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Abstract
Industry 4.0 and advanced technology, such as sensors and human–machine cooperation, provide new possibilities for infusing
intelligence into failure analysis. Failure analysis is the process of identifying (potential) failures and determining their causes
and effects to enhance reliability and manufacturing quality. Proactive methodologies, such as failure mode and effects
analysis (FMEA), and reactive methodologies, such as root cause analysis (RCA) and fault tree analysis (FTA), are used to
analyze failures before and after their occurrence. This paper focused on failure analysis methodologies intelligentization
literature applied to FMEA, RCA, and FTA to provide insights into expert-driven, data-driven, and hybrid intelligence failure
analysis advancements. Types of data to establish an intelligence failure analysis, tools to find a failure’s causes and effects,
e.g., Bayesian networks, and managerial insights are discussed. This literature review, along with the analyses within it,
assists failure and quality analysts in developing effective hybrid intelligence failure analysis methodologies that leverage the
strengths of both proactive and reactive methods.

Keywords Automated failure analysis · Data-driven failure analysis · FTA · FMECA · Human–machine cooperation · RCA

Introduction

Failure analysis entails activities to identify, categorize,
and prioritize (potential) failures and determine causes and
effects of each failure and failure propagation and inter-
dependencies (Rausand & Øien, 1996). Failure analysis
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significance in manufacturing has grown since Industry 3.0
to mitigate defects and/or failures in production processes,
thereby maximizing reliability and quality and minimizing
production interruptions, associated risks, and costs (Wu et
al., 2021; Ebeling, 2019).

Failure analysis methodologies have been supported by
mathematical, statistical, and graph theories and tools,
including MCDM theory, fuzzy theory, six-sigma, SPC,
DOE, simulation, Pareto charts, and analysis of mean and
variance (Oliveira et al., 2021; Huang et al., 2020; Tari &
Sabater, 2004). Industry 4.0 is driven by (real-time) data
from sensors, the Internet of Things (IoT), such as Internet-
enabled machines and tools, and artificial intelligence (AI).
Advances in artificial intelligence theory and technology
have brought new tools to strengthen failure analysismethod-
ologies (Oztemel&Gursev, 2020). Examples of tools include
Bayesian networks (BNs), case-based reasoning (CBR),
neural networks, classifications, clusterings algorithms, prin-
cipal component analysis (PCA), deep learning, decision
trees, and ontology-driven methods (Zheng et al., 2021).
These Industry 4.0 advancments enable more efficient data
collection and analysis, enhancing predictive capabilities,
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increasing efficiency and automation, and improving collab-
oration and knowledge sharing.

Failure analysis methodologies can be categorized into
expert-driven, data-driven, and hybrid ones. Expert-driven
failure analysis methods rely on experts’ knowledge and
experience (Yucesan et al., 2021; Huang et al., 2020). This
approach is useful when the data is limited or when there is
a high degree of uncertainty. Expert-driven methods are also
useful when the failure structure is complex and difficult to
understand. However, this approach is limited by the avail-
ability and expertise of the experts, and is prone to bias and
subjective interpretations (Liu et al., 2013).

Data-driven failure analysis methods, on the other hand,
rely on statistical analysis and machine learning algorithms
to identify patterns in the data and predict the causes of the
failure (Zhang et al., 2023; Mazzoleni et al., 2017). This
approach is useful when there is a large amount of data avail-
able and when the failure structure is well-defined. However,
data-driven methods is limited by the quality and complete-
ness of the data (Oliveira et al., 2021).

Until recently, most tools have focused on replacing
humans with artificial intelligence (Yang et al., 2020; Filz
et al., 2021b), which causes them to remove human intellect
and capabilities from intelligence systems. Hybrid intelli-
gence creates hybrid human–machine intelligence systems,
in which humans and machines collaborate synergistically,
proactively, and purposefully to augment human intellect and
capabilities rather than replace them with machine intellect
and capabilities to achieve shared goals (Akata et al., 2020).

Collaboration between humans andmachines can enhance
the failure analysis process, allowing for analyses that were
previously unattainable by either humans or machines alone.
Thus, hybrid failure analysis provides a more comprehen-
sive analysis of the failure by incorporating strengths of both
expert-driven and data-driven approaches to identify themost
likely causes and effects of failures (Dellermann et al., 2019;
van der Aalst, 2021).

Benefits froma smart failure analysismay include reduced
costs and production stoppages, improved use of human
resources, improved use of knowledge, improved failure,
root causes, and effects identification, and real-time fail-
ure analysis. Yet, only a few studies specifically addressed
hybrid failure analysis (Chhetri et al., 2023). A case exam-
ple of hybrid expert data-driven failure analysis involves
using data from similar product assemblies to construct a
Bayesian network for proccess failure mode and effects anal-
ysis (pFMEA), while also incorporating expert knowledge
as constraints based on the specific product being analyzed
(Chhetri et al., 2023).

Over the past few years, several literature reviews, as
reported in Section Literature review, have been accom-
plished under different outlooks in relation to different failure
analysis methodologies including failure mode and effects

analysis (FMEA), root cause analysis (RCA), and fault tree
analysis (FTA). Currently, most existing literature does not
systematically summarize the research status of these failure
analysis methodologies from the perspective of Industry 4.0
and (hybrid) intelligence failure analysis with the benefits
from new technologies. Therefore, this study aims to review,
categorize, and analyze the literature of these three gen-
eral failure analysis methodologies in production systems.
The objective is to provide researchers with a comprehen-
sive overview of these methodologies, with a specific focus
on hybrid intelligence, and its benefits for quality issues in
production.We address two questions "How can failure anal-
ysis methodologies benefit from hybrid intelligence?" and
"Which tools are suitable for a good fusion of human and
machine intelligence?" Consequently, themain contributions
of this study to the failure analysis literature are as follows:

1. Analysis of 86 papers out of 7113 papers from FMEA,
RCA, and FTAwith respect tomethods and data types that
might be useful for a hybrid intelligence failure analysis.

2. Identification of data and methods to construct and
detect multiple failures within different research related
to FMEA, RCA, and FTA methodologies.

3. Identification of the most effective methods for analyzing
failures, identifying their sources and effects, and assess-
ing related risks.

4. Proposal of a categorizationof researchbasedon the levels
of automation/intelligence, along with the identification
of limitations in current research in this regard.

5. Provision of hybrid intelligent failure analysis future
research, along with other future directions such as future
research on failure propagation and correlation.

The plan of this paper is as follows. Section Literature
reviewbriefly introduces related literature reviews onFMEA,
RCA, and FTA. A brief description of other failure analysis
methodologies is also provided. Section Research methodol-
ogy presents our review methodology, including the review
scope andprotocols, definingboth our primary and secondary
questions, and the criteria for selecting journals and papers to
be reviewed. A bibliography summary of the selected papers
is provided. Literature has been categorized inSectionLitera-
ture categorization based on the four general steps of a failure
analysis methodology, involving failure structure detection,
failure event probability detection, failure risk analysis, and
outputs. Managerial insights, limitations, and future research
are discussed in SectionManagerial insights, limitations, and
future research. This assists researcherswith applications and
complexity, levels of intelligence, how knowledge is intro-
duced into the failure analysis. A more in-depth discussion
of hybrid intelligence, failure propagation and correlation,
hybrid methodologies, and other areas of future research is
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also included. Conclusions are presented in Section Conclu-
sion.

Literature review

General and industry/field-specific failure analysis method-
ologies have been developed over the last few decades. In this
section, we provide useful review papers regarding FMEA,
RCA, and FTA, which are the focus of our paper. Addition-
ally, some other general and industry/field-specific failure
analysis methodologies are briefly discussed.

FMEA is a most commonly used bottom-up proactive
qualitative methodologies for potential quality failure anal-
ysis (Huang et al., 2020; Stamatis, 2003). Among its exten-
sions, process FMEA (pFMEA) proactively identifies poten-
tial quality failures in production processes such as assembly
lines (Johnson & Khan, 2003). Typically, (p)FMEA uses
expert knowledge to determine potential failures, effects, and
causes, and to prioritize the failures based on the risk prior-
ity number (RPN). RPN is a product of severity, occurrence,
and detection rates for each failure (Wu et al., 2021). Some
of the FMEA shortcomings include time-consuming, sub-
jectivity, inability to determine multiple failures, and failure
propagation and interdependency (Liu et al., 2013).

RCA is a bottom-up reactive quantitative methodology
that determines the causal mechanism behind a failure to pre-
vent the recurrence of the failure in manufacturing processes
(Oliveira et al., 2023). To locate, identify, and/or explain the
reasons behind the occurrence of root causes, RCA utilizes
statistical analysis tools, such as regression, statistical pro-
cess control (SPC), design of experiments (DOE), PCA, and
cause-effect diagram (Williams, 2001). Limited ability to
predict future failures and difficulty in identifying complex or
systemic issues are amongRCA limitations (Yuniarto, 2012).

FTA is a top-down reactive graphical method to model
failure propagation through a system, i.e., how component
failures lead to system failures (Kumar & Kaushik, 2020).
FTA uses qualitative data to model the structure of a system
andquantitative data, including probabilities andgraphmeth-
ods such as minimal cut/path sets, binary decision diagrams,
simulation, and BNs, to model failures propagation. Requir-
ing extensive data, limited ability to identify contributing
factors, and time-consuming are among the FTA limitations
(Ruijters & Stoelinga, 2015).

In recent years, several literature reviews have been con-
ducted on failure analysis methodologies, exploring various
perspectives and approaches. Liu et al. (2013) reviewed
FMEA risk evaluation tools including rule-based systems,
mathematical programming, and multi-criteria decision-
making (MCDM). They concluded that artificial intelligence
and MCDM tools, particularly fuzzy rule base systems, grey
theory, and cost-based models, are the most cited tools to

prioritize risks in FMEA. Liu et al. (2019a) and Dabous
et al. (2021) reviewed MCDM tools application for FMEA.
Papers with different areas, automotive, electronics, machin-
ery and equipment, and steelmanufacturingwere considered.
The most used MCDM tools, namely technique for order
of preference by similarity to ideal solution (TOPSIS), ana-
lytic hierarchy process (AHP), decision-making trial and
evaluation laboratory (DEMATEL), and grey theory, were
identified.

Spreafico et al. (2017) provided a FMEA/Failure mode,
effects, and criticality analysis (FMECA) critical review
by classifying FMEA/FMECA limitations and issues and
reviewing suggested improvements and solutions for the
limitations. FMEA issues were classified into four groups
of applicabilities, cause and effect analysis, risk analysis,
and problem-solving. Main problems (and solutions) are
being time-consuming (integration with design tools, using
more structured templates, and automation), lack of sec-
ondary effects modeling (integration with other tools such
as FTA, BN, and Petri net), being too subjective (using
statistical evaluation and cost-based approaches), and lack
in evaluating the implementation of a solution (using the
improved presentation of the results and integration with
other tools such as maintenance management tools), respec-
tively. Huang et al. (2020) provided a bibliographic analysis
of FMEA and its applications in manufacturing, marine,
healthcare, aerospace, and electronics.Wuet al. (2021) sorted
out potential failure mode identification approaches such as
analyzing entry point for system failure mode identification,
failure mode recognition tools, and failure mode specifica-
tion description. Then a review of FMEA risk assessment
tools had been provided.

Oliveira et al. (2023) reviewed automatic RCA literature
in manufacturing. Different data types, location-time, phys-
ical, and log-action, that are usually used were identified.
Industries with the most use of RCA are ranked, semicon-
ductor, chemical, automotive, andothers. Thendifferent tools
used to automate RCA, including decision trees, regression
models, classification methods, clustering methods, neural
networks, BNs, PCA, statistical tests, and control charts,
were discussed. Ruijters and Stoelinga (2015) provided FTA
qualitative and quantitative analysis methods. Also, different
types of FTA, standard FTA, dynamic FTA, and other exten-
sions, were discussed. Zhu and Zhang (2022) also reviewed
dynamic FTA. Cai et al. (2017) reviewed the application of
BN in fault diagnosis. First, an overview of BN types (static,
dynamic, and object-oriented), structure modeling, param-
eters modeling, and interference has been provided. Then
applicability of BN for fault identification in process, energy,
structural, manufacturing, and network systems has been dis-
cussed. BN verification and validationmethods are provided.
Future prospects including integration of big data with BN,
real-time fault diagnosisBN inference algorithms, andhybrid
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fault diagnosis methods are finally resulted. More relevant
BN reviews include BN application in reliability (Insua et al.,
2020) and safety and risk assessments (Kabir & Papadopou-
los, 2019).

The integration of FMEA, RCA, and FTA holds immense
potential for quality and production managers to minimize
failures and enhance system efficiency. By capitalizing on the
unique strengths of each approach, the integration of these
failure analysis methodologies enables a more comprehen-
sive and effective examination of failures. However, existing
studies and literature reviews have predominantly focused
on individual methodologies, leading to a lack of integration
and limited familiarity with three approaches among engi-
neers and industry experts. To address this gap and promote
the integration of them, this study aims to review the progress
of intelligence failure analysiswithin FMEA,RCA, andFTA.

Other general failure analysis methodologies include, but
are not limited to, the following methodologies. Event Tree
Analysis, similar to FTA, is a graphical representation that
models the progression of events following an initiating
event, helping to analyze the potential consequences (Rui-
jters & Stoelinga, 2015). Bow-Tie Analysis, usually used
in risk management, visualizes the relationship between
different potential causes of a hazard and their possible conse-
quences (Khakzad et al., 2012). Human Reliability Analysis
focuses on assessing the probability of human error and its
potential impact on systems and processes (French et al.,
2011). The Fishbone Diagram visually represents potential
causes of a problem to identify root causes by categorizing
them into specific factors like people, process, equipment,
materials, etc.

There are also industry-specific methodologies, including
but not limited to the following ones. Electrostatic Dis-
charge (ESD)FailureAnalysis focuses on identifying failures
caused by electrostatic discharge, a common concern in the
electronics industry. Hazard and Operability Study is widely
used in the chemical industry to examine deviations from
the design intent and identify potential hazards and oper-
ability issues. Incident Response and Post-Incident Analysis,
in the IT industry, is used for analyzing and responding to
security incidents, with a focus on preventing future occur-
rences. Hazard Analysis and Critical Control Points is a
systematic preventive approach to food safety that identifies,
evaluates, and controls hazards throughout the production
process. Maximum credible accident analysis assesses and
mitigates the most severe accidents that could occur in high-
risk industries. For more information on industry-specific
methodologies, an interested reader may consult the paper
on that industry, as they are wide and out of the scope of this
paper for deep discussion.

Our review focuses on the historical progress of (hybrid)
intelligence failure analysis to identify and classify method-
ologies and tools used within them. In Industry 4.0, (hybrid)

intelligence failure analysis can contribute to improve qual-
ity management and automate quality through an improved
human cyber-physical experience. Different from the above-
mentioned reviews, the purpose of our study is to provide
a rich comprehensive understanding of the recent develop-
ments in these methodologies from industry 4.0 and hybrid
intelligence, the benefits of making them intelligent, i.e.,
(augmented) automatic and/or data-driven, and their limi-
tations.

Researchmethodology

A systematic literature review analyses a particular knowl-
edge domain’s body of literature to provide insights into
research and practice and identify research gaps (Thomé et
al., 2016). This section discusses our review scope and proto-
cols, defining both our primary and secondary questions, and
the criteria for selecting journals and papers to be reviewed.A
bibliography analysis of the selected papers is also presented,
including distributions by year, affiliation, and journals.

Review scope and protocol

We follow Thomé et al. (2016) 8-step literature review
methodology to assure a rigorous literature review of intelli-
gence, automated/data-driven, failure analysis methodology
for Industry 4.0.

In Step 1, our (hybrid) intelligence failure analysis prob-
lem is planned and formulated by identifying the needs,
scope, and questions for this research. Our initial need for
this literature review comes from a relevant industrial project
entitled "assembly quality management using system intelli-
gence" which aims to reduce the quality failures in assembly
lines. The trend towards automated and data-driven method-
ologies in recent years signifies the need for this systematic
literature review. Thus, three general failure analysismethod-
ologies, FMEA, RCA, and FTA, are reviewed with respect
to tools to make them intelligent and to derive benefits from
hybrid intelligence.

Our primary questions are as follows. (i) What are the
failure analysis general methodologies and what tools have
been used to make them intelligent? (ii) How these method-
ologies may benefit from hybrid intelligence? (iii) What are
the strengths and weaknesses of these methodologies and
tools?Our secondary questions are as follows. (i) How intel-
ligent are these tools? (ii) What types of data do they use?
Which tools allow a good fusion of human andmachine intel-
ligence? (iii) How well do they identify the root causes of
failures? (iv) What are the possible future prospectives?

Step 2 concerns searching the literature by selecting rele-
vant journals, databases, keywords, and criteria to include or
exclude papers. We select the SCOPUS database to scan the
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Fig. 1 Distribution of papers by year and affliation

relevant paper from 1990 to the first half of 2022. SCOPUS
contains all high-quality English publications and covers
other databases such as ScienceDirect and IEEE Xplore. A
two-level keyword structure is used. The first level retrieves
all papers that have either failure mode and effect analy-
sis, FMEA, failure mode and effects and criticality analysis,
FMECA, fault tree analysis, FTA, event tree analysis, ETA,
root cause analysis, RCA, failure identification, failure anal-
ysis, or fault diagnosis in the title, abstract, and/or keywords.
The second level limits the retrieved paper by the first level
keywords to papers that have either Bayesian network, BN,
automated, automatic, automation, smart, intelligence or
data-driven in the title, abstract, and/or keywords.

To ensure the scientific rigor of our literature review
process, we have removed papers that met at least one
of the following criteria: Publications with concise and/or
ambiguous information that would make it impossible to
re-implement the tools and methodologies described in the
paper later on. Publications in low-level journals, i.e., jour-
nals in the third quarter (Q3) or lower in the Scimago Journal
&Country Rank. Papers with subject areas that are irrelevant
to our research topic, such as physics and astronomy.

Steps 3 and 4 involve gathering data and evaluating data
quality.We download papers and check their sources accord-
ing to exclusion criteria. Step 5 concerns data analysis. Step
6 focuses on interpreting the data. The final selected papers
are analyzed and interpreted in Section Managerial insights,
limitations, and future research. Step 7 involves preparing the
results and report. Step 8 requires the review to be updated
continuously.

Discussion and statistical analysis

Here is a bibliometric analysis of our literature review. About
15,977 papers were found in our first search. By exclud-
ing criteria, we shortened the search to 7113. Then, we
checked the titles of 7113 papers including 4359 conference
and 2754 journal papers. We downloaded 1,203 papers to

read their abstracts and skim their bodies. Then, 1114 low-
quality/irrelevant papers were excluded. The remaining 86
high-quality papers were examined for this study.

Distributions of papers by year and affiliation are shown
in Fig. 1. 28 countries have contributed in total. Most affili-
ations are in advanced countries including China, Germany,
and the UK. Surprisingly, we found no publications from
Japan and only five from the USA. Only one papers had
been published between 1990 and 1999 because of limited
data and technology, e.g., sensors and industrial cameras. A
slow growth observed between 2000 and 2014 coincideswith
the technology advancement and Industry 4.0 emergence.
The advanced technology and researchers focus on Indus-
try 4.0 have led to significant growth every year since 2015.
Worth to note that 2022 information is incomplete because
this research has been conducted in the middle of 2022. We
expect more publications, at least equal to 2021, for 2022.

Papers distribution by journal is in Fig. 2. 58 journals and
conferences have contributed. Journals with a focus on pro-
duction and quality, e.g., International Journal of Production
Research, have published most papers. Technology-focused
journals, e.g., IEEE Access, also have contributed.

Literature categorization

Selected papers are now categorized based on the four gen-
eral steps of a failure analysis methodology, involving failure
structure detection, failure event probabilities detection, fail-
ure risk analysis, and outputs. Then, a statistical analysis of
these categorizations is provided.

These four steps of a failure analysis methodology are
illustrated in Fig. 3. The first two steps deal with input
data. In step 1, the failure structure is identified, encompass-
ing all (possible) failures, the failure propagation structure,
failure interdependency, and causes and effects. Step 2
involves detecting event probabilities in a failure structure.
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Fig. 2 Distribution of papers by journal

Inputs Processes Outputs
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structure
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Historical expert-driven
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Opera�onal expert-driven

Historical expert-driven

Real-�me data-driven

Historical data-driven

Produc�on line data

Bayesian networks

Classifica�on/Clustering 

Rule-based systems

Other tools

Possible data sources Possible tools 

Fig. 3 Four general steps of a failure analysis methodology

For example, classical FMEA scores each failure with sever-
ity, occurrence, and detection rates.

To analyze failures in a (production) system, data should
be collected to identify the failure structure and detect fail-
ures. Reactive methodologies, such as RCA, are data-driven
and typically gather available data in a system, while proac-
tive methodologies, such as FMEA, are expert-driven and
gather data through expert knowledge. However, a (hybrid)
intelligence failure analysis methodology should take advan-

tage of both advanced technologies, such as sensors and
Internet-enabledmachines and tools, and experts to automat-
ically gather required data, combining proactive and reactive
approaches, and providing highly reliable analyses and solu-
tions.

In step 3, all input data are processed to determine the
associated risk value with each failure, and themost probable
causes (usually based on an observed or potential effect).
Typically, a main tool, such as Bayesian networks, neural
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rule-based systems, statistical analysis, or expert analysis, is
used to determine root causes, classify failures, and/or rank
failures.

Step 4 outputs results that may include failures and
sources, reasons behind the sources, and mitigation actions.
The output of this tool is post-processed to provide possible
solutions and information that is explainable and easy to use
for both humans and machines.

Steps 1: failure structure

Failure structure identification is the first step in a failure
analysis methodology. (Potential) failures, causes, effects,
and/or failure interdependency are identified. We catego-
rize the literature to develop a (hybrid) intelligence failure
methodology to identify failure structure, causes, effects,
interdependencies, and relationships between failures, fail-
ures and causes, and failures and effects.

Data

Traditionally, experts have defined failure structures by ana-
lyzing causes, effects, and the interdependency of failures.
However, recent studies have explored alternative approaches
to identifying failure structures, leveraging available data
sources such as problem-solving databases, design forms,
and process descriptions. Problem-solving databases include
quality issue records, maintenance records, failure analysis
records, and CBR databases. These records could be stored
in structured databases and sheets, or unstructured texts.
Design forms may include design FMEA forms, reliability
characteristics, and product quality characteristics. Process
descriptions may include operations, stations, and key oper-
ational characteristics. Moreover, simulation can be used
to generate failures, causes, and effects (Snooke & Price,
2012). Design forms and process descriptions are generated
by experts, usually for other purposes, and are re-used for
failure analysis. Problem-solving databases could be gener-
ated by experts, such as previous FMEAs, or by an automated
failure analysis methodology, such as automated RCA. Table
1 classifies studies based on the data sources used to identify
the failure structure.

Data processing methods

To define failure structure from operational expert-driven
data, no specific tool has been used. In the industry, fail-
ure structures are typically defined by an expert (or group of
experts). When expert-driven or data-driven historical data
and/or design forms and process descriptions are available,
ontology-driven algorithms, including heuristics (Sayed &
Lohse, 2014; Zhou et al., 2015; Steenwinckel et al., 2018;
Xu & Dang, 2023) and SysMLmodeling language (Hecht &

Baum, 2019), process/system decomposition (the operation,
the station, and the key characteristics levels) (Zuo et al.,
2016; Khorshidi et al., 2015; Zhou et al., 2015), rule-based
algorithms that use CBR (Yang et al., 2018; Liu & Ke, 2007;
Xu & Dang, 2023; Oliveira et al., 2022, 2021), and FTA/BN
modeling from FMEA/expert data (Yang et al., 2022; Steen-
winckel et al., 2018; Palluat et al., 2006) and from Perti net
(Yang & Liu, 1998) have been suggested. Rivera Torres et al.
(2018) divided a system into components and related failures
to each of the components to make a tree of components and
failures.

Component-failurematrix is generated using unstructured
and quality problem texts mining from historical documents
such as bills of material and failure analysis. Apriori algo-
rithms were used to find synonyms in the set of failure modes
(Xu et al., 2020). The 8Dmethod is used to describe a failure.
Ontology was used to store and retrieve data in a knowledge
base CBR system.

Yang et al. (2022), Leu andChang (2013) andWaghen and
Ouali (2021) have suggested building aBN structure from the
FTA model. Wang et al. (2018) has proposed to use the fault
feature diagram, the fault-labeled transition system based on
the Kripke structure to describe the system behavior. The
MASON (manufacturing semantic ontology) has been used
to construct the structure of the failure class by Psarommatis
and Kiritsis (2022). Teoh and Case (2005) has developed a
functional diagram to construct a failure structure between
components of a system and to identify causes and effect
propagation. Yang et al. (2018) used an FMEA style CBR to
collect failures to search for similarity. They then used CBR
to build a BN using a heuristic algorithm.

Step 2: failure detection

Failure detection data are gathered to determine the strength
of relationships among failures, causes, and effects.

Data

Failure detection can be based on operational or historical
expert-driven data, as well as data-driven historical and/or
real-time data obtained from sensors. Such data can come
from a variety of sources, including design and control
parameters (such as machine age or workpiece geome-
try), state variables (such as power demand), performance
criteria (such as process time or acoustic emission), and
internal/external influencing factors (such as environmental
conditions) (Filz et al., 2021b; Dey & Stori, 2005). These
data are usually used to determine occurrence probability of
failures. To determine the severity and detection probabili-
ties of failures, conditional severity utility data/tables may be
used (Lee, 2001). Simulation can also be used to determine
occurrence, severity, and detection (Price & Taylor, 2002).
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Table 2 summarizes types of data that are usually used to
detect failures in the literature.

Data processing methods

Processing data refers to the transformation of raw data into
meaningful information. A data processing tool is needed
that provides accurate and complete information about the
system and relationships between data and potential failures.

First, data from different sources should be pre-processed.
In a data pre-processing step, data is cleaned, edited, reduced,
or wrangled to ensure or enhance performance, such as
replacing a missing value with the mean value of the entire
column (Filz et al., 2021b; Schuh et al., 2021; Zhang et al.,
2023; Musumeci et al., 2020; Jiao et al., 2020; Yang et al.,
2015; Chien et al., 2017).

Data then may need to be processed according to the tools
used in Step 3.Commondata processingmethods between all
tools include data normalization using the min-max method
(Filz et al., 2021b; Musumeci et al., 2020) and other methods
(Yang et al., 2018; Schuh et al., 2021; Jiao et al., 2020; Sariyer
et al., 2021; Chien et al., 2017).

Feature selection/extraction algorithms have been used to
select the most important features of data (Filz et al., 2021b;
Xu & Dang, 2020; Mazzoleni et al., 2017; Duan et al., 2020;
Schuh et al., 2021; Zhang et al., 2023;Musumeci et al., 2020;
Yang et al., 2015; Sariyer et al., 2021).

ForBN-based failure analysis,maximumentropy theory is
proposed to calculate failure probabilities from expert-based
data (Rastayesh et al., 2019). Fuzzy methods have also been
used to convert linguistic terms to occurrence probabilities
(Yucesan et al., 2021; Wan et al., 2019; Nie et al., 2019;
Nepal & Yadav, 2015; Ma &Wu, 2020; Li et al., 2013; Duan
et al., 2020). Euclidean distance-based similarity measure
(Chang et al., 2015) and fuzzy rule base RPN model (Tay
et al., 2015), heuristic algorithms (Brahim et al., 2019; Dey
& Stori, 2005; Yang et al., 2022), and a fuzzy probability
function (Khorshidi et al., 2015) have been suggested to build
failure probabilities.

Failure analysis data may be incomplete, inaccurate,
imprecise, and limited. Therefore, several studies have used
tools to deal with uncertainty in data. The most commonly
used methods are fuzzy FMEA (Yang et al., 2022; Nepal
& Yadav, 2015; Ma &Wu, 2020), fuzzy BN (Yucesan et al.,
2021;Wanet al., 2019;Nie et al., 2019), fuzzyMCDM(Yuce-
san et al., 2021;Nie et al., 2019;Nepal&Yadav, 2015), fuzzy
neural network (Tay et al., 2015; Palluat et al., 2006), and
fuzzy evidential reasoning and Petri nets (Shi et al., 2020).

Step 3: analysis

A failure analysis tool is essential for conducting any fail-
ure analysis. Table 3 categorizes various data-driven tools,

such as BNs, Clustering/Classification, Rule-based Reason-
ing, and other tools used in the literature and the aspects they
support.

BNs model probabilistic relationships among failure
causes, modes, and effects using directed acyclic graphs
and conditional probabilities. Pieces of evidence, i.e., known
variables, are propagated through the graph to evaluate unob-
served variables (Cai et al., 2017). For example, Rastayesh et
al. (2019) applied BNs for FMEA and perform risk analysis
of a Proton ExchangeMembrane Fuel Cell. Various elements
and levels of the system were identified along with possible
routes of failure, including failure causes, modes, and effects.
A BN was constructed to perform the failure analysis. Some
other examples of the BNs application include an assembly
system (Sayed & Lohse, 2014), kitchen equipment manu-
facturing (Yucesan et al., 2021), and Auxiliary Power Unit
(APU) fault isolation (Yang et al., 2015).

Classification assigns predefined labels to input data based
on learned patterns, Clustering organizes data into groups
based on similarities. Neural networks are commonly used
for failure classification and have been employed in most
studies. Hence, we separated these studies from those that
used other clustering/classification tools. Neural networks
consist of layers of interconnected nodes, with an input layer
receiving data, one or more hidden layers for processing, and
an output layer providing the final classification (Jiang et al.,
2024). For example, Ma and Wu (2020) applied neural net-
works to assess the quality of 311 apartments in Shanghai,
China, for FMEA. The input includes various APIs collected
for the apartments, and the output was the risk rate of each
apartment. In another study, Ma et al. (2021) applied neural
networks for RCA to predict the root causes of multiple qual-
ity problems in an automobile factory. Some other examples
of the neural networks application include industrial valve
manufacturing (Pang et al., 2021), complex cyber–physical
systems (Liu et al., 2021), and an electronic module designed
for use in a medical device (Psarommatis & Kiritsis, 2022).

Other clustering/classification tools include evolving tree
(Chang et al., 2015), reinforced concrete columns (Man-
galathu et al., 2020), K-means, random forest algorithms (Xu
&Dang, 2020;Chien et al., 2017;Oliveira et al., 2022, 2021),
contrasting clusters (Zhang et al., 2023), K-nearest neighbors
(Ma et al., 2021), self-organizing maps (Gómez-Andrades et
al., 2015), and Naive Bayes (Schuh et al., 2021; Yang et al.,
2015).

Rule-based reasoning represents knowledge in the form of
"if-then" rules. Rule-based reasoning involves a knowledge
base containing the rules and a reasoning engine that applies
these rules to incoming data or situations. For instance,
Jacobo et al. (2007) utilized rule-based reasoning for ana-
lyzing failures in mechanical components. This approach
serves as a knowledgeable assistant, offering guidance to less
experienced users with foundational knowledge in materials
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science and related engineering fields throughout the failure
analysis process. Also, the application of the rule-based rea-
soning for wind turbines FMEA is studied by (Zhou et al.,
2015).

Other tools include gradient-boosted trees, logistic regres-
sion (Filz et al., 2021b), CBR (Tönnes, 2018; Camarillo et
al., 2018; Jacobo et al., 2007), analyzing sensitivities of the
machining operation by the stream of variations and errors
probability distribution determination (Zuo et al., 2016),
causal reasoning (Teoh&Case, 2005), probabilistic Boolean
networkswith interventions (Rivera Torres et al., 2018), prin-
cipal component analysis (PCA) (Duan et al., 2020; Zhang
et al., 2023; Jiao et al., 2020; Sun et al., 2021), factor rank-
ing algorithms (Oliveira et al., 2022, 2021), heuristics and/or
new frameworks (Camarillo et al., 2018; Yang et al., 2009,
2020; Snooke & Price, 2012; Xu & Dang, 2023; Rokach &
Hutter, 2012; Wang et al., 2018; Hecht & Baum, 2019; Yang
& Liu, 1998; Liu & Ke, 2007), and mathematical optimiza-
tion methods (Khorshidi et al., 2015).

These tools may be integrated by other tools including
sequential state switching and artificial anomaly association
in a neural network (Liu et al., 2021), MCDM/optimization
(Yucesan et al., 2021; Jomthanachai et al., 2021; Ma et
al., 2021; Sun et al., 2021), game theory (Mangalathu et
al., 2020), fuzzy evidential reasoning and Petri nets (Shi
et al., 2020), and maximum spanning tree, conditional
Granger causality, and multivariate time series (Chen et al.,
2018).

Step 4: output

A data analysis process can benefit not only humans but also
machines and tools in a hybrid intelligence failure analysis
methodology. Therefore, the output information should be
carefully designed. Table 4 ranks the output data, and the list
of studies for each output is available in Online Appendix
EC.1. Most studies have focused on automatically iden-
tifying the root causes of failures, which is the primary
objective of a failure analysis methodology. In addition,
researchers have also focused on failure occurrence rating,
ranking, and classification. While automatically finding the
root causes of failures is important, a hybrid intelligence fail-
ure analysis process needs to interpret the related data and
information and automatically provide mitigation actions for
both operators and machines. However, only a few studies
have proposed tools to automatically find possible mitigation
actions, usually based on CBR databases and only readable
for humans. Therefore, future studies may focus on finding
possible automated mitigation actions for failures and devel-
oping a quality inspection strategy.

Table 4 Number of papers per output data

Output Count

Root causes of a failure 42

Failure occurrence rate 22

RPN (or rank of failures) 21

Failure/causes clusters/classes 21

Mitigation actions 8

Quality inspection strategy 1

Data post-processing

A data post-processing step transforms data from the main
tool into readable, actionable, and useful information for
both humans and machines. Adapting solutions from sim-
ilar failures in a database (i.e., CBR) to propose a solution
for a detected failure has been proposed by Tönnes (2018),
Camarillo et al. (2018), Hecht andBaum (2019), Jacobo et al.
(2007), Liu and Ke (2007) and Ma et al. (2021). Simulation
to analyze different scenarios (Psarommatis&Kiritsis, 2022;
Jomthanachai et al., 2021; Chien et al., 2017; Oliveira et al.,
2022), mathematical optimization model (Khorshidi et al.,
2015; Ma et al., 2021) and self-organizing map (SOM) neu-
ral network (Chang et al., 2017) to automatically select the
best corrective action have also been proposed. Also, fuzzy
rule-based systems to obtain RPN (Nepal & Yadav, 2015)
and visualisation (Xu & Dang, 2020; Yang et al., 2009) are
discussed.

Discussion and statistical analysis

The statistical analysis of the paper reveals that most FMEA-
based studies rely solely on expert-based information to
construct failure structures, while RCA-based papers tend
to use a hybrid of problem-solving and system-related data.
This is depicted in Fig. 4, which shows the distribution of
papers by data used over time. FMEA is used to identify
potential failures when there is not enough data available to
construct a failure structure based on system-based data. The
trend shows some effort to use data, instead of expert knowl-
edge, to construct failure structures, using data from similar
products/processes. RCA and FTA are a reactive methodol-
ogy that analyzes more information than FMEA. Advances
in data mining techniques, along with increased data avail-
ability, have led to a growing trend of using data to construct
failure structures. For a comprehensive and reliable intelli-
gence failure analysis, a combination of all kinds of data is
necessary. It is worth noting that Waghen and Ouali (2021)
proposed a heuristic method to augment failure structure
identification that uses expert and historical data. They sug-
gested engaging expert knowledge when historical data are
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insufficient to identify a failure structure and/or the reliabil-
ity of a failure structure is low. Other studies have solely
focused on failure identification through expert knowledge
or historical data, without considering the potential benefits
of combining different types of data.

While most FMEA-based papers use only expert-based
data to determine failure probability, there is a significant
growth in the utilization of problem-solving data and a hybrid
of problem-solving and system-related data, i.e., produc-
tion line data, over time. RCA and FTA usually tend to use
more problem-solving and system-related data. Moreover,
this figure and Fig. 5 show that the literature on RCA has
been growing in recent years, while the trend for FMEA
has remained the same over time. We found that Filz et al.
(2021b), Mazzoleni et al. (2017), Ma and Wu (2020) and
Yang et al. (2015) improved FMEA to use a combination of
expert-based, problem-solving, and system-related data to
determine potential failures and their causes. They analyzed
these data using deep learning, classification, and neural net-
works, respectively. Duan et al. (2020), Ma et al. (2021) tried
to use the benefits of both expert-based data and problem-
solving and system-related data in the RCA context. They
analyzed the root cause of failures using neural networks.

The distribution of papers by the tools used is shown
in Fig. 5. BNs have been mainly used within the context
of FMEA methodologies with a growing trend during the
recent years, while RCA researchers have used them less
frequently. BNs have the potential to model failure propaga-
tion, multi-failure scenarios, and solution analysis to propose
potential solutions. However, all of the studies reviewed in
this paper only used BNs to identify the root causes of fail-
ures. BNs offer a clear graphical representation of failures,
their causes, and their effects, which facilitates the interpre-
tation of results by humans. They also provide an easy way
for humans to intervene and analyze the sensitivity of results
and correct processed data if it appears unrealistic. BNs are
well-developed tool and have the ability to work with expert-
based, historical, and system-based data, even when data is
fuzzy or limited. Developingmethodologies that leverage the
advantages of BNs seems promising for FMEA, RCA, and
FTA.

RCA and FTA are reliant on various tools over time
with no trend of using a specific tool, such as PCA and
regression, due to their need for a large amount of data.
However, these methods have limitations in incorporating
both human and machine intelligence and mostly rely on
machine intelligence. Although neural networks and classi-
fication algorithms have gained attention in both FMEA and
RCA during the last few years, they are black boxes and dif-
ficult for humans to modify. Also, classification algorithms
typically do not address failure propagation or multi-failure
modes. BNs offer a promising alternative, as they can model
failure propagation, multiple-failures, and provide a clear

graphical representation of failures, causes, and effects.
Furthermore, BNs can incorporate both expert-based and his-
torical data, making them well-suited for FMEA, RCA, and
FTA. Therefore, developing methodologies that fully lever-
age the benefits of BNs in these domains would be valuable.

Managerial insights, limitations, and future
research

In this section, we discuss managerial insights, limitations,
and future research related to different aspects of a Hybrid
Intelligence failure analysis methodology. The aim is to
assist researchers in focusing on relevant recommenda-
tions. Section Section Applications and complexity delves
into the applications and complexity of each study, and
provides examples for each tool. Section Levels of automa-
tion/intelligence presents the levels of intelligence for a
failure analysis methodology. Section Introducing knowl-
edge into tools discusses how knowledge is introduced into
the failure analysis tools for an effective failure analysis. A
more in-depth discussion of hybrid intelligence is in Section
Hybrid intelligence. The last three sections provide insights
into failure propagation and correlation, hybrid methodolo-
gies, and other areas of future research.

Applications and complexity

Intelligent FMEA, RCA, and FTA have been applied to vari-
ous applications, including production quality management,
computer systems, reliability and safety, chemical systems,
and others. Table 5 presents the distribution of reviewed
papers by application. The list of studies per application
is available in Online Appendix EC.2. Production quality
management has been the most common application of intel-
ligent failure analysis methodologies due to the significant
costs associated with quality assurance. Smart failure analy-
sis methodologies have also been impacted by the increased
use of sensors and IoT to collect precise data frommachines,
tools, operators, and stations, as well as powerful comput-
ers to analyze the data. Computer systems failure analysis
and system reliability and safety rank second, while chemi-
cal systems rank third, as these systems often require specific
methodologies, such as hazard and operability analysis.

We checked every paper dataset to find information about
the complexity of their case-study and reasons behind their
good results to help readers select a validated study on a
large set of data. An enriched dataset of problem-solving
data are used by Xu et al. (2020), Du et al. (2012), Oliveira
et al. (2021), Gómez-Andrades et al. (2015), Leu and Chang
(2013), Price andTaylor (2002), Sariyer et al. (2021),Gomez-
Andrades et al. (2016) and Xu and Dang (2023). An enriched
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Table 5 Number of papers per application

Application FMEA RCA FTA Total count

Discrete production processing, machining, and/or assembly quality issues 6 13 1 21

Computer systems 5 5 0 10

System reliability and safety 7 2 1 10

Chemical systems/manufacturing 1 6 0 7

Semiconductor 2 3 1 6

Maintenance planning 4 0 1 5

Food and/or farming industry 3 0 0 3

Other 12 6 1 18
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dataset of historical problem-solving and sensors data is used
by

Filz et al. (2021b), Sun et al. (2021), Mazzoleni et al.
(2017), Hireche et al. (2018), Yanget al. (2015) Demirbaga
et al. (2021), Waghen and Ouali (2021), Zhang et al. (2023),
Oliveira et al. (2022), Sun et al. (2021). Data from the system
and processes are used by Teoh and Case (2005), Ma et al.
(2021), Schuh et al. (2021), Waghen and Ouali (2021). Other
studies demonstrated their methodology on a small problem.

Levels of automation/intelligence

Failure analysis intelligence can be divided into five levels
based on the data used. Level 1 involves analyzing failures
using expert-based data with the use of intelligence tools.
This level can be further improved by incorporating fuzzy-
based tools, such as fuzzy BNs, fuzzy neural networks, and
fuzzy rule-based systems. If the amount of historical data can
be increased over time, we suggest using BNs in a heuristic-
based algorithm, as they have the capability to work with all
possible data, resulting in fewer modifications in the failure
analysis methodology over time. Good examples for Level 1
include Yucesan et al. (2021) and Brahim et al. (2019).

Level 2 involves analyzing failures using experts to
identify failure structures and problem-solving and system-
related data to determine failure probabilities. This level can
be used by a professional team who can correctly and com-
pletely identify failure structure. It can also be used by those
who work with variable structures where updating the struc-
ture requires a lot of data modification. Identifying failure
structures and analyzing failures are both automated at level
3. This level is the most applicable when a good amount of
data is available. BNs, classification algorithms, and neural
networks are among the best tools to analyze failure within
RCA, FMEA, and FTA methodologies. Studies such as Filz
et al. (2021b) Zuo et al. (2016), Dey and Stori (2005), Man-
galathu et al. (2020), Yang et al. (2015) and Ma et al. (2021)
are good examples for Levels 2 and 3.

In level 4, mitigation actions are also determined automat-
ically. This level represents a whole automation of failure
analysis. BNs are among the few tools that can encompass
all steps of failure analysis. As such, we suggest using them.
CBR databases can be used by BNs plus system-based data
to provide possible corrective actions. Tönnes (2018), Zuo et
al. (2016) and Hecht and Baum (2019) are among good stud-
ies for Level 4. Chang et al. (2017) has focused to automate
and visualize corrective actions using a self-organizing map
(SOM) neural network in an FMEA methodology. Future
research should concentrate on the development of an auto-
mated FMEA that dynamically updates the current RPN
(Risk Priority Number). This can aid in predicting failures
in parts or components of a system using a "Live RPN." The
predictive capability of such a tool can be utilized to optimize

the overall system. It enables the transformation of a man-
ufacturing system into a self-controlling system, allowing
adjustments based on current parameters (Filz et al., 2021b).

Level 5 is a hybrid intelligence approach to failure analy-
sis that encompasses all other levels and can be implemented
within FMEA, RCA, and FTA methodologies when a lim-
ited amount of historical and system-based data is available
until a comprehensive CBR database is built. BNs provide a
good graphical representation and can work with all possible
data types. The advantages of BNs are significant enough to
be suggested for hybrid intelligence failure analysis. How-
ever, we did not find any comprehensive study for this level.
A combination of studies that proposed methods to use
integrated expert-based, problem-solving, and system-based
data, such as Waghen and Ouali (2021); Filz et al. (2021b),
is suggested. Nonetheless, this level remains open and needs
to be the focus of future research by scholars. To facilitate
the implementation of hybrid intelligence failure analysis,
a user-friendly interface is crucial for operators to interact
with. Several studies have proposed user-interface applica-
tions for this purpose, including (Chan & McNaught, 2008;
Camarillo et al., 2018; Li et al., 2013; Jacobo et al., 2007;
Yang et al., 2009, 2020; Demirbaga et al., 2021; Snooke &
Price, 2012; Palluat et al., 2006).

Introducing knowledge into tools

In this section, we analyzewhich types of knowledge, expert-
driven, data-driven, or a hybrid of both, are usually used
with which tools and what the implications are for provid-
ing insights on suitable tools for hybrid intelligence failure
analyses.

Figure 6 shows the distribution of literature based on the
input data, tools, and outputs (four general steps of a failure
analysis methodology in Fig. 3). The first column of nodes
shows various combinations of types of knowledge, expert-
driven, data-driven, or a hybrid of both, that are usually used
in the literature to identify the structure of failure and to
detect the probability of failures. The second columnof nodes
shows various tools that are used to analyze the failure. The
third column of nodes shows outputs of a failure analysis.
The number of studies with each particular focus is shown
by the thickness of an arrow. Details are in Appendix EC.1.

The following studies have tried to introduce knowledge
and data from expert and data based sources to a failure
analysis methodology. Filz et al. (2021b) utilized expert
knowledge to identify the structure of failure, the components
involved, and the necessary sensors to be used. They then
employed sensors to capture data and leveraged problem-
solving data from the recorded expert archive to identify
failures in a deep learning model. Similarly, Musumeci et al.
(2020) used supervised algorithms to classify failures. Maz-
zoleni et al. (2017) they used data from sensors to select the
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Fig. 6 Literature distribution based on inputs, tools, and outputs

most effective features related to a failure, and subsequently
employed sensor data and failure expert data-sets within a
gradient boosting tree algorithm to identify the possibility
of the failure. Duan et al. (2020) used data from different
sources in a similar way for a neural network to identify the
root cause of a failure. Ma and Wu (2020) utilized expert
knowledge to identify failures in construction projects. Sub-
sequently, expert datasetswere employed in conjunctionwith
project performance indices to predict the possibility of a fail-
ure and determine the root cause of the failure using a neural
network tool.

Hireche et al. (2018), Yang et al. (2015) gathered data
from sensors to determine the conditions of each fail-
ure/component node. Then, a BN was used to identify the
risks and causes. A multi-level tree is developed by Waghen
and Ouali (2021). Each level contains a solution, pattern, and
condition level. Solutions are retrieved from a historical fail-
ure database as a combination of certain patterns. The pattern
in each problem has been identified and related to the solu-
tion using a supervised machine-learning tool. Each level is
linked to the next level until the root cause of a failure is
correctly identified.

Other usefull tips for introducing knowledge from dif-
ferent sources to a failure analysis methodology can be
found in the following studies. Zuo et al. (2016) divided

a multi-operation machining process operation, station, and
key characteristics levels. Stream of variations (SoV) was
used to evaluate the sensitivities of the machining opera-
tions level by level. Results were used to find the sources
affecting the quality. Distribution techniques for each qual-
ity precision usingmulti-objective optimizationwere chosen.
Dey and Stori (2005) used a message-passing method (Pearl,
1988) to update a BN using data from sensors to estimate the
condition of the system and update the CPTs, when each
sensor output is considered as a node in the BN. Chan and
McNaught (2008) also used sensor data to change the prob-
abilities in a BN. A user interface is also developed to make
inferences and present the results to operators.

Rokach and Hutter (2012) used the sequence of machines
and a commonality graph of steps and failure causes data to
cluster failures to find commonalities between them. A GO
methodology is used byLiu et al. (2019b) tomodel the system
and a heuristic is used to construct BN structure and probabil-
ities from theGOmethodologymodel. Teoh and Case (2005)
developed an objective-oriented framework that considers
conceptual design information. A hierarchy of components,
an assembly tree, and a functional diagram are built to cap-
ture data from processes and feed it to FMEA. Bhardwaj et
al. (2022) used historical data from a similar system to esti-
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mate failure detection probabilities. Hecht and Baum (2019)
used SysML to describe components and failures.

Zhou et al. (2015) used a tree of a system. Two classes of
knowledge, shallow knowledge and deep knowledge, were
gathered to generate rules for failure analysis. The former
indicates the experiential knowledge of domain experts, and
the latter is the knowledge about the structure and basic prin-
ciple of the diagnosis system. Liu and Ke (2007) used CBR
to find similar problems and solutions, text mining to find
key concepts of the failure in the historical failure record
texts, and rule mining to find hidden patterns among sys-
tem features and failures. Filz et al. (2021a) gathered process
parameters after each station using a quality check station.
Then a self-organizing Map was used to find failure propa-
gation and cause and effect. Ma et al. (2021) used data from
the system to determine features of problems, products, and
operators. Data from problem-solving databases was used to
find new failures and classified them using the features and
historical data.

Psarommatis and Kiritsis (2022) developed a methodol-
ogy that uses data-driven and knowledge-based approaches,
an ontology base on the MASON ontology to describe the
production domain and enrich the available data. Wang et
al. (2018) developed a data acquisition system including a
monitor, sensor, and filter modules. A fault diagram mod-
els failure propagation. They extended the Kripke structure
by proposing the feature-labeled transition system, which is
used to distinguish the behavior of the transition relationship
by adding a signature to the transition relationship.

This section highlights that in the realm of failure analysis,
amajority of research papers have utilized a hybrid approach,
combining expert and data knowledge for tasks such as fail-
ure detection, classification, and feature selection. However,
to achieve real-time failure analysis, a more effective integra-
tion of these two sources is crucial. This integration should
enable operators and engineers to provide timely input to the
system and observe immediate results. Furthermore, only a
limited number of studies have specifically focused on the
identification of failure structures using either data or a hybrid
of expert and data knowledge.

The use of BNs has emerged as a highly promising
approach for achieving real-time input and structure iden-
tification in the field of failure analysis. By leveraging both
expert knowledge and data sources, BNs have the capabil-
ity to effectively incorporate expert knowledge as constraints
within structure identification algorithms. Unlike traditional
classification algorithms that are primarily designed for con-
tinuous data, BNs are versatile in handling both discrete
and continuous data types. Moreover, BNs possess several
strengths that make them particularly suitable for failure
analysis. They excel at performing real-time inferences,
engaging in counterfactual reasoning, and effectively man-
aging confounding factors. Given these advantages, it is

essential to allocate more attention to the application of BNs
in hybrid intelligence failure analysis. This involves further
exploration of their capabilities and conducting compara-
tive analyses with other tools to assess their effectiveness
in various scenarios. By focusing on BNs and conduct-
ing comprehensive evaluations, researchers can enhance the
understanding and adoption of these powerful tools for
improved failure analysis in real-time settings.

Hybrid intelligence

A collaborative failure analysis methodology is needed, in
which artificial intelligence tools, machines, and humans can
communicate. While hybrid intelligence has gained atten-
tion in various fields, literature on the subject for failure
analysis is still limited. For example, Piller et al. (2022)
discussed methods to enhance productivity in manufactur-
ing using hybrid intelligence. They explored considerations
such as task allocation between humans andmachines and the
degree ofmachine intelligence integrated intomanufacturing
processes. Petrescu andKrishen (2023) and referenceswithin
have delved into the benefits and future directions of hybrid
intelligence for marketing analytics. Mirbabaie et al. (2021)
has reviewed challenges associated with hybrid intelligence,
focusing particularly on conversational agents in hospital set-
tings. Ye et al. (2022) developed a parallel cognition model.
This model draws on both a psychological model and user
behavioral data to adaptively learn an individual’s cognitive
knowledge. Lee et al. (2020) combined a data-driven pre-
diction model with a rule-based system to benefit from the
combination of human and machine intelligence for person-
alized rehabilitation assessment.

An artificial intelligence tool should not only provide
its final results but also provide its reasoning. A human
can analyze the artificial intelligence tool reasoning through
a user-interface application and correct possible mistakes
instantly and effortlessly. To enable this capability, the use
of a white-box artificial tool, such as Bayesian networks, is
essential. Explainable AI aids in comprehending and trusting
the decision-making process of the hybrid intelligence sys-
tem by providing the reasoning behind it (Confalonieri et al.,
2021). Moreover, a machine should be able to interpret and
implement an artificial intelligence tool and/or human solu-
tions. Artificial intelligence tools, machines, and humans can
learn from mistakes (Correia et al., 2023).

To fully exploit the complementarity in human–machine
collaborations and effectively utilize the strengths of both,
it is important to recognize and understand their roles, lim-
itations, and capabilities in the context of failure analysis.
Future research should focus on developing a clear plan
for their teamwork and joint actions, including determining
the optimal sensor types and locations, quality inspection
stations, and human/machine analysis processes. In other
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words, How to design a decision support system that inte-
grates both human knowledge and machine intelligence
with respect to quality management? should be answered.
Additionally, tools should be developed to propose possible
mitigation actions based on the unique characteristics of the
system, environment, humans, andmachines. To achieve this,
system-related data along with CBR data can be analyzed to
find potential mitigation actions.

A general framework for human–machine fusion could
involve the following steps: identifying applicable human
knowledge and machine data for the problem, determining
machine intelligence tools that facilitate the integration of
human–machine elements like BNs, identifying the suitable
points in the decision-making process to combine human
knowledge and machine intelligence effectively, designing
the user interface, and incorporating online learning using
input from human knowledge (Jarrahi et al., 2022). How-
ever, human–machine fusion is not an easy task due to
the complexity of human–machine interaction, the need for
effective and online methods to work with both human and
machine data, and the challenge of online learning from
human knowledge. For instance, while ChatGPT interacts
well with humans, it currently does not update its knowledge
using human knowledge input for future cases (Dellermann
et al., 2019; Correia et al., 2023).

Failure propagation and correlation

Most FMEA papers concentrated on analyzing failures in
individual products, processes, or machines. It is essential
to acknowledge that production processes and machines
are interconnected, leading to the correlation and propa-
gation of failures among them. Consequently, it becomes
crucial to address the challenge of analyzing failures in mul-
tiple machines. To effectively tackle this issue, a holistic
approach is necessary.Rather than focusing solely on individ-
ual machines, take a broader perspective by considering the
entire production system to identify the interdependencies
and interactions among different machines, multiple pro-
cesses, and within the system.

For an intelligence failure analysis, it is necessary to
exploit detailed system-related data to carefully and com-
prehensively identify the relations between different parts
of a system, product, and/or process. Some papers have
suggested methods to identify failure propagation and corre-
lation (Wang et al., 2021; Zhu et al., 2021; Chen et al., 2017).
They usually proposed methods to analyze correlations only
between failures or risk criteria using MCDM or statistical
methods. However, an intelligence failure analysis should go
beyond this and identify failure propagation and correlation
among parts of a system.

In the literature, Chen and Jiao (2017) proposed finite state
machine (FSM) theory to model the interactive behaviors

between the components, constructing the transition process
of fault propagation through the extraction of the state, input,
output, and state function of the component. Zuo et al. (2016)
used SoV to model propagation of variations from station
to station and operation to operation. A propagation from
one station (operation) to the next station (operation) was
modeled using a regression like formula. Ament and Goch
(2001) used quality check data after each station to train
a neural network for failure progagation and estimate the
relationships betweenfailure in stations using a regression
model to find patterns in quality check data. Ma et al. (2021)
used patterns in data to classify failures and identify causes.

To conduct an intelligence failure analysis, it is important
to identify every part involved, their roles, characteristics,
and states. The analysis should include the identification
of failure propagation and effects on functions, parts, and
other failures. One approach to analyzing failures is through
simulation, which can help assess the changes in the char-
acteristics of every part of a system, including humans,
machines, and the environment. To analyze the complexity of
failure propagation and mutual interactions among different
parts of a system, data-driven tools and heuristic algorithms
need to be developed. These tools should be capable of
managing a large bill of materials and analyzing the failure
structure beyond the traditional statistical andMCDMmeth-
ods. Rule mining can be a useful tool for detecting failure
correlation and propagation, especially in situations where
there is limited data available, and human interpretation is
crucial.

Hybridmethodologies

FMEA,RCA, andFTAmethodologies are all complementary
and can improve each other’s performance. Furthermore, the
availability of data, advanced tools to process data, and the
ability to gather online data may lead to a unified FMEA,
RCA, and FTAmethodology. The reason for this is that while
FMEA tries to find potential failures, RCA and FTA try to
find root causes of failures, they use similar data and tools to
analyze data.

In the literature, FTA has been used as an internal part of
FMEAby Steenwinckel et al. (2018), Palluat et al. (2006)and
RCA by Chen et al. (2018). Using automated mappings
from FMEA data to a domain-specific ontology and rules
derived from a constructed FTA, Steenwinckel et al. (2018)
annotated and reasoned on sensor observations. Palluat et
al. (2006) used FTA to illustrate the failure structure of
a system within an FMEA methodology and developed a
neuro-fuzzy network to analyze failures. Chen et al. (2018)
used FTA and graph theory tools, such as the maximum
spanning tree, to find the root cause of failures in an RCA
methodology. However, studies on the integration of these
methodologies regarding the availability of data, tools, and
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applications should be done to use their advantages within a
unifiedmethodology that detects potential failures, finds root
causes and effects, and improves the system.

Other future research

Several promising future research directions can be pursued.
Cost-based and economic quantification approaches can be
integrated into intelligent methodologies to enable more
informed decision-making related to failures, their effects,
and corrective actions. Additionally, incorporating customer
satisfaction criteria, such as using the Kano model, can be
useful in situations where there are several costly failures in a
system, and budget constraintsmake it necessary to select the
most effective corrective action. This approach has been suc-
cessfully applied in previous studies (Madzík & Kormanec,
2020), and can help optimize decision-making in complex
failure scenarios.

Data management is a critical aspect of intelligence
methodologies, given the large volume and diverse types of
data that need to be processed. Therefore, it is important to
design reliable databases that can store and retrieve all nec-
essary data. Ontology can be a valuable tool to help integrate
and connect different types of data (Rajpathak & De, 2016;
Ebrahimipour et al., 2010). However, it is also essential to
consider issues such as data obsolescence and updates, espe-
cially when corrective actions are taken and root causes are
removed. Failure to address these issues can lead to incorrect
analysis and decision-making.

Traditionally, only single failures were considered in anal-
ysis because analyzing a combination of multiple failures
was impossible. However, in a system, two or more failures
may occur simultaneously or sequentially. It is also possi-
ble that a failure occurs as a consequence of another failure.
These circumstances are complicated because each failure
can have several root causes, and another failure is only one
of its causes. Therefore, a clear and powerful tool, such as
Bayesian Networks (BNs), should be used to analyze failures
and accurately identify possible causes.

The traditional failure analysis methodologies had lim-
itations such as repeatability, subjectivity, and time con-
sumption, which have been addressed by intelligence failure
analysis. However, there is a need for more focus on explain-
ability, objective evaluation criteria, and results reliability
as some intelligent tools, such as neural networks, act as
black boxes. Therefore, suitable tools, such asBNs, should be
well-developed and adapted for (hybrid) intelligence failure
analysis. Details such as the time and location of the detected
failure, possible factors of the causes, such as location, time,
conditions, and description of the cause, and reasons behind
the causes, such as human fatigue, should be considered
within a methodology. These can help to go beyond the
CBR and propose intelligence solutions based on the reasons

behind a cause. While RCA has implemented these data to a
limited extent, FMEA lacks such implementation.

Conclusion

This paper has collected information on both proactive and
reactive failure analysis methodologies from 86 papers that
focus on FMEA, RCA, or FTA. The goal is to identify areas
for improvement, trends, and open problems regarding intel-
ligent failure analysis. This information can help researchers
learn the benefits of both methodologies, use their tools, and
integrate them to strengthen failure analysis. Each paper has
been read and analyzed to extract data and tools used within
the paper and their benefits. It was observed that the litera-
ture on the three methodologies, FMEA, RCA, and FTA, is
diverse. In Industry 4.0, the availability of data, and advances
in technology are helping these methodologies benefit from
the same tools, such as BNs and neural networks, and make
them more integrated.

The literature was classified based on the data needed for
a (hybrid) intelligence failure analysis methodology and the
tools used for failure analysis to be data-driven and auto-
mated. In addition, trends tomake thesemethodologies smart
and possible future research in this regard were discussed.

Two main classes of failure structure and failure detection
data are usually needed for a failure analysis methodology,
each of which can be classified as expert-driven and data-
driven. However, a combination of all types of data can lead
to more reliable failure analysis. Most papers focused on
operational and historical expert-driven and/or data-driven
problem-solving data. Among the tools used within FMEA,
RCA, and FTA methodologies, BNs have the capability to
make a methodology smart and interact with both humans
and machines to benefit from hybrid intelligence. BNs not
only can analyze failures to identify root causes but also can
analyze possible solutions to provide necessary action to pre-
vent failures. A BN’s are also capable of real-time inference,
counterfactual reasoning, and managing confounding fac-
tors. BNs handle both discrete and continuous data types,
unlike traditional classification algorithms. Besides BNs,
classification by neural networks, other classification tools,
rule-based algorithms, and other tools have been proposed in
the literature.

Finally, managerial insights and future research are pro-
vided. Most studies have focused on the determination of
root causes. It is necessary to automatically find possible
mitigation and corrective actions. This step of a failure
analysis methodology needs more interaction with humans.
Thus, the benefits of hybrid intelligence can be more evi-
dent here. It is imperative for humans and machines to work
together to properly identify and resolve failures. System-
related data should be analyzed to find possible corrective
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actions. This data is usually available for both proactive and
reactivemethodologies. Our study showed an effectively tool
to integrate knowledge from experts and sensors in needed,
enabling operators and engineers to provide timely input and
observe immediate results. There is a need to identify failure
structures using a hybrid approach that combines expert and
data knowledge. Real-time input and structure identification
with Bayesian networks can be achieved through the use of
Bayesian networks. Further exploration of BNs and com-
parative analyses with other tools is necessary to enhance
understanding and adoption of the best tools for a hybrid
intelligence failure analysis in real-time scenarios to prevent
failures.
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