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Abstract
Manufacturing systems have recently witnessed a shift from the widely adopted automated systems seen throughout industry.
The evolution of Industry 4.0 or SmartManufacturing has led to the introduction ofmore autonomous systems focused on fault
tolerant and customized production. These systems are required to utilizemultimodal data such asmachine status, sensory data,
and domain knowledge for complex decision making processes. This level of intelligence can allow manufacturing systems
to keep up with the ever-changing markets and intricate supply chain. Current manufacturing lines lack these capabilities and
fall short of utilizing all generated data. This paper delves into the literature aiming at achieving this level of complexity.
Firstly, it introduces cognitive manufacturing as a distinct research domain and proposes a definition by drawing upon various
preexisting themes. Secondly, it outlines the capabilities brought forth by cognitive manufacturing, accompanied by an
exploration of the associated trends and technologies. This contributes to establishing the foundation for future research in
this promising field.

Keywords Cognitive Manufacturing · Reaction · Perception · Decision Making ·Multimodal Data

Introduction

Since the inception of the first industrial revolution, the
overarching goal in manufacturing has been to elevate
productivity (Nain et al., 2022). Successive waves of indus-
trialization have relentlessly pursued innovations aimed at
delivering better, faster and more affordable products (Bradu
et al., 2022; Nain et al., 2022). Modern industrial production
stands at a crossroads, driven by a dynamic marketplace that
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increasingly demands smaller andmore customized products
(Bradu et al., 2022; Ji et al., 2022). Amidst these challenges,
there is a compelling push for the industry to transition from
traditional manufacturing paradigms to smart manufacturing
(A. A. Malik, 2022).

These traditional manufacturing approaches have limited
efficiency in producing customized, small-lot products and
often function in silos, lacking integration across produc-
tion systems, product lifecycles, and intercompany value
chain (Bommasani et al., 2021; C. Liu et al., 2022; A. A.
Malik, 2022). This disconnection between actual processes
and their virtual representations leads to operational ineffi-
ciencies (Zheng et al., 2018). In seeking alternatives, smart
manufacturing, or Industry 4.0 as it was introduced by Ger-
many in 2011, emerges as a promising avenue (Thoben
et al., 2017). The aspirational promise of Industry 4.0 is
to deliver batch size one, personalized products with the
economies of scale of mass production. This modern solu-
tion is characterized by its multi-agent system approach that
emphasizes autonomy, heterogeneity, and decentralization
(Li et al., 2022). Through this system, an abundance of data
enables machines, materials, and humans to interconnect via
industrial wireless networks, powered by advancements in
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Artificial Intelligence (AI), Internet of Things (IoT), and
cloud computing (Ji et al., 2022; C. Li et al., 2022).

Smart manufacturing not only integrates the physical and
digital worlds but also allows for flexible, reconfigurable,
and adaptive production (Elahi & Tokaldany, 2020; A. A.
Malik, 2022; Yousif et al., 2024). Such an environment
thrives on robust data collection and utilizes this data to
extract actionable insights. These insights inform predictive
interventions, which continually evolve, ultimately aiming to
facilitate autonomous decision making (Paasche & Groppe,
2022). Only by computerizing and digitalizing every com-
ponent can a dynamic environment be fostered where each
component communicates, understands, and augments the
capabilities of another (Sahoo & Lo, 2022).

This progression exemplifies the transformation from a
digitally enabled environment to a truly smart manufacturing
paradigm. However, smart manufacturing is not without its
limitations.Despite itsmerits, smartmanufacturingprimarily
focuses on process optimization and predictive interventions
(Mo et al., 2023; Pereira et al., 2019), to-date failing to fully
address the complexity of autonomous decision making and
self-learning (Zheng et al., 2018). Thus, cognitive manufac-
turing has emerged as the next evolutionary step in smart
manufacturing which integrates a more intricate mesh of
cognitive abilities. This new frontier incorporates advanced
technologies like AI, big data analytics, and cognitive com-
puting to create systems capable of complex decisionmaking
without human intervention. Cognitive manufacturing aims
for a comprehensive understanding, facilitating not just the
“what” but also the “why” behind manufacturing processes.
With the pace of technological innovation never slowing,
staying abreast of current trends is no longer optional but
essential for manufacturers, policymakers, and researchers
alike (Thoben et al., 2017).

Manufacturing systems have witnessed multiple phases
throughout history. The relationships between each indus-
trial revolution, the driving factors for each revolution and
adopted terminologies formanufacturing systemswere high-
lighted in (Singh et al., 2019). Whereas the first industrial
revolution focused only on cost, the following eras intro-
duced factors such as quality, time, and flexibility. The third
industrial revolution also introduced terminologies such as
Computer IntegratedManufacturing, IntelligentManufactur-
ing, and Cyber Physical Production Systems. Each system
exemplifies one step further to reach the future objective of
Cognitive Manufacturing.

Cognitive manufacturing has emerged as the next evolu-
tionary stepwithin smartmanufacturing. Cognitivemanufac-
turing caters to the industry’s growing need for systems that
are not just reactive but proactive, not just efficient but intel-
ligent. This literature review aims to combine the existing
research on cognitive manufacturing into a comprehensive
resource, motivated by its increasing popularity as evident

by the recent increase in publications and citations within the
Web of Science (WoS) database, chosen for its high quality
catalogue, as shown in Fig. 1, a sentiment also expressed in
(ElMaraghy & ElMaraghy, 2022).

This review offers an exhaustive framework for concep-
tualizing the paradigm of cognitive manufacturing. Section
two outlines themethodological approach, elaborating on the
rigorous literature review process employed to source rele-
vant academic contributions, and the steps taken to select
the works chosen within this review. Section three seeks to
establish a unified and holistic definition for cognitive man-
ufacturing. This section aims to also spotlight its prevailing
capabilities. In doing so, this review aims to encapsulate
both historical developments and emergent trends, offering
a holistic view of the field. Sections four to six expand on
the derived capabilities by deducing the current research
trends within each. Section seven presents an overview of
the deduced trends and current industry solutions focusing
on cognitive manufacturing and section eight provides some
concluding remarks.

By adopting this structured approach, this paper aims to
serve as an early conceptual framework to the new cognitive
manufacturing paradigm and uncover the emerging trends
within.

Methodology

This literature review aims at accomplishing twomain objec-
tives:

• Objective 1: Establishing a holistic definition for Cogni-
tive Manufacturing.

• Objective 2: Highlighting the current research trends and
deduce future trends within the Cognitive Manufacturing
field.

Objective 1

To achieve this, a systemized process of collectionwas under-
taken as shown in Fig. 2. In this full article, two sets of articles
had to be collected across two different phases of investiga-
tion. The first phase of investigation gathered articles that
were analyzed to define cognitive manufacturing. As prelim-
inary discovery, the terms “cognitive” and “manufacturing”
were used to select articles. However, such search returned
wayward responses with articles unrelated to the topic of this
review.As such amore specific search termhad to be adopted.
The search was conducted using (“cogn*” AND “manuf*”)
as the title search term to retrieve papers that include any
derivative of cognitive and manufacturing in their title. As
shown in Fig. 3 that search returned 70 papers which were
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Fig. 1 Number of published works about cognitive manufacturing

Fig. 2 Systemization of the literature review

then narrowed down to 39 based on the title evaluation of
the database. These were further refined to 26 based on the
abstract evaluation. However, upon reading these articles, six
of them were not accessible by the authors hence the final set
contained 20 articles that will be used for the initial investiga-
tion. To ensure that content in this review contains only recent
works, the search only looked for articles published between

2017 and 2022which also correlates with the increased inter-
est and publications in this field as shown in Fig. 1. No works
prior to 2017 were included so as to ensure that the definition
and trends established in this review are relevant and recent
enough to be used in this iteration of interest in cognitive
manufacturing. The filtering criteria in the title and abstract
evaluation were as follows:
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Fig. 3 Article filtering process

• Articles that do not specifically propose or implement a
cognitive manufacturing system.

• Articles that focus on one manufacturing process rather
than a manufacturing system.

• Articles that do not focus on cognition in the context of
manufacturing systems.

• Articles that were not accessible by the author.

Based on that selection process, 20 articles were chosen.
Since this represents a small set of papers, instead of a bib-
liometric analysis, Fig. 4 visualizes the geographic region in
which the authors who used the term reside. From this anal-
ysis, it is clear that the United States and China are currently
the main contributors to this field of research and also show-
cases that the term has been utilized by different research
groups.

These articles were used to achieve the first objective of
this review, establishing a definition for cognitive manufac-
turing. In order to do so, the individual definition of cognitive
manufacturing from each paper was extracted. On top of that,

these papers were also the bedrock for extracting information
about the capabilities of cognitive manufacturing systems
which are used for defining the research trends in this field.
Even though every article listed contained capabilities for
cognitive manufacturing, some did not explicitly state a def-
inition. The section three will delve further into the findings.

Objective 2

Based on the analysis done for objective one, phase three
of this review includes another literature collection process
in order to define the current research trend within each
capability defined in objective one. This collection process
was accomplished by iterating through three major journals
within the research field: the Journal of Intelligent Manu-
facturing, the Journal of Manufacturing Systems, and the
International Journal of ProductionResearchdue to their high
impact and direct link with the publication venues for many
of the articles in first set collected for this review. Other jour-
nals such asComputers in Industry andComputers in Science
were also investigated formanufacturing relatedwork. Every
volume of these journals published between 2017 and 2022
were investigated and papers were also extracted based on
a title and abstract evaluation. The general criteria were that
all selected papers must be an implementation article and not
a survey or review. On top of that, categorically the selected
articlemust contribute to either the perception, decisionmak-
ing, or reaction capability of the manufacturing system. This
was due to the fact that those were the three main capabilities
deduced in section four of this review.

This initial selection process at first resulted in 96 pub-
lications based on title evaluation, however after filtering
out review papers and undergoing abstract evaluation that
collection decreased to only 30 publications. After these 30
publications were dissected, further publications were col-
lected through cited papers and further search of specific

Fig. 4 Author network of the cognitive manufacturing term
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Fig. 5 Publication metrics for capabilities papers

technologies to attain 57 papers in total. The bibliographic
metrics these papers can be seen in Fig. 5.

Cognitive manufacturing

In this section, a total of 20 references were collected that
center on the concept of cognitive manufacturing. These
papers are the early works of developing this new era of
manufacturing which looks at defining the scope of cogni-
tivemanufacturing.The concept of cognitive digital twins has
been highlighted throughout these works, however, a defini-
tion for cognitive manufacturing can still be refined further.
As such, a definition of cognition in the context of manu-
facturing was extracted from these works in an attempt to
frame one formal definition of cognitive manufacturing. The
different definitions can be seen in Appendix 1.

As expected, the definitions vary between references
dependingon the specific focus of eachpaper.However, some
common themes immediately arise at first glance. These
themes include awareness, understanding, intelligence, and
decision making. All these themes play a vital role in pin-
pointing an overarching definition.

To be able to create this definition, all the extracted
definitions were made into a word cloud, seen in Fig. 6,
using TagCrowd (https://tagcrowd.com/) to find the signif-
icant terms. To be able to achieve better results, some words
were syntactically standardized throughout all the definitions
(i.e., Digital Twin changed to DT, real-time vs real time,
intelligent to intelligence etc.). This word cloud facilitates
the visualization of the most common terms found in these

Fig. 6 Word cloud of cognitive manufacturing definitions

definitions which will be used during the derivation of the
definition. Some words will be ignored such as “cognitive”,
“manufacturing”, and “system” as they introduce no added
value to the definition.

To analyze the results, recurring words were grouped
together to derive an overarching concept which can be
included in the definition. These groups were created based
on the field of work that they belong to and the role it can
satisfy in the definition. For a word to be eligible for catego-
rization, it must have at least two recurrences. The categories
were derived as follows:

1) Category 1: What will Cognitive Manufacturing
affect?
This category includes words that belong to the manu-
facturing domain. This category is important to see the
specific manufacturing concepts that cognition can play
a role in.

2) Category 2: How will Cognitive Manufacturing have
this effect?
This category provides the approach or technologies that
were mentioned. These words would predominantly per-
tain to the Computer Science or AI field as they provide
technologies that can be used to achieve cognitive man-
ufacturing.

3) Category 3: Why will Cognitive Manufacturing have
an effect?
This category is the culmination of the previous two. The
words chosen in this category showcase the added capa-
bilities that are introducedwith cognitivemanufacturing.
These words will mostly belong to a hybrid field at the
intersection of manufacturing and AI or smart manufac-
turing.

The populated categories alongside the number of occur-
rences for each word (in parenthesis) can be seen in Table 1.
In category one,words such as “production”, and “processes”
allude that the concepts of cognitivemanufacturing pertain to
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Table 1 Categorized key words

Category 1 Category 2 Category 3

tasks (5) data (6) planning (3)

system (3) reasoning (5) intelligence (5)

production (2) perception (5) decision (3)

processes (4) learning (5) analytics (3)

maintenance (2) knowledge (4) understand (2)

information (4)

the full product lifecycle and can help improve each phase of
the cycle. Words such as “system” and “tasks” indicate that
effects can be felt down to the minor components of man-
ufacturing. As such, within the holistic definition, the full
array of manufacturing levels must be encompassed.

The second category will help derive a proper term to
use as to how cognition will be attained. From first glance
it is clear that “data”, “knowledge”, and “information” play
a key role in achieving such an advanced system. At a more
abstract level, that can be incorporated by adopting the term
Cyber-Physical, a common term used in the smart manufac-
turing field of research indicating the intersection between
the informational technology with the operational technol-
ogy.

Finally, the third category can help highlight which
key capabilities to include in the definition. To derive an
overall theme, words such as “decision”, “planning” and
“intelligence” can all fit into the idea of intelligence and
understanding.

As such, a preliminary definition which can be used to
define cognitive manufacturing would be intelligent cyber-
physical manufacturing capable of playing a vital role in all
aspects of the product lifecycle. However, this definition is
still missing a key component which is the specific capabili-
ties that it will be improving.

To accomplish this next step, the 20 articles from the first
set were visited again as shown in phase two of Fig. 2, how-
ever this time, the specific added capability introduced by that
article was extracted in hopes of deducing a greater theme.
These capabilities can be seen in Table 2.

From first look, it is evident that cognitive manufacturing
introduces a variety of different capabilities to a manufactur-
ing system. Some of these capabilities include autonomous
actions (Rožanec et al., 2021), collaboration (S. Li et al.,
2021), decision making (Kumar & Jaiswal, 2021), and rea-
soning (Mladineo et al., 2022). However, to develop the
overarching themes for these capabilities, some interdis-
ciplinary study is required. The notion of cognition is a
fundamental research topic in psychology.Hence, some ideas
from previous studies will be adopted in this review.

Table 2 Capabilities of cognitive manufacturing

Reference Added capability

(Hu et al., 2019) Intelligent analysis, reasoning,
real time monitoring

(Zheng et al., 2021) Self-configuration and
self-optimization

(S. Li et al., 2021) Human robot collaboration

(Kumar & Jaiswal, 2021) Decision making

(Krueger et al., 2019) Planning, autonomous actions

(M. Liu et al., 2022) Perception, reasoning, and
decision making

(Rožanec et al., 2021) Planning, reasoning, and
learning

(Mortlock et al., 2022) Perception, attention, memory,
reasoning problem solving,
learning

(Mizanoor Rahman, 2019) Collaboration

(Dumitrache et al., 2019) Intelligently use assets, decision
making, optimization

(Intizar Ali et al., 2021) Analyze, understand, and react

(ElMaraghy & ElMaraghy,
2022)

Planning, reasoning, and
learning, adaptability

(Gong et al., 2021) Problem solving, adaptive

(Martín-Gómez et al., 2021) Perception, reasoning, learning
and planning

(Carpanzano & Knüttel, 2022) React

(Wong & Chui, 2022) Memory, information
processing, feedback

(Seyram et al., 2022) Reasoning, planning, and
solving problems

Some of the fundamental aspects of cognition include
perception, reasoning, and problem-solving (Eysenck &
Brysbaert, 2018). Of the cognitive abilities that are available
to humans, perception allows the brain to gather information
from the world around them to understand the environ-
ment and events surrounding them, i.e., perceive the world
around them. After this perception, humans can think criti-
cally about the information gathered and develop their own
knowledge about the world based on their own logic or com-
mon sense, allowing them to make decisions for their own
actions. Combining these two qualities, humans can react to
sudden changes in their surroundings appropriately.

These same qualities can also be seen as pivotal areas of
investigation within the AI domain. Cognitive architectures
are a section of AI research aiming at creating programs
that can reason, develop insights, and adapt to new situa-
tions. The objective of these architectures is to model the
human mind achieving human-level artificial intelligence
(Kotseruba et al., 2018). These architectures specify the
underlying infrastructure of intelligent systems and includes
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Fig. 7 Categorization of capabilities

consistent aspects across the different application domains
such as short and long-term memories, element representa-
tion, and the functional processes that operate these structures
(Langley et al., 2009). Some of the main capabilities that
cognitive architectures focus on include Perception, Atten-
tion, Action Selection, Memory, Learning, Reasoning, and
Metacognition (Kotseruba et al., 2018).

Based on that, these same capabilities can be adopted in
manufacturing systems as cognitive architectures can play a
key role in achieving cognitive manufacturing. Even though
they can all be integrated into the manufacturing domain,
this paper will group the above seven capabilities into three
main categories: Perception, Decisionmaking, andReaction.
This is due to the fact that within manufacturing, aspects
such as perception, attention, and memory may not have
tangible differences when viewing manufacturing systems
as a whole. Perception describes the system’s ability to
understand the events and environment in which it oper-
ates, requiring both attention and memory. Decision making
highlights the system’s ability to apply actionable decisions
to the manufacturing process encompassing reasoning and
learning, and finally reaction is the system’s ability to adapt
to unforeseen or new events which ties into reasoning and
metacognition. In addition to the psychological rationale for
embracing these categories, the identified capabilities also
referenced supported these findings as seen in Fig. 7. In this

figure, the capabilities extracted were individually detailed
within themiddle column. The overarching category for each
capability was then inferred and is displayed in the third col-
umn.

Overall, of the 20 papers used for this analysis, 14 intro-
duced capabilities in decision making such as autonomy,
reasoning, self-configuration, and job scheduling. Seven also
introduced capabilities in perception such as information
exchange, event understanding, and prediction. Finally, four
introduced capabilities in reacting such as disruption han-
dling, and adaptability.

Based on this analysis, we can supplement the previ-
ous definition of cognitive manufacturing to be intelligent
cyber-physical manufacturing capable of perception, deci-
sion making, and reacting by utilizing information obtained
throughout the whole product life cycle.

To better illustrate this deduced definition, a use case will
be used to signify the evolution from autonomous to cogni-
tive manufacturing. We take as an example a manufacturing
facility with an automotive assembly line. Figure 8 provides
a high level illustration of one specific difference between the
autonomous and cognitive manufacturing systems described
in this example.
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Fig. 8 Illustration of autonomous vs cognitive manufacturing systems

Autonomousmanufacturing systems

During the assembly of the car, the different elements of the
manufacturing system have autonomy over the upcoming
jobs including tasks such as painting and assembly opera-
tions. This is due to the dynamic job allocation autonomous
systems are capable of accomplishing.When a known failure
occurs, the systemhas the knowledge to overcome this failure
and continues production based on the predetermined knowl-
edge infused into the system.Delving further into thepainting
and assembly operations, specific examples can showcase the
capability of each system.

• Painting: During the painting process, cracking in the
paint film might occur due to extreme humidity. Even
though this humidity ismonitored, that specific sensormal-
functioned, and the system detects these cracks beginning
to form. The system in this case can stop the painting pro-
cess or reallocate jobs to continue production, however,
it will not know the root cause of the problem, hence not
mitigating the likelihood of the incident reoccurring and
can only recommend an inspection of the station.

• Assembly: On an automotive assembly line, different
robotic arms can operate synchronously to assemble the
different parts of the car chassis. If a part suddenly cracks
during the assembly process, the system can detect this
crack if trained for it, however, can only halt and reallo-
cate jobs and await human intervention.

Cognitive manufacturing systems

During the assembly of the car, the different elements of
themanufacturing system have autonomy over the upcoming

jobs to execute. At the same time, this system is employing
different technologies to fuse the different data obtained from
the assembly line and gain a more holistic perception of the
events occurring. The system can decide which subsection
of the assembly line needs more attention and interference,
alongside creating decisions for dynamic job allocation. The
pivotal difference here is the ability for this system to learn
on the go by continually taking in the new data to enhance
the decisionmaking process and includes reactionary actions
which occur when new unencountered events take place on
the assembly line. Since this is a new event, the system can
utilize all the information that it has to come upwith an action
which can mitigate erroneous or disastrous consequences.

• Painting: Using the same cracking fault from earlier,
the cognitive system can use its reasoning capabilities to
deduce that the sensor is malfunctioning and react appro-
priately by using the different information available to it
to recommend ordering a new humidity sensor and further
rework on the current part.

• Assembly: After the crack occurs, the system can react
accordingly by finding another part to utilize instead and
as a second step utilize the information from the full life
cycle (i.e., part supplier, transportation mechanism, manu-
facturing process) to uncover what caused the part to crack
and adapt the manufacturing process of that part to ensure
such an issue doesn’t occur again.

Perception

This aspect deals with the ability of different manufacturing
assets to perceive the status of the production line around
them. In that sense, these assets can recognize the different
events and operations that are being undertaken at all times.
To find the prevalent technologies used in this field of work,
articles dealing with the acquisition and processing of data
generated in manufacturing shop floors were extracted from
the above-mentioned journals.Basedon that, therewere three
recurring topics that were of interest: Semantic Web, Sensor
Fusion, and Collaboration.

Semantic web

Information at the time of the inception of the Web was
designed for human consumption and did not lend well to the
interoperability of that information between machines (Car-
doso & Sheth, 2006). As such, Semantic Web attempted to
tackle that issue by providing a basis to deal with themassive,
dynamic, and heterogenous data (Cardoso & Sheth, 2006).
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The main components of the Semantic Web are different
entities connected through relationships making up a Knowl-
edge Graph (KG) which is a structured representation of
information (Sheth et al., 2019). The main parts of a KG
are the nodes (assets, people, objects, or places) and edges
(connecting the different nodes together). On top of that, a
KG is made up of the Schema/Ontology and the Instantia-
tions. The former defines the classes of the KG and the latter
is the specific instant of each class (Parsons, 2009). KGs have
been prevalent in applications in Deep Learning (Gaur et al.,
2021), Knowledge Representation (Kho et al., 2014), and the
medical domain (Xu et al., 2020).

To semantically represent data, Resource Description
Framework (RDF) presents an international standard to
enhance interoperability between applications. Different
entities are depicted in RDF through Uniform Resource
Identifies (URI) and is has three main types of entities: sub-
jects, objects, and predicates(Parsons, 2009). Subject and
objects can represent the nodes previously defined connected
together through predicates.

These technologies enable the next generation of manu-
facturing systems through their ability to integrate and store
data of different modalities. In addition to this, reasoning
mechanisms can be introduced to deduce insights and knowl-
edge about the manufacturing system that were previously
unattainable. This results in an increased perception of the
system as more data is utilized and is accessible for differ-
ent decision making instances. Works within Semantic Web
will be split into four sections: ontology development, KG
generation, domain knowledge integration, and reasoning.

Ontologies

Within manufacturing, a prominent field of research is the
establishment of various SemanticWeb ontologies that could
be used to standardize the KG generation process. A stan-
dardized ontology would allow different systems to query
through KGs and retrieve information in a consistent man-
ner. As such, ontologies in different fields such as the Bosch
Industry 4.0 KG was developed which focuses on machines,
products, processes, and equipment (Grangel-González et al.,
2020). Other ontologies focus more specifically on additive
manufacturing (Dinar & Rosen, 2017), and service-oriented
business interactions (Lu et al., 2019), and integrating cur-
rent standards in information modelling such as OPC UA
(Schiekofer et al., 2019).

Knowledge graph generation

This topic encompasses research attempting to integrate data
sources in a manufacturing facility into a central knowl-
edge graph. In essence this reflects the ability to semantically

model the different assets in the facility utilizing the ontolo-
gies developed. Real time analog sensor data was integrated
into a manufacturing KG using RDF (El Kalach et al., 2023).
A novel multi-layer KG was introduced that captures the
real-time data obtained from IoT technology in CPPS envi-
ronments and is continuously updated (M. Liu et al., 2022).
Multiple works have in fact constructed an industrial KG
which integrates different data sources for further processing
(Y.) (B. Zhou et al., 2022) (Grangel-González et al., 2020).

Apart from the integration of live data, different events
detected from heterogenous sensors can also be added to the
KGfor increasedperception.Different events detectedwithin
IoT streams were integrated into a KG for improved intel-
ligence of the manufacturing system (Karras et al., 2022).
On top of that, prediction results from deep learning-based
models were attached to the generated KG (B. Zhou et al.,
2022). Both these levels of integration can be crucial to real-
izing a truly cognitive system as it is capable of perceiving
data of all different modalities as well as abstract insights
and information such as machine and product state.

Domain knowledge

A main benefit of utilizing Semantic Web and KGs is the
ability to integrate cross domain information. Cross domain
refers to information that is shared about different domains
of knowledge, i.e., manufacturing and weather information
represent two separate domains. The ability to integrate cross
domain information can be crucial to developing the cog-
nitive system’s perception as well. The system can utilize
information from multiple domains into the manufacturing
process. An example could be scheduling power consuming
tasks during time spans when utility charges are lower.

One example of this includes the integration of supply
chain information with events within the production line
(Vlahakis et al., 2018). This can also include product design
information (H. Wang et al., 2021), and expert knowledge
(Link et al., 2022) (Ladj et al., 2021) and the integration
of Manufacturing Execution Systems (MES) (Siafara et al.,
2018).

Reasoning

This aspect of perception can prove to be immensely advan-
tageous as it emulates the cognitive abilities of the human
brain, which can effectively establish connections between
diverse sets of information, leading to a more profound com-
prehension of various concepts. An example of which could
be how the human brain establishes relationships between
different types of information in language comprehension.
When reading a sentence, the brain processes the meaning
of each individual word and then combines them to form
a complete understanding of the sentence as a whole. This
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integration of separate pieces of information allows for a
more comprehensive understanding of the message being
conveyed. Similarly, the use of a cross domain KGs in IoT
technology can facilitate the identification of complex rela-
tionships between data sets, enabling better decision making
and problem-solving capabilities.

With previous works focusing on creating the KGs, the
next advancement is to utilize it for process state information
that could be used for decision making processes. This can
be done using existing reasoning mechanisms such as Jena
(Ameen et al., 2014), Fact ++ (Tsarkov&Horrocks, 2006), or
Pellet (Sirin et al., n.d.). These reasoners use rules defined by
experts to query through the generated KG, identify the sat-
isfied rules based on the information provided in the KG then
add or modify the corresponding triple as necessary. This can
be seen through work such as (Guo et al., 2021)(El Kalach
et al., 2023) and (B. Zhou et al., 2022). These works devel-
oped techniques to extract process knowledge, equipment
status, and manufacturing process information respectively.

Sensor fusion

Sensor fusion is a field of research dedicated to merging data
frommultiple sensors so as to achieve a more accurate, com-
prehensive, and reliable estimate of the environment. There
are different aspects of sensor fusion that could be addressed.
Different fusion methods being utilized in manufacturing
research include Random Forest, Dempster-Schafer theory,
feature elimination, Deep Convolutional Neural Networks,
Bayesian-based fusion, and information theory (Tsanousa
et al., 2022). However, in this paper we will be looking at the
two different abstraction levels of sensor data fusion (Vakil
et al., 2021)(K. Liu et al., 2018). The Preclassification phase
or early fusion which includes both sensor-level and feature-
level fusion, and the postclassification phase or late fusion
which integrates detected events alongside any decisions or
predictions made about the environment. An early fusion
approach was adopted with to integrate heterogeneous data
based on an intelligent optimization algorithm (Huang, 2020)
as well as a late fusion methodology to integrate predictions
made from multiple sensor nodes in a quality control and
predictive maintenance use case (Wei et al., 2020). Compar-
isons were also drawn between the different fusion levels to
achieve the highest tolerance tomissing and noisymodalities
(Rahate et al., 2022).

Some advantages of such technologies include improved
detectability and reliability of the system (Kong et al., 2020).
This capability can be compared to the cognitive ability of
the human brain which integrates all different modalities and
aspects to obtain an accurate representation of the environ-
ment.However, such capabilities still require further research
as the computational requirements for technologies such as

deep neural networks, signal processing, and feature extrac-
tion are great. In addition, while sensor fusion is inspired by
the human mind’s ability to integrate information from mul-
tiple sources, there are still significant differences between
the two. The human mind is more complex, adaptable, and
robust than current sensor fusion technology.

Collaboration

One key benefit of improved perception is the ability to
enhance the collaboration between assets in the manufac-
turing facility. This is due to the increased understanding of
the asset’s surroundings. With more information available,
different assets can make use of the multimodal data out-
lined previously to gain an enhanced understanding of the
state of different assets around them, which in turn enables
more complex collaboration. This vision of cognitive man-
ufacturing is slowly being realized through the incremental
works focused on collaboration.

To enhance collaboration, improved perception of all
events is required which was tackled through knowledge
infusion while utilizing KGs (Wickramarachchi et al., 2022).
In that regard, other works also propose enhancing operator
performances for better collaboration by providing valuable
information about their performance and the state of the pro-
duction system (Nagy et al., 2022). Vision systems were
also investigated as a means for enhancing robot collabo-
rations using semantic segmentation of live feeds (Xia et al.,
2021) and intelligent manufacturing systemswere developed
to increase collaboration within decision making of produc-
tion in a copper smelting enterprise (Q. Liu et al., 2022).

Digital twins are a big factor in achieving this level of
collaboration as they can be used to simulate actions digitally.
This is beneficial as simulations can help collaboration be
validated quicker and in a safer manner. As such, the fusion
of deep learning with digital twins were implemented across
multiple works to simulate collaboration between equipment
to avoid collision (Xia et al., 2021) and optimize production
(P. Wang & Luo, 2021).

Collaboration could also include human robot collabora-
tion to achieve tasks that could not be accomplished through
machines alone.As such, this collaboration needs to be seam-
lesswith safety amajor factor to be considered.Certainworks
have looked at optimizing this collaboration through task
allocation to improve cobot utilization in an assembly line
(Gjeldum et al., 2021) and improve communication between
the two entities through deep learning to efficiently trans-
late brainwave command phrases to robot commands (S. Liu
et al., 2022). On top of that, some works focus on biometric
features with deep learning to avoid fatal accidents in smart
factories (Abate et al., 2022).
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Fig. 9 Decision making in manufacturing

Discussion

Semantic Web, sensor fusion, and collaboration represent
the three tangible steps for perception. Semantic Web aids
the back end of integrating the multimodal data sources into
one central, interoperable, knowledge base. Sensor fusion
helps attain a more reliable and holistic estimate of the envi-
ronment of the manufacturing system. Finally, collaboration
showcases an outcome of perception which allows the syn-
chronization of workflows between machines and robots in
a timely and safe manner.

Decisionmaking

The capacity to make decisions at the production line is a
significant component of cognitive manufacturing systems.
Therefore, perception plays a crucial role as the system needs
to comprehend real-time events and historical data to arrive at
necessary decisions. Cognitive manufacturing systems must
be capable of creating holistic decisions based on the het-
erogenous data generated on the shop floor. These decisions
can be adjusted on the go to adapt to new events and job
orders.

From the accumulated research works, a few current
trends for decision making were analyzed to extract the tech-
nologies making waves in manufacturing. 23 papers from
the second set of articles were used to determine these cur-
rent trends. Figure 9 highlights the main approaches used
to create decisions in manufacturing systems. 48% of which
adopted machine learning techniques, 28% used reasoning

mechanisms, and 24% used statistical methods and various
algorithms.

Machine learning

Machine learning (ML) provides a great avenue to approach
decision making process as it learns the different patterns
and relationships within the data. ML focuses on learning
systems and algorithms (Qiu et al., 2016) which leverages
vast volumes of data to create data driven decisions.

Reinforcement learning

Reinforcement learning is one type of ML which relies
on training on agent to act in an environment based of a
reward function. The agent traditionally creates decisions
which provide the highest rewards defined by the user.Within
manufacturing, reinforcement learning was utilized to allow
systems to build parts according to user-specified perfor-
mance indicators (Alam et al., 2020), enhance collaboration
between robots workingwithin the same shop floor (Agrawal
et al., 2021), and ensure no collisions occur within the man-
ufacturing system (Xia et al., 2021). All these examples
showcase the decision making capabilities of reinforcement
learning which can play an integral role in cognitive manu-
facturing.

Supervised learning

Supervised Learning is another subset of ML which uses
labelled data to learn patterns within the dataset to be able
to produce correct outputs to new data based on the learned
inputs. Thismethod can help realize cognitivemanufacturing
as different works have utilized supervised learning mecha-
nisms to create systems capable of optimizing productivity
of a cutting tool in machining lines (Carvalho & Bittencourt,
2021), autonomously perform relocation tasks in a robotic
arm (Wheeless&Rahman, 2021), and enhance the loadwork
of inspection stations (Papananias et al., 2020).

Unsupervised learning

Unsupervised learning refers to the training of ML models
without the use of annotated data. With this technique the
model learns the probability densities of inputs and produces
outputs based on the initial data set. This can include tech-
nologies such as autoencoders which are used in applications
such as anomaly detection. Unsupervised learning can play
a key role in cognitive manufacturing by providing a path-
way to developing basic decision making capabilities with
minimal human intervention. As such, different works have
used unsupervised learning to create binary health classifi-
cation solutions for produced parts (Papananias et al., 2020),
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dynamic task allocation of unmanned surface vehicles (Ma
et al., 2021), and defect inspection (Banf & Steinhagen,
2022).

Statistical methods and algorithms

During this state-of-the-art research, it was found that ML
is not the sole approach. Current trends have seen the use
of technologies such as statistical methods and reasoners for
different systems to create actionable decisions.

Statistical methods are approaches based onmathematical
models that attempt to infer future outputs based on probabil-
ity distributions of data. They aim to make inferences based
on a sample of data and use hypothesis testing and confidence
intervals to assess the validity of these inferences. Such work
can be seen through the generation of an inference matrix for
real-time collision detection (Ying et al., 2021), and mini-
mizing total energy consumption and makespan of different
products (Chou et al., 2020).

Other implementations focused on scheduling of job
orders on the shop floor such as using non-preemptible
and preemptible aperiodic task scheduling algorithms for
resource planning and task scheduling on edge (Gezer
& Wagner, 2021), spatial temporal analytics for real-time
advanced planning and scheduling (M. Li et al., 2022), and
scheduling algorithms alongside deep neural networks (Iqbal
et al., 2022). Some implementations also focused on person-
alized production by utilizing the HUMANT algorithm to
determine the optimal configuration based on user prefer-
ences (Mladineo et al., 2022).

Reasoning

Recent research has also shown a prevalence of reason-
ing mechanisms that aim to derive knowledge and make
decisions. Reasoning mechanisms are logic or rule-based
approaches that attempt to utilize information to infer or
deduce implicit knowledge and make actionable decisions.
This approach is closely coupled with Semantic Web as
reasoning mechanisms are deployed on KGs to create new
entities and triples to further describe the state of different
entities. This technology can be used to automate process
decision making (Guo et al., 2021), demand forecasting and
production planning (Rožanec et al., 2021), and adapt to
changes in job orders and operation failures (Wan et al.,
2022).

Discusion

Innovation within decision making has been rapid, espe-
cially with the recent breakthroughs in AI technologies. This
advancement can be seen in certain cornerstones of man-
ufacturing systems, however in the cognitive manufacturing

paradigm these advancements canbe seen through the utiliza-
tion of the increased perception of manufacturing systems.
As seen in the previous section, new technologies have been
adopted within manufacturing to integrate heterogenous data
to be used in manufacturing systems. In order to see the
utilization of this data, the same pool of 23 papers were
investigated again to uncover how frequently this heteroge-
nous data is used in the decision making process. Table 3
summarizes the findings of this experiment.

The three categories of data used for this experiment are as
follows. Sensor data refers to data being generated by sensors
within the manufacturing shop floor. High level information
encompasses information formulated higher up the vertical
chain of the manufacturing facility. This can include infor-
mation present in MES and ERP systems such as scheduled
jobs, available resources, and abstracted information about
the current state of the shop floor. Finally, domain knowledge
refers to information that is injected into the system from dif-
ferent domains whether that is publicly available information
from the web or knowledge traditionally gained from years
of experience in the field by domain experts.

The results showcase an emerging trend in the utilization
of different modalities of data. Of the 23 articles, sensor data
was used eight times, higher level information in 16, and
domain knowledge in four. An initial observation of these
figures might indicate that utilizing higher-level information
is the most advanced among the three categories. However,
a more comprehensive analysis could reveal a different per-
spective. Utilizing sensor data is a well-established field with
years of development in fields such as time-series analytics
(Farahani et al., 2023) and predictive maintenance (Saidy
et al., 2020). With those fields already saturated, researchers
have switched their focus to adopting these new data sources
for enhanceddecisionmaking.As such,Table 3 clearly shows
the emerging trend of using this higher-level information.

One clear gap within the sample pool chosen for this
review is the lack of papers that utilize all three types of
information. This presents a clear disconnect between the
two discussed capabilities. Despite the significant progress
observed in the perception paradigm for integrating various
data sources, there hasn’t been the corresponding develop-
ment or progression stemming from it.

Reaction

The third capability of cognitive manufacturing systems can
be thought of as the culmination of all the previous two capa-
bilities. With the system capable of acquiring heterogenous
data from the shop floor, and utilizing decision making tech-
niques, the cognitive system will be able to combine those
two mechanisms to create decisions on the fly with ever
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Table 3 Inputs for decision making

Reference Sensor
data

High level
information
(jobs, resources,
environment)

Domain
knowledge

(Rossit & Tohmé,
2022)

✔

(Oluyisola et al.,
2022)

✔

(Nannapaneni
et al., 2021)

✔

(Ma et al., 2021) ✔

(Mladineo et al.,
2022)

✔

(Cao et al., 2021) ✔

(Zheng et al.,
2021)

✔

(Guo et al., 2021) ✔

(Rožanec et al.,
2021)

✔

(B. Zhou et al.,
2022)

✔

(W. Chen et al.,
2020)

✔ ✔

(Gezer & Wagner,
2021)

✔

(Ying et al., 2021) ✔

(Wan et al., 2022) ✔ ✔

(G. Zhou et al.,
2019)

✔ ✔

(Ye et al., 2020) ✔ ✔

(G. Chen et al.,
2021)

✔

(Kuhnle et al.,
2021)

✔

(X. Wang et al.,
2022)

✔

(Xia et al., 2021) ✔

(Iqbal et al.,
2022)

✔

(M. Li et al.,
2022)

✔

(Chou et al.,
2020)

✔ ✔

changing circumstances. This can be thought of as the ability
to react accordingly.

In the context of manufacturing, this can be related to
disruption handling (Darmoul et al., 2013). Disruption han-
dling refers to the ability for a production system to react
to unforeseen disturbances. These disturbances can range
from internal errors (Machine failure, product breaking) or

external stimuli (introduction of foreign factors into theman-
ufacturing environment).

Previous works

Within the literature gathered for this review very few
works had been able to showcase a truly reactive system
as described. A total of six papers had been deemed to suit
this specific capability. For a paper to be included, the work
must showcase the capability for a system to react to spe-
cific disturbances whether reactively or proactively. Due to
the scarcity of relevant articles, established methodologies
could not have been extracted for this capability. However,
with the maturity of this field, trends shall emerge with time.

From the extracted articles however, some works have
attempted to achieve a response to abnormal events occurring
duringproduct assemblyby attempting to predict thembefore
they take place (Y.Wang et al., 2021). This was done through
theGrey-Markovmethod, an ensemble of theGreymodel and
Markov Chains, for an effective prediction system capable of
predicting equipment failures accurately. Another prediction
frameworkwas proposed based on situation awarenesswhich
perceives the current state of the production system(Eirinakis
et al., 2021).

Beyond prediction, the system response was also inves-
tigated. The recovery plan for a disrupted single-stage
multi-product production system was also studied to mini-
mize cost deficit of disruptions. Recovery planning was done
through pattern search and genetic algorithms (A. I. Malik
& Sarkar, 2020). Different works focused on disturbance
identification based on a Cyber-Physical Production Sys-
tem. Based on the identified disturbance, adaptive scheduling
was applied to a semiconductor manufacturing system (Qiao
et al., 2020). To adapt to current conditions, a Reinforcement
learning mechanism was developed which updates flow of
material based on real time sensor data and other monitoring
devices (Kumar et al., 2020). Another control mechanism
that was implemented involves an Analytic Hierarchy Pro-
cess with expert rules applied to a dispatching problem in
an assembly process to adapt to disturbances in produc-
tion (Attajer et al., 2022). Specific external disruptions could
include shifts in the market, prompting the development of
a machine learning context-aware manufacturing system to
effectively respond to varying demands (Ye et al., 2022).

Discussion

Within these papers three categories were of specific interest,
the events the system had to react to, the method used to
achieve it, and the requirement of human intervention for
proper reaction. Events and human were investigated as they
present an importantmetric to the level of intelligence that the
manufacturing systems have reached, whereas the methods
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Table 4 Summary of reaction capability trends

Paper Event types Method

(Y. Wang et al.,
2021 )

Abnormal assembly Grey-markov
method

(Eirinakis et al.,
2021)

Events such as
delivery delays,
urgent orders, and
machine
breakdown

Event detection and
predictive
analytics

(A. I. Malik &
Sarkar, 2020)

Resource shortages,
power issues, and
halt in production

Pattern search and
genetic algorithm

(Qiao et al., 2020) Machine
breakdowns and
rush orders

GA and KNN

(Kumar et al.,
2020)

Reacts to income of
new information
about environment

Reinforcement
learning and
Kalman filter

(Attajer et al.,
2022)

Various Analytic hierarchy
process,
product-driven
control, and
machine learning

were discovered in order to extract the technologies that can
be used for this capability. Table 4 provides a summary of
the findings.

These observations indicate a distinct transition toward
the use of machine learning techniques to accomplish a reac-
tion mechanism. Nonetheless, in some cases, these methods
may need additional enhancement, whether through the inte-
gration of an Analytic Hierarchy Process (a Multi-Criteria
Decision Making technique) or the application of Kalman
Filters.

Overview of trends and industrial solutions

Overview of trends

After careful investigation, Table 5 provides a summary of
all the mentioned works within the previous three sections.
The motivation behind this table is to provide an intuitive
look at the current state of the art of the capabilities being
developed for cognitive manufacturing.

Upon examination of this overview, some overlaps can be
identified between the technologies within each capability.
As an example, reasoning can be used to both increase the
perception of the manufacturing system and as a means to
create decisions, Reinforcement learning was used for reg-
ular decision making and to aid in reaction, and different
ML techniques were augmented with filters or algorithms
for increased reaction capacity. Even with this overlap, to

Table 5 Overview of cognitive manufacturing trends

Capability Trends Technology

Perception Semantic web Resource description
framework

Knowledge graphs

Sensor fusion Bayesian based
fusion

Deep CNNs

Dempster-schafer
theory

Random forest

Collaboration Deep learning

Semantic
segmentation

Digital twin
simulation

Knowledge infused
learning

Decision making Machine learning Reinforcement
learning

Supervised learning

Unsupervised
learning

Statistical methods Scheduling
algorithms

Spatial temporal
analytics

Inference matrix

Reasoning Rule based reasoning
mechanisms

Reaction N/A Analytical hierarchy
process

Reinforcement
learning

Disturbance
identification and
adaptive scheduling

Pattern search and
genetic algorithms

Grey-markov model

the author’s knowledge, none of the developed systems can
be categorized as truly cognitive. Apart from the shortcom-
ings discussed within each capability, none has integrated
all three capabilities together. At present, this research field
lacks a fully developed system capable of effectively inte-
grating the diverse modalities of data discussed in this review
and utilizing this data systematically for decisionmaking and
reaction.
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Fig. 10 Evolution of manufacturing systems

Industry solutions

With the advantages brought forth by cognitive manufac-
turing, it is of little surprise that manufacturing companies
have begun to adopt it as a future solution to the cur-
rent issues faced within facilities. In fact, some companies
have already worked on solutions to service manufactur-
ers’ needs within the realm of Cognitive Manufacturing.
Enterra Solutions created the Enterra Enterprise Cognitive
System (AILA) (Industry 4.0: The Emergence of Cognitive
Manufacturing—Enterra Solutions, n.d.) which is a sys-
tem designed to enhance decision making capabilities in
the smart manufacturing era. Some key features include
managing asset performance, enhancing process and qual-
ity, and optimization of supply chain and resource. This is
done by utilizing data from heterogenous sources such as
equipment, sensors, logs, manuals, and employee biometric
monitors. Bristlecone has also embraced cognitive manu-
facturing (Cognitive Manufacturing & Industry 4.0 Supply
Chain Solutions | Bristlecone, n.d.) to enhance design-to-
production processes for increased speed and intelligence.
This approach accelerates time to market, prolongs asset
lifespan, and leverages manufacturing insights, intercon-
nected assets, intelligent automation, and digital quality.

Infosys has also focused on integrating various data
sources and key performance indicators (KPIs) to establish
a control loop for sensing, learning, reasoning, and respond-
ing (Enterprise Cognitive Platform for Infused Intelligence
| Infosys, n.d.). Infosys’ cognitive technology platforms

incorporate features such as image recognition and natu-
ral language processing. These AI-driven solutions facilitate
self-diagnosis, leading to reduced process lead times and
enhancements in planning and real-time operations. These
solutions proactively address issues on the shop floor and
within the supply chain to mitigate disruptions. Finally, IBM
have provided a comprehensive roadmap for the evolution of
currentmanufacturing system to cognitive systems (Bonnaud
et al., n.d.). This includes a four step process which utilizes
IBMsolutions to gather data, visualize patterns, advance ana-
lytics, and digitalization, and infuse systems with cognitive
capabilities. These capabilities encompass innovative meth-
ods for handling unstructured data, which includes imagery,
video, and audio, alongside the application of machine-
learning algorithms.

Therefore, it is clear that there is a growing interest
in advancing cognitive manufacturing within industry. The
current status of these solutions aligns with the research con-
ducted in the perception capabilities discussed in this review,
as many of these solutions effectively integrate various data
sources. Additionally, some of these solutions introduce
decision making capabilities, such as task scheduling and
dynamic supply chain management. However, it is important
to note that the reaction capability of manufacturing systems
remains an essential aspect of cognitive manufacturing sys-
tems that has yet to be fully addressed. This highlights a
critical area for further development in future research, and
it is possible that more solutions focused on reactive capa-
bilities will emerge in the coming years.
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Conclusion

The manufacturing field has witnessed relentless evolution
to enhance the capabilities of manufacturing systems as seen
in Fig. 10. Automated Manufacturing systems were intro-
duced capable of closed loop control for mass production.
This later evolved into the current strides in autonomous
manufacturing capable of creating flexible and fault toler-
ant manufacturing systems (Patel et al., 2018). However, the
future of manufacturing systems requires cognitive systems
capable of perception, decision making, and reaction as out-
lined in this review.

This paper sought to achieve two objectives throughout
the review process. The first was to establish a definition for
cognitive manufacturing and the second was to highlight the
current research trends within the cognitive manufacturing
field. This was done by gathering peer reviewed publi-
cations in major journals within the smart manufacturing
field between 2019 and 2022. Based on the methodology
outlined in section two, the final adopted definition was:
intelligent cyber-physical manufacturing capable of percep-
tion, decision making, and reacting by utilizing information
throughout the whole product life cycle.

The capabilities mentioned in the definition were fur-
ther expanded to study the trends and technologies currently
present in the CognitiveManufacturing research field. Short-
comings for each trend were investigated alongside an
overview of all the findings which can be found in Table 5.
This led to the discovery of some overlap between capabili-
ties and gaps in implementations.

Overall, this review serves the purpose of being the bed
rock for future research in the cognitive manufacturing field
for the coming years by highlighting the current directions
and state of the art. Moving forward, more effort must be
made in creating a manufacturing system and utilizing man-
ufacturing datasets such as (Harik et al., 2024), which can
satisfy every part of the adopted definition.

Appendix 1

Appendix 1 Cognitive manufacturing definitions

Reference Cognitive definition

(Hu et al., 2019) “Realize the efficient data collection,
automatic production, intelligent
recognition and analysis, and active
operation and maintenance of the
iRobot-Factory.”

(Zheng et al., 2021) Self-configuration, Self-optimization,
Self-adaptive

(Chung et al., 2019) “Analyze a variety of data associated with a
traceability system, post-by-post
scalability infrastructure, and workers’
work system through the information
exchange of the data collected in real
time, and to establish an improved system
through data mining.”

(Kumar & Jaiswal,
2021)

“Enables organizations to actively use the
advanced analytics to understand, reason,
and learn the processes, people, and
operations”

(M. Liu et al., 2022) “Cognitive manufacturing applies cognitive
intelligence in the manufacturing field,
empowers industrial manufacturing
systems with cognitive capabilities,
perceives changes in the production
process, and performs a series of
reasoning and decision-making tasks.”

(Rožanec et al.,
2021)

“Cognitive technologies perform AI-based
supplementary tasks that help make better
decisions and complete objectives and
tasks that usually require human
intelligence, such as planning, reasoning,
and learning.”
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Reference Cognitive definition

(Mortlock et al.,
2022)

“Fundamental aspects of cognition include
attention (selective focus), perception
(forming useful precepts from raw sensory
data), memory (encoding and retrieval of
knowledge), reasoning (drawing
inferences from observations, beliefs, and
models), learning (from experiences,
observations, and teachers),
problem-solving (achieving goals),
knowledge representation, etc.”

(Dumitrache et al.,
2019)

“a combination of IoT and analytics (or AI)
meant to make full use of the enterprise
data and information, from the design to
shop floor maintenance”

(Intizar Ali et al.,
2021)

“Cognitive digital twins will convert
traditional digital twins into smart and
intelligent agents that can access,
analyze, understand, and react to their
current status.”

(ElMaraghy &
ElMaraghy, 2022)

“Cognitive technologies perform AI-based
supplementary tasks that help make better
decisions and complete objectives and
tasks that usually require human
intelligence, such as planning, reasoning,
and learning.”

(Martín-Gómez
et al., 2021)

“They differ from other technical systems
in that they perform cognitive control and
have cognitive abilities such as
perception, reasoning, learning and
planning, with a specific architecture.”

(Carpanzano &
Knüttel, 2022)

“These cognitive processes consist of the
perception of the environment, its
interpretation, the crosslink with existing
knowledge and the subsequent decision
with a coupled action”

(Sira, 2022) “Extracts applicable information together
automatically and employs analytics to
get an understanding of the manufacturing
process. It robotizes reactions towards its
findings and offers practical information
being able to steadily deliver updated
knowledge to decision-makers”

(Seyram et al., 2022) “Using machines to utilize technologies that
mimic human cognitive abilities to solve
complex problems in manufacturing.”
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