, 114(5),
49–56. https://doi.org/10.1097/01.NAJ.0000446779.99522.f6

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A.
(2017). Deep reinforcement learning: A brief survey. IEEE Sig-
nal Processing Magazine, 34(6), 26–38. https://doi.org/10.1109/
MSP.2017.2743240

Aveyard, H., Payne, S. A., & Preston, N. J. (2016). A post-graduate’s
guide to doing a literature review in health and social care. Open
University.

Bettany-Saltikov, J. (2012). How to do a systematic literature review in
nursing: A step-by-step guide. Open University.

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., & Lee, M. (2009).
Natural actor–critic algorithms. Automatica, 45(11), 2471–2482.
https://doi.org/10.1016/j.automatica.2009.07.008

Boland, A., Cherry, M. G., & Dickson, R. (2017). Doing a systematic
review: A student’s guide (2nd ed.). SAGE Publications Ltd.

Chang, J., Yu, D., Hu, Y., He, W., & Yu, H. (2022). Deep reinforce-
ment learning for dynamic flexible job shop scheduling with ran-
dom job arrival. Processes, 10(4), 760. https://doi.org/10.3390/
pr10040760

Chen, X., & Tian, Y. (2018). Learning to perform local rewriting for
combinatorial optimization. ArXiv preprint arXiv: 1810.00337.
https://doi.org/10.48550/arXiv.1810.00337

Chen, R., Yang, B., Li, S., & Wang, S. (2020). A self-learning genetic
algorithm based on reinforcement learning for flexible job-shop
scheduling problem. Computers & Industrial Engineering, 149,
106778. https://doi.org/10.1016/j.cie.2020.106778

Chen, R., Li, W., & Yang, H. (2022). A deep reinforcement learning
framework based on an attention mechanism and disjunctive
graph embedding for the job shop scheduling problem. IEEE
Transactions on Industrial Informatics, 19(2), 1322–1331.
https://doi.org/10.1109/TII.2022.3167380

Du, Y., Li, J. Q., Chen, X. L., Duan, P. Y., & Pan, Q. K. (2022). Knowl-
edge-based reinforcement learning and estimation of distribution
algorithm for flexible job shop scheduling problem. IEEE Trans-
actions on Emerging in Topics Computational Intelligence, 7(4),
1036–1050. https://doi.org/10.1109/TETCI.2022.3145706

Elsayed, E. K., Elsayed, A. K., & Eldahshan, K. A. (2022). Deep rein-
forcement learning-based job shop scheduling of smart manu-
facturing. Computers Materials & Continua, 73(3), 5103–5120.
https://doi.org/10.32604/cmc.2022.030803

Fang, Y., Peng, C., Lou, P., Zhou, Z., Hu, J., & Yan, J. (2019). Digital-
twin-based job shop scheduling toward smart manufacturing.
IEEE Transactions on Industrial Informatics, 15(12), 6425–6435.
https://doi.org/10.1109/TII.2019.2938572

Fattahi, P., Saidi Mehrabad, M., & Jolai, F. (2007). Mathematical
modeling and heuristic approaches to flexible job shop schedul-
ing problems. Journal of Intelligent Manufacturing, 18, 331–342.
https://doi.org/10.1007/s10845-007-0026-8

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of
flow-shop and job-shop scheduling. Mathematics of Operations
Research, 1(2), 117–129. https://doi.org/10.1287/moor.1.2.117

Gebreyesus, G., Fellek, G., Farid, A., Fujimura, S., & Yoshie, O.
(2023). Gate-attention model with reinforcement learning for
solving dynamic job shop scheduling problem. IEEE Transac-
tions on Electrical and Electronic Engineering, 18(6), 932–944.
https://doi.org/10.1002/tee.23788

Gu, Y., Chen, M., & Wang, L. (2023). A self-learning discrete salp
swarm algorithm based on deep reinforcement learning for
dynamic job shop scheduling problem. Applied Intelligence, 53,
18925–18958. https://doi.org/10.1007/s10489-023-04479-7

1 3

https://doi.org/10.48550/arXiv.2009.03836
https://doi.org/10.48550/arXiv.2009.03836
https://doi.org/10.1109/ACCESS.2020.3029868
https://doi.org/10.2507/IJSIMM20-2-CO7
https://doi.org/10.2507/IJSIMM20-2-CO7
https://doi.org/10.1016/j.cie.2018.08.022
https://doi.org/10.1016/j.cie.2018.08.022
https://doi.org/10.3390/pr8080912
https://doi.org/10.3390/pr8080912
https://doi.org/10.1109/WSC48552.2020.9383997
https://doi.org/10.3390/su12208718
https://doi.org/10.1016/j.rcim.2021.102283
https://doi.org/10.1016/j.rcim.2021.102283
https://doi.org/10.1016/j.cirpj.2022.11.003
https://doi.org/10.1007/978-3-031-36822-6_18
https://doi.org/10.1007/978-3-031-36822-6_18
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.1109/TII.2019.2908210
https://doi.org/10.1109/TSMC.2023.3287655
https://doi.org/10.1109/ACCESS.2020.2987820
https://doi.org/10.1016/j.asoc.2020.106208
https://doi.org/10.1097/01.NAJ.0000446779.99522.f6
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1016/j.automatica.2009.07.008
https://doi.org/10.3390/pr10040760
https://doi.org/10.3390/pr10040760
https://doi.org/10.48550/arXiv.1810.00337
https://doi.org/10.1016/j.cie.2020.106778
https://doi.org/10.1109/TII.2022.3167380
https://doi.org/10.1109/TETCI.2022.3145706
https://doi.org/10.32604/cmc.2022.030803
https://doi.org/10.1109/TII.2019.2938572
https://doi.org/10.1007/s10845-007-0026-8
https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1002/tee.23788
https://doi.org/10.1007/s10489-023-04479-7

Journal of Intelligent Manufacturing

genetic algorithm approach. International Journal of Mathemati-
cal Computational Natural and Physical Engineering, 9, 41–47.
https://doi.org/10.5281/zenodo.1098021

Park, I. B., & Park, J. (2021a). Scalable scheduling of semiconduc-
tor packaging facilities using deep reinforcement learning. IEEE
Transactions on Cybernetics, 53(6), 3518–3531. https://doi.
org/10.1109/TCYB.2021.3128075

Park, J., Chun, J., Kim, S. H., Kim, Y., & Park, J. (2021b). Learning to
schedule job-shop problems: Representation and policy learning
using graph neural network and reinforcement learning. Inter-
national Journal of Production Research, 59(11), 3360–3377.
https://doi.org/10.1080/00207543.2020.1870013

Ren, J. F., Ye, C. M., & Yang, F. (2020). A novel solution to JSPS
based on long short-term memory and policy gradient algorithm.
International Journal of Simulation Modelling, 19(1), 157–168.
https://doi.org/10.2507/IJSIMM19-1-CO4

Samsonov, V., Kemmerling, M., Paegert, M., Lutticke, D., Sauermann,
F., Gutzlaff, A., Schuh, G., & Meisen, T. (2021). Manufacturing
control in job shop environments with reinforcement learning.
In Proceedings of the 13th International Conference on Agents
and Artificial Intelligence (ICAART) (pp. 589–597). https://doi.
org/10.5220/0010202405890597

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O.
(2017). Proximal policy optimization algorithms. ArXiv preprint
arXiv: 1707.06347. https://doi.org/10.48550/arXiv.1707.06347

Seito, T., & Munakata, S. (2020). Production scheduling based on
deep reinforcement learning using graph convolutional neural
network. In Proceedings of the 12th International Conference
on Agents and Artificial Intelligence (ICAART) (pp. 766–772).
https://doi.org/10.5220/0009095207660772

Smith, V., Devane, D., Begley, C. M., & Clarke, M. (2011). Methodol-
ogy in conducting a systematic review of systematic reviews of
healthcare interventions. BMC Medical Research Methodology,
11(1), 15. https://doi.org/10.1186/1471-2288-11-15

Song, L., Li, Y., & Xu, J. (2023). Dynamic job-shop scheduling based
on transformer and deep reinforcement learning. Processes,
11(12), 3434. https://doi.org/10.3390/pr11123434

Sun, Z. Y., Han, W. M., & Gao, L. L. (2023). Real-time scheduling
for dynamic workshops with random new job insertions by using
deep reinforcement learning. Advances in Production Engineer-
ing & Management, 18(2), 137–151. https://doi.org/10.14743/
apem2023.2.462

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An intro-
duction. MIT Press.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (1999). Pol-
icy gradient methods for reinforcement learning with function
approximation. Advances in Neural Information Processing Sys-
tems, 12, 1057–1063.

Tassel, P., Gebser, M., & Schekotihin, K. (2021). A reinforcement
learning environment for job-shop scheduling. ArXiv Preprint
arXiv: 2104 03760. https://doi.org/10.48550/arXiv.2104.03760

Turgut, Y., & Bozdag, C. E. (2020). Deep Q-network model for dynamic
job shop scheduling problem based on discrete event simulation.
In 2020 Winter Simulation Conference (WSC) (pp. 1551–1559).
IEEE. https://doi.org/10.1109/WSC48552.2020.9383986

van Ekeris, T., Meyes, R., & Meisen, T. (2021). Discovering heuristics
and metaheuristics for job shop scheduling from scratch via deep
reinforcement learning. In Proceedings of the Conference on Pro-
duction Systems and Logistics (CPSL) (pp. 709–718). https://doi.
org/10.15488/11231

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., & de
Freitas, N. (2016). Dueling network architectures for deep rein-
forcement learning. ArXiv Preprint arXiv, 151106581. https://doi.
org/10.48550/arXiv.1511.06581

Wang, L., Hu, X., Wang, Y., Xu, S., Ma, S., Yang, K., Liu, Z., & Wang,
W. (2021a). Dynamic job-shop scheduling in smart manufacturing

of Production Research, 60(19), 5937–5955. https://doi.org/10.1
080/00207543.2021.1975057

Luo, S., Zhang, L., & Fan, Y. (2021b). Dynamic multi-objective
scheduling for flexible job shop by deep reinforcement learning.
Computers & Industrial Engineering, 159, 107489. https://doi.
org/10.1016/j.cie.2021.107489

Luo, S., Zhang, L., & Fan, Y. (2021c). Real-time scheduling for
dynamic partial-no-wait multi-objective flexible job shop by
deep reinforcement learning. IEEE Transactions on Automa-
tion Science and Engineering, 19(4), 3020–3038. https://doi.
org/10.1109/TASE.2021.3104716

Magalhães, R., Martins, M., Vieira, S., Santos, F., & Sousa, J. (2021).
Encoder-decoder neural network architecture for solving job shop
scheduling problems using reinforcement learning. In 2021 IEEE
Symposium Series on Computational Intelligence (SSCI) (pp.
1–8). IEEE. https://doi.org/10.1109/SSCI50451.2021.9659849

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bel-
lemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis,
D. (2015). Human-level control through deep reinforcement
learning. Nature, 518(7540), 529–533. https://doi.org/10.1038/
nature14236

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Harley, T., Lillicrap, T.
P., Silver, D., & Kavukcuoglu, K. (2016). Asynchronous methods
for deep reinforcement learning. In Proceedings of the 33rd inter-
national Conference on International conference on Machine
Learning - Volume 48 (pp. 1928–1937). JMLR.

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred
reporting items for systematic reviews and meta-analyses: The
PRISMA statement. Annals of Internal Medicine, 151(4), 264–
269. https://doi.org/10.1016/j.jclinepi.2009.06.005

Mokhtari, H., & Hasani, A. (2017). An energy-efficient multi-objec-
tive optimization for flexible job-shop scheduling problem.
Computers & Chemical Engineering, 104, 339–352. https://doi.
org/10.1016/j.compchemeng.2017.05.004

Monaci, M., Agasucci, V., & Grani, G. (2021). An actor-critic algorithm
with deep double recurrent agents to solve the job shop sched-
uling problem. ArXiv Preprint arXiv. https://doi.org/10.48550/
arXiv.2110.09076. 2110.09076

Moon, J., Yang, M., & Jeong, J. (2021). A novel approach to the job
shop scheduling problem based on the deep Q-network in a coop-
erative multi-access edge computing ecosystem. Sensors (Basel,
Switzerland), 21(13), 4553. https://doi.org/10.3390/s21134553

Ni, F., Hao, J., Lu, J., Tong, X., Yuan, M., Duan, J., Ma, Y., & He,
K. (2021). A multi-graph attributed reinforcement learning based
optimization algorithm for large-scale hybrid flow shop sched-
uling problem. In KDD 21: Proceedings of the 27th ACM SIG-
KDD Conference on Knowledge Discovery and Data Mining (pp.
3441–3451). https://doi.org/10.1145/3447548.3467135

Ouelhadj, D., & Petrovic, S. (2009). A survey of dynamic scheduling
in manufacturing systems. Journal of Scheduling, 12, 417–431.
https://doi.org/10.1007/s10951-008-0090-8

Pahwa, D., & Starly, B. (2021). Dynamic matching with deep rein-
forcement learning for a two-sided Manufacturing-as-a-Service
(MaaS) marketplace. Manufacturing Letters, 29, 11–14. https://
doi.org/10.1016/j.mfglet.2021.05.005

Palombarini, J. A., & Martinez, E. C. (2021). End-to-end on-line
rescheduling from Gantt chart images using deep reinforcement
learning. International Journal of Production Research, 60,
4434–4463. https://doi.org/10.1080/00207543.2021.2002963

Panwalkar, S. S., & Iskander, W. (1977). A survey of scheduling rules.
Operations Research, 25(1), 45–61. https://doi.org/10.1287/
opre.25.1.45

Parjapati, S. K., & Jain, A. (2015). Optimization of flexible job shop
scheduling problem with sequence dependent setup times using

1 3

https://doi.org/10.5281/zenodo.1098021
https://doi.org/10.1109/TCYB.2021.3128075
https://doi.org/10.1109/TCYB.2021.3128075
https://doi.org/10.1080/00207543.2020.1870013
https://doi.org/10.2507/IJSIMM19-1-CO4
https://doi.org/10.5220/0010202405890597
https://doi.org/10.5220/0010202405890597
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.5220/0009095207660772
https://doi.org/10.1186/1471-2288-11-15
https://doi.org/10.3390/pr11123434
https://doi.org/10.14743/apem2023.2.462
https://doi.org/10.14743/apem2023.2.462
https://doi.org/10.48550/arXiv.2104.03760
https://doi.org/10.1109/WSC48552.2020.9383986
https://doi.org/10.15488/11231
https://doi.org/10.15488/11231
https://doi.org/10.48550/arXiv.1511.06581
https://doi.org/10.48550/arXiv.1511.06581
https://doi.org/10.1080/00207543.2021.1975057
https://doi.org/10.1080/00207543.2021.1975057
https://doi.org/10.1016/j.cie.2021.107489
https://doi.org/10.1016/j.cie.2021.107489
https://doi.org/10.1109/TASE.2021.3104716
https://doi.org/10.1109/TASE.2021.3104716
https://doi.org/10.1109/SSCI50451.2021.9659849
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.jclinepi.2009.06.005
https://doi.org/10.1016/j.compchemeng.2017.05.004
https://doi.org/10.1016/j.compchemeng.2017.05.004
https://doi.org/10.48550/arXiv.2110.09076
https://doi.org/10.48550/arXiv.2110.09076
https://doi.org/10.3390/s21134553
https://doi.org/10.1145/3447548.3467135
https://doi.org/10.1007/s10951-008-0090-8
https://doi.org/10.1016/j.mfglet.2021.05.005
https://doi.org/10.1016/j.mfglet.2021.05.005
https://doi.org/10.1080/00207543.2021.2002963
https://doi.org/10.1287/opre.25.1.45
https://doi.org/10.1287/opre.25.1.45

Journal of Intelligent Manufacturing

Applied Soft Computing, 143, 110436. https://doi.org/10.1016/j.
asoc.2023.110436

Zeng, Y., Liao, Z., Dai, Y., Wang, R., & Yuan, B. (2022). Hybrid intel-
ligence for dynamic job-shop scheduling with deep reinforce-
ment learning and attention mechanism. ArXiv Preprint arXiv,
220100548. https://doi.org/10.48550/arXiv.2201.00548

Zhang, C., Song, W., Cao, Z., Zhang, J., TanP. S., & Xu, C. (2020).
Learning to dispatch for job shop scheduling via deep reinforce-
ment learning. ArXiv Preprint arXiv: 2010 12367. https://doi.
org/10.48550/arXiv.2010.12367

Zhao, Y., Wang, Y., Tan, Y., Zhang, J., & Yu, H. (2021). Dynamic job-
shop scheduling algorithm based on deep Q network. Ieee Access
: Practical Innovations, Open Solutions, 9, 122995–123011.
https://doi.org/10.1109/ACCESS.2021.3110242

Zhao, L., Shen, W., Zhang, C., & Peng, K. (2022). An end-to-end deep
reinforcement learning approach for job shop scheduling. In 2022
IEEE 25th International Conference on Computer Supported
Cooperative Work in Design (CSCWD) (pp. 841–846). IEEE.
https://doi.org/10.1109/CSCWD54268.2022.9776116

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

using deep reinforcement learning. Computer Networks, 190,
107969. https://doi.org/10.1016/j.comnet.2021.107969

Wang, L., Pan, Z., & Wang, J. (2021b). A review of reinforcement
learning based intelligent optimization for manufacturing sched-
uling. Complex System Modeling and Simulation, 1(4), 257–270.
https://doi.org/10.23919/CSMS.2021.0027

Waschneck, B., Reichstaller, A., Belzner, L., Altenmüller, T., Bau-
ernhansl, T., Knapp, A., & Kyek, A. (2018). Deep reinforcement
learning for semiconductor production scheduling. In 2018 29th
Annual SEMI Advanced Semiconductor Manufacturing Con-
ference (ASMC) (pp. 301–306). IEEE. https://doi.org/10.1109/
ASMC.2018.8373191

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare
for the future: Writing a literature review. MIS Quarterly, 26(2),
XIII–XXIII.

Workneh, A. D., & Gmira, M. (2023). Deep q network method for
dynamic job shop scheduling problem. In International Conference
on Artificial Intelligence & Industrial Applications (pp. 137–155).
Springer, Cham. https://doi.org/10.1007/978-3-031-43524-9_10

Wu, X., & Yan, X. (2023). A spatial pyramid pooling-based deep rein-
forcement learning model for dynamic job-shop scheduling prob-
lem. Computers & Operations Research, 160, 106401. https://
doi.org/10.1016/j.cor.2023.106401

Xu, Z., Chang, D., Sun, M., & Lou, T. (2022). Dynamic scheduling of
crane by embedding deep reinforcement learning into a digital
twin framework. Information, 13(6), 286. https://doi.org/10.3390/
info13060286

Yuan, E., Cheng, S., Wang, L., Song, S., & Wu, F. (2023). Solving
job shop scheduling problems via deep reinforcement learning.

1 3

https://doi.org/10.1016/j.asoc.2023.110436
https://doi.org/10.1016/j.asoc.2023.110436
https://doi.org/10.48550/arXiv.2201.00548
https://doi.org/10.48550/arXiv.2010.12367
https://doi.org/10.48550/arXiv.2010.12367
https://doi.org/10.1109/ACCESS.2021.3110242
https://doi.org/10.1109/CSCWD54268.2022.9776116
https://doi.org/10.1016/j.comnet.2021.107969
https://doi.org/10.23919/CSMS.2021.0027
https://doi.org/10.1109/ASMC.2018.8373191
https://doi.org/10.1109/ASMC.2018.8373191
https://doi.org/10.1007/978-3-031-43524-9_10
https://doi.org/10.1016/j.cor.2023.106401
https://doi.org/10.1016/j.cor.2023.106401
https://doi.org/10.3390/info13060286
https://doi.org/10.3390/info13060286

	Design patterns of deep reinforcement learning models for job shop scheduling problems
	Abstract
	Introduction
	Review process
	Objective (review questions)
	Search methods for identification of studies
	Search terms
	Scientific and technological database
	Backward/forward search

	Inclusion and exclusion criteria
	Regions, languages, and published date
	2.3.2 Types of studies
	Types of methods and algorithms
	Types of problems
	Types of data

	Results of the search
	DRL-based scheduling for job-shop scheduling problem
	Formulation of job-shop scheduling problem
	Architecture and procedure of deep reinforcement learning-based scheduling

	Typical design patterns of DRL components
	Design patterns of the Agent
	Value-based agent
	Policy-based agent
	Actor-critic agent
	Comparison and discussion

	Design patterns of the environment
	Partial solution-based environment
	Whole solution-based environment

