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Vytautas Bučinskas1
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Abstract
Recent developments and general penetration of society by relations between robots and human beings generate multiple
feelings, opinions, and reactions. Such a situation develops a request to analyze this area; multiple references to facts indi-
cate that the situation differs from public opinion. This paper provides a detailed analysis performed on the wide area of
human–robot interaction (HRI). It delivers an original classification of HRI with respect to human emotion, technical means,
human reaction prediction, and the general cooperation-collaboration field. Analysis was executed using reference outcome
sorting and reasoning into separate groups, provided in separate tables. Finally, the analysis is finished by developing a big
picture of the situation with strong points and general tendencies outlined. The paper concludes that HRI still lacks method-
ology and training techniques for the initial stage of human–robot cooperation. Also, in the paper, instrumentation for HRI is
analyzed, and it is inferred that the main bottlenecks remain in the process of being understood, lacking an intuitive interface
and HRI rules formulation, which are suggested for future work.

Keywords Human–robot collaboration · Human emotions · Instrumental methods · Human safety · Psychological comfort ·
Robophobia

Introduction

The vast amount of people’s fears about robots as a device,
social phenomenon, or industrial development phase take
many forms. These forms of fears are associated with robots
themselves, stemming fromconcerns about their capabilities,
impacts, and the potential consequences of their integra-
tion into society (Porpora, D. 2021). These fears reflect the
uncertainty and unknown outcomes associated with rapidly
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advancing robotic technologies and their increasing presence
in daily life. Subsequently, robots’ technical and aesthetic
aspects have a marginal influence on robophobia (Davey,
1997). A particular fear of losing a job from the roboti-
zation of the industry mainly comes from the difference
between humans and robots in the field of emotion and intel-
lectual activity (Porpora, 2021). Humans have doubts and
uncertainties regarding the artificial intellect means used by
robots. Even though it may sound paradoxical, acceptance
of robot decisions results in better mental achievements in
humans (Hayashi & Wakabayashi, 2018). When a robot’s
decisions look reasonable, the public accepts them better
because people’s social culture and habits are very distinct
and significantly impact the robot’s acceptance (Maccarini,
2021). Humans can train their behavior and acceptance of
robots. Therefore, in areas such as nursing and medicine,
a methodology rounding the corners about extreme human
emotional reactions to robots is necessary (Archer, 2021),
as well as a special robot control methodology preventing
humans from losing social competencies due to long-lasting
human–robot relations (Kempt, 2022).
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The“pragmacentric”—practical behavior-based approach
to robot action acceptance develops higher robot deci-
sion acceptance quality concerning human opinion (Kempt,
2020). In circumstances where robot decisions and actions
cause serious outcomes, like medical injections or nursing
actions, the human reaction becomes tenser and, depending
on human experience, knowledge, feelings, and emotional
state, varies from strongly positive to negative (Bhattacharya,
2021). Thus, it is necessary to focus on developing com-
prehensive social, educational, and technological solutions
for human–robot interaction (HRI) to minimize unreason-
able fears.

Conversely, robophobia lies in the vast area between stan-
dard human behavior concerning unknown objects or their
actions. Typically, humans are conservative toward new and
unknown processes or objects. Human reaction to robots dif-
fers from many factors, including geographical location. For
instance, society’s agreement to use robots in Greece (57%)
is much lower than in Denmark (95%) (Hofstede Insights,
2023).

Research on human–robot interaction is often considered
to be closely related to human–computer interaction. Still,
in contrast to the general computer science and human inter-
faces to it, the concept of robotics involves many technical,
psychological, and even social aspects besides electronics,
electrotechnics, software, and artificial intelligence (AI),
which generates effects of robophobia as well. The recent
appearance of social robotics as a separate product devel-
opment field has sparked interest and opened new niches of
investigation, bringing important questions about HRI to a
new light.

This research aims to highlight the progress of
human–robot interaction and qualify levels of such coop-
eration and their limits. The paper proposes a system of HRI
evaluation and reveals the complexity of the area. Neverthe-
less, a systematic approach is delivered from the engineering
point of view.

In our review, we hypothesize:

1. Human-robot cooperation and collaboration can be effec-
tive in industry and possibly in other partially predefined
environments;

2. Communication and messaging in HRI are at slow
progress and lack of systematic approach;

3. HRI reveals new socio-psychologic phenomena;
4. The general acceptance of robots over the entire popula-

tion is mixed and underexplored;
5. Emotional communication is very effective between

humans, but better understanding and classification are
necessary for improved human-robot interaction.

Materials andmethods

This overview of research conducted in the area of
human–robot interaction provides a multi-criteria analysis
covering research questions related to available hardware and
software limitations, methodological issues, and humans’
social andpsychological reactions to the robots.Analysiswas
conducted using 106 scientific research papers selected from
Google Scholar, ScienceDirect, and IEEExplore databases
during three stage inclusion process. In the first stage, more
than 560 publications from the last five years (except a few
older ones containing fundamental statements) were selected
according to the title and keywords. The following keywords
were used to filter the articles: Human–robot interaction,
Human emotions definition, Instrumental emotions detection
methods, Human safety, Psychological comfort, Robopho-
bia, Human motion detection/prediction, Human–machine
communication, and Human reaction to robot/machine. In
the second stage, after the screening, almost 320 papers were
excluded from the analysis as not suitable due to the out of
scope research problems, lack of validation, and low quality.
In the third stage, after removing the repetitive records, 116
paperswere classified into four categories (human–robot col-
laboration—60 papers; human–robot communication—17;
human emotions and physical state evaluation in HRI—11;
human perception of robots—28) and analyzed in detail. The
main criteria for including the paper were: clear formulation
of the research problem and proposed solution, the applica-
bility of the results in the HRI area, and the reliability of
provided results.

Review outcomes

Performed analysis delivers a vast amount of data; therefore,
the outcomes of our research beg for structured presenta-
tion. In our opinion, these findings are split into four fields:
human–robot collaboration, human–robot communication,
human emotion, and physical state evaluation as input for
robot controls and human perception of robots. This classi-
fication covers both technical and psychological issues.

Human–robot collaboration

Human–robot collaboration covers various research areas,
manyofwhich arewell-explored in the scientific literature. In
the majority of analyzed references, two typical approaches
can be noticed:

• Study of the possibilities of robot-human collaboration in
specific fields such asmedicine, agriculture,machineman-
ufacturing, shipbuilding, waste management, etc.;

• Analysis of the characteristics of robot-human collabora-
tion directly unrelated to a particular specific field. For
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example, it is common to think that a robot can perform
simple repetitive actions. Still, applying robots in areas
such as shipbuilding is challenging due to many unique
designs and technical solutions (Zacharaki et al., 2022).

Themain way for evaluating the intensity of human–robot
collaboration is done with a universally recognizable classi-
fication into five levels: (i) no collaboration; (ii) coexistence;
(iii) synchronization; (iv) cooperation; (v) collaboration
(Dzedzickis et al., 2021). The issue of human–robot collabo-
ration quality regarding human understanding or psycholog-
ical status stays outside the collaboration quality evaluation;
the paper focuses on the technical solutions in various aspects
of HRI. Human behavior evaluation belongs to the HRI real-
ization, which is covered in many types of research.

The classification presented in Fig. 1 evaluates the pos-
sibilities of sharing workspaces, work objects, and tasks.
The lowest HRI level is no collaboration—the robot remains
inside a closed work cell, and workspace sharing is strictly
forbidden. The second level is coexistence—a case when
closed cells are removed, but workspaces between humans
and robots remain strictly separated. The third level is syn-
chronization, where robots and humans can share part of
the workspace and work objects, but never simultaneously.
The fourth level is cooperation—shared tasks and workspace
are acceptable, but physical interaction is forbidden. Col-
laboration is the highest level of interaction when physical
interaction and common operations between humans and
robots are allowed.

Various types and levels of human–robot interaction in
manufacturing were examined to develop a typical robot-
human interaction methodology according to established
conditions (Malik & Bilberg, 2019). The authors provide a
synthesis of a human–robot collaboration architecture based
on three aspects: team composition, engagement level, and
safety, allowing them to describe collaboration using a 3-
dimensional reference scale. A review presented by (Li et al.,
2023) provides a detailed analysis of safety standards and
methods ensuring human safety in HRI.

Despite different attempts to classify the intensity of
human–robot collaboration, it remains one of the fundamen-
tal factors affecting the required features of HRI. Collab-
oration intensity typically correlates with the technological
development level of HRI; the higher the collaboration lev-
el—the more advanced HRI is required.

General issues in the field of human–robot
interaction

The research on HRI for common operations between robots
and humans faces many scientific uncertainties. From the
research reports provided in the last five years, we defined
that the main research interests are general HRI issues, the

possibility of adapting robots to individual humans, and the
robotization of specific industries or research areas. Exten-
sive literature analysis provided by (Faccio et al., 2023)
revealed the fivemost important human factors impacting the
success of long-term human–robot interaction. According to
the authors, the main factors are physical ergonomics, men-
tal workload, trust, acceptance, and usability. In addition, the
presence of complex machines and their relations with the
technological process also impacts human–robot collabora-
tion. Balancing robotic assembly lines containing complex
machines, robots, and humans sharing a common workpiece
has remained an actual problem for over 30 years (Chutima,
2022, Bänziger 2020).

Another actual HRI research area is the issue of robot-
human interaction in unexpected situations. Paper (Gualtieri
et al., 2022) presents a virtually simulated solution for HRI
in unforeseen situations and provides guidelines that effec-
tively support non-expert users in designing and improving
collaborative assembly systems from a security perspective.
The authors declare that minimizing human motion ampli-
tude and optimizing the assembly process could reduce the
risk of accidents by 33%. Situation awareness is crucial not
only for humans but also for robots. Research (Müller et al.,
2023) presents an attempt to develop a metric capable of
evaluating situation awareness by the robot using a digital
twin. Research presented by (Kousi et al., 2019) introduces
an augmented reality-based software suite to assist operators
inmanufacturing systemsusingmobile robotswhen it is chal-
lenging to predict cooperation between a robot and a human
due to the presence of various tasks. The developed tool
was tested in a case study inspired by the automotive indus-
try, showing that it can facilitate communication between
humans and mobile robots, increasing the work quality of
human operators and supporting the assembly that connects
them. A study presented by (Murata et al., 2017) focuses on
analyzing the robots’ ability to train each other in a special
neural network that evaluates error probabilities.

Table 1 provides a summarized overview of research on
general HRI issues reported in the last five years.

Adaptive human–robot interaction

Robots’ capability to adapt to individual needs and human
emotional or physical states is a widely studied issue
(Umbrico et al., 2022). Robot adaptation can facilitate human
physical work and perform the social functions of robots,
but on the other hand, it results in complex structures requir-
ing specialized hardware and software. Figure 2 provides
an example of the architecture of an adaptive human–robot
interaction case.

Adaptive robotic solutions are especially preferred in
medical or rehabilitation applications. One example could
be exoskeletons used to ease human physical exertion when
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Fig. 1 Levels of human–robot collaboration intensity (Matheson et al., 2019)

Table 1 The research summary of general HRI issues reported in the last five years

Aim Method Equipment Achievements Refs

To investigate the safety of
accidental interactions
between robots and
humans

Developing and
validating guidelines
using a laboratory case
study with a digital twin

UR10 robot arm,
Robotiq gripper;
Tecnomatix Process
Simulate software

Proposed guidelines help
non-expert users design
and improve collaborative
systems’ safety

(Gualtieri et al., 2022)

To study the laws of the
lack of reaction speed of
the robot

Developing motion
strategies based on hand
motion and eye gaze
direction tracking and
simulating them in a
virtual environment

UR5 robotic arm;
HTC Vive pro eye
VR headset;
Unity software;
Tobii XR SDK eye
tracker

The experimental results of
this study revealed that
eye gaze-based prediction
improved the detection
time by 37% and the
robot reaching time the
target by 27%

(Mugisha et al., 2022)

To study the global and
local information needs
of the robot

Information network
modeling and practical
experiments

Human–robot
interaction platform

An information network
was created to provide
information for the robot
rationally

(Yu et al., 2022)

To investigate the
robot-human interaction
possibilities in small
groups

Literature review – Suggested methodologies
that can help assess
human groups’ behavior
in HRI situations

(Oliveira et al., 2021)

To study HRI research
methodologies

Developing and validating
guidelines using a
literature search strategy

Samples from
scientific journals

Highlighted
methodological issues
that frequently occurred
in analyzed samples

(Innes & W. Morrison,
2021)

To investigate the ability of
robots to train each other

Stochastic Multiple
Timescale Recurrent
Neural Network

NAO humanoid robots A special neural network
that evaluates
probabilities has been
created

(Murata et al., 2017)

To define factors affecting
trust in robots

Survey – The results showed that the
task type strongly
influences trust in robot
usage

(Sanders et al., 2019)

To study the cooperation
between a robot and a
human in the presence of
unpredictable tasks

Implementation of an
augmented
reality-based software
suite in a real case study

Microsoft HoloLens
AR glasses;
AirTap gesture in
AR;
ROS framework

The developed software
facilitated communication
between humans and
robots, and increased
operators’ work quality

(Kousi et al., 2019)
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Fig. 2 Example of adaptive human–robot interaction architecture (Umbrico et al., 2022)

lifting heavy objects. Their purpose is to duplicate the
movements of the human body parts while creating a cor-
respondingly greater force (than the parts of the human body
produce).

Research provided by (Huang et al., 2019) examines such
issues as the suitability of the exoskeleton for people of vari-
ous body types, the comfort issues of the exoskeleton, and the
ability of the exoskeleton control algorithms to interact with
the human harmoniously. The research authors noted that
relevant parameters, such as height, mass, and body mass
index, could describe human body composition. Therefore,
they developed an exoskeleton model that evaluates human
complexity and provides data for exoskeleton adaptation.

Another issue of exoskeleton adaptation is its ergonomics.
Research performed by (Ballen-Moreno et al., 2022)
described a method that quantifies the difference in ori-
entation between a user’s limb and the exoskeleton joint.
This method brings a better understanding of human–robot
interactions in implementing exoskeletons. In addition, the
method proposed in the article determines the performance
indicator of the physical interfaces of the exoskeleton.

Apart fromphysical adaptation, the question of perception
is also relevant. In various applications, there is a problem of
communication between humans and robotswhen the need to
provide the necessary tools or equipment to humans in time
arises. An experimental study providing a method of how a
human can use gestures to request one or another tool for the
assembly operation was conducted by (Neto et al., 2019).
In the presented approach, the data captured by the robot is
divided into static and dynamic blocks that are recognized
using unsupervised machine learning. The proposed method

demonstrated 98% accuracy in recognizing eight static and
four dynamic gestures.

Cooperation between humans and robots may not neces-
sarily be based on targeted physical tasks. It could also be
based on psychological reasoning. The robot can partially
perform the social function of a colleague, friend, or pet. In
such cases, the social characteristics of a person and how
the robot adapts to a person become essential for successful
human–robot interaction. Paper (Lavit Nicora et al., 2021)
describes the developed interaction model that proves the
possibility of creating software that facilitates a robot’s adap-
tation to a person’s characteristics. Meanwhile, the research
provided by (Oliveira et al., 2021) analyses the difference
in HRI characteristics between a single person and a group
of people. The authors suggest some avenues and future
methodological trends that can help assess human behav-
ior in human–robot interaction situations by increasing ways
to assess these interactions in groups. In (Bajcsy et al., 2018)
presented a model for human–robot interaction that evalu-
ates extraneous physical factors in a case where two robots
interact with two humans. Case, when few human opera-
tors interact with one collaborative robot, is also possible
(Boschetti, 2021). Research provided by (Cacace et al., 2023)
reveals issues of interactive physical cooperation between
humans and collaborative robots. Their approach is based on
the idea that robots should be able to estimate human inten-
tions and adjust initially defined tasks and motions. About
80% of 40 undergraduate students with different experiences
related to robots stated that interaction with a collaborative
system seems safe and straightforward.

Studying robots’ global and local information needs is
another research topic. In (Yu et al., 2022), themodeling of an
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information network to provide rational information for the
robot is described. Addressing the problem of robot reaction
speed deficiency, (Mugisha et al., 2022) presented an experi-
mental study of improving themovement prediction time and
reducing the time required for the robot to reach the desired
position. The experimental results of this study revealed that
eye gaze-based prediction significantly improved systemper-
formance. The detection time was reduced by 37%, and the
time required to reach the target was reduced by 27%.

A summary of the research focused on the robots’ adap-
tation to the individual humans’ needs in the last five years
period is provided in Table 2.

Summarizing the information described above, it should
be noted that it is necessary to emphasize questions such
as the robot’s need for global and local information,
human–robot interaction in assessing extraneous physical
factors, the laws of the lack of robot reaction speed, and the
ability of robots to train each other. As well as the question of
whether it is possible to create a typical robot-human inter-
action methodology according to the established conditions
demands special attention. To answer this query, studying the
development of human–robot interaction research method-
ologies is required.

Human–robot interaction in specific application
areas

The number of areas in which robots can be applied is not
defined or thought to be finite. For that reason, new appli-
cation areas are constantly appearing, and thus, the research
question of possibilities to robotize one or another process
becomes more actual. There are several application areas
where robots are not widely used or have yet to be fully
explored. Despite advances in medical robots and assistive
technologies, the application of robots in healthcare and
robots used for education is still in its infancy. The appli-
cation of robots in agriculture is still limited, although there
is increasing interest in using robots for tasks such as crop
monitoring and harvesting.

Moreover, robots have yet to be widely adopted in the ser-
vice industry, although certain customer service and hospital-
ity tasks showgrowingdemand for them.Additionally, robots
used for environment monitoring and cleaning pollution are
instrumental fields, as the potential of using robots in envi-
ronmental applications remains largely untapped. Figure 3
shows a few examples of different levels of human–robot
collaboration in various applications.

Shipbuilding is one of the industrial areas in which ques-
tions about the possibility of automation of the processes
often appear. Major challenges in shipbuilding are the large
variety of weights and dimensions of the elements to be
installed—from several kilograms to tens of tons. There is
also a diversity of required precision of movements. One

robot cannot be adapted to such a wide range of needs.
The paper’s authors (Zacharaki et al., 2022) proposed an
algorithm for grouping operations, creating robot opera-
tion zones, and ensuring the safety of their interaction with
humans while considering the above mentioned operations.

Another problematic field from the point of view of robot-
human cooperation is the field of equipment and components
utilization.On the one hand, a lot of routinework can be auto-
mated in this field. On the other hand, the equipment used
is diverse and creates many limitations (Hjorth & Chrysos-
tomou, 2022; Qu, 2023). The main difficulties identified by
the authors are high variability of the technical conditions
of the used parts; insufficient information about the recycled
products; increasing complexity of recycled products; short
product life cycle and a large variety of products; increasing
quality requirements for regenerated materials, components
and varying requirements for utilization efficiency.

In contrast to shipbuilding or equipment utilization, agri-
culture faces a lot of the same repetitive work, so the appli-
cation of robots here should be effective. Such operations
as land plowing, harrowing, and fertilizing should be mecha-
nized and sometimes even robotic. Thequestion of harvesting
is more complicated, thus gathering attention in the scientific
literature (Vasconez et al., 2019). The paper evaluates the
complexity of various tasks in terms of robot-human cooper-
ation. Operations, such as grain crop harvesting, are massive
and straightforward processes conventionally agreed to be
relatively simple. However, operations with fruits and veg-
etables are much more complicated. There is a considerable
variety of them (for example, some with dice, others with
stems, etc.), different sizes, masses, and different require-
ments for handling them. Pruning and thinning of fruit trees
is a separate issue. According to the article’s authors, these
operations can be performed by joining robots and human
abilities. However, such integration requires special algo-
rithms and software for the robots.

Another problematic area similar to agriculture is forestry.
Large areas of forests and predictable cases characterize this
area. One of them is forest fires. One of the most effec-
tive measures to facilitate the extinguishing of forest fires
is fire detection at an early stage (before the fire has cov-
ered large forest areas). A research paper (Lim et al., 2021)
discusses optimizing the distribution of decision-making
between humans and artificial intelligence by implementing
a robotic control module.

A similar issue of optimizing decision-making processes
is reported in medicine, where robots are used not only in
treatment and rehabilitation processes but also to help orga-
nize the work of a medical facility, such as dispensing drugs
or tools (Lestingi et al., 2021). Also, in a medical institution,
prioritization of work is very important. Research presented
in (Wan et al., 2020) examines a developed algorithm that
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Table 2 Research in the field of HRI focused on the robot adaptation to humans

Aim Method Equipment Achievements Ref

To study the robot
adaptation to human
behavior

Developing an interaction
model and conducting
experiments

e.DO robot by Comau;
ROS Melodic Morenia;
MoveIt! library

Create software that can
adapt the robot to the
individual characteristics
of a person

(Lavit Nicora et al.,
2021)

To study HRI in assessing
extrinsic physical factors

Developing and validating
a new framework

Quadcopters A model of interaction
between two robots and
two humans has been
developed

(Bajcsy et al., 2018)

To train robots for HRI by
evaluating human
characteristics

Literature review – Proposed new suggestions
for the HRI modeling
that could revolutionize
the development

(Gaggioli et al., 2021)

To create an algorithm for
giving the right tools

Developing a
gesture-based
framework

Five Tech MCS IMUs;
UWB positioning
system;
KUKA iiwa cobot;
MATLAB software

The experiments of the
assembly operation
showed the effectiveness
of the proposed solution

(Neto et al., 2019)

To create a typical HRI
methodology according
to the established
conditions

Exploring various HRI to
develop a synthesizing
architecture

– The proposed new HRI
architecture describes
collaboration using a 3D
reference scale

(Malik & Bilberg,
2019)

To develop a methodology
for adjusting exoskeleton
parameters

Implementation of the
dynamic movement
primitives and
reinforced machine
learning

Simulink and Adams
software;
Hualex exoskeleton

An exoskeleton model that
evaluates human motion
complexity has been
developed and tested
experimentally

(Huang et al., 2019)

To develop a methodology
for evaluating the
ergonomics of the
exoskeleton

Implementing the 3D
relative motion method
for the assistive limb

AGoRA exoskeleton;
Vicon Motion cameras;
NEXUS 2.9 software;
MATLAB software

Developed a method to
determine the
performance index of the
physical interfaces of the
exoskeleton

(Ballen-Moreno et al.,
2022)

Fig. 3 Several examples of human–robot interaction and collaborative human–robot tasks (Hentout et al., 2019)
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allows a medical robot to distinguish priority tasks from oth-
ers.

Robot implementation for treatment and rehabilitation
also remains a relevant research topic—for example, using a
robot to treat autism. Paper (Katsanis & Moulianitis, 2021)
presents a taxonomy of child-robot interactions in autism
interventions, explaining its entire framework. Interactions
aremodeled according to this taxonomy,where an interaction
case is used to define the structure of the interaction. Based
on this, a safety architecture is proposed to be integrated into
the robot controller. Scientific articles also address the suit-
ability of robots for rehabilitating human limbs (Shi et al.,
2021). The study proposes a human-centered adaptive con-
trol of a lower limb rehabilitation robot based on a dynamic
human–robot interaction mode. A dynamic human–robot
system model is developed based on the HRI model. An
equivalent spring model in three-dimensional space is pro-
posed.

A summary of the research focused on the robots’ imple-
mentation issues in the specific application areas in the last
five years period is provided in Table 3.

Humanmotion detection and prediction/behavior
prediction

Human–robot collaboration is impossible without the use of
specific methods preventing humans from rough/dangerous
interactions during the operation. Human motion detection
and its trajectory prediction are some of the most preferred
and researchedmethods in HRI. Those methods are typically
used to solve two major issues in robotics: prevent contact
between the robot andhuman, or vice versa—synchronize the
motion for smooth common action. However, the unequiv-
ocal assignment of the research task to one or another case
is not simple since both cases include the part of motion
detection. Methodology and equipment for human motion
detection should account for humans’ accidental reactions
caused by fear and general robophobia. Therefore, classifi-
cation based on the implemented technique seems to bemore
reliable. The following parts provide a detailed analysis of
research on human motion and detection issues, classifying
the proposed approach according to the implemented meth-
ods. An overview of available reports revealed three main
approaches used for motion detection and prediction: imple-
mentation of predefined algorithms (Table 4), use of physical
sensors (Table 5), and application of machine learning algo-
rithms (Table 6).

As seen fromTable 4, humanmotion detection and predic-
tion based on prescribed algorithms require initial references
such as posture, eye contact, or workspace distribution into
smaller parts. The main problem with using prescribed algo-
rithms is existing application constraints due to the possible
unexpected human reaction. Nevertheless, there are cases

where humanmotion prediction is impossible without imple-
menting prescribed algorithms. Analysis and prediction of
human gait is a complicated process due to the complex neu-
romusculoskeletal system and cannot be performed without
using predictive models and experimental data. A detailed
review conducted by (De Groote & Falisse, 2021) presents
modernmethods andmodels suitable for humangait analysis,
motion, and trajectory prediction. Suchmethods are essential
when it is necessary not only to avoid contact with a person
but also to synchronize the movements of the human and the
device precisely.

Human motion detection based on physical sensors is
more precise than the methods based on prescribed algo-
rithms, but this method also comes with its own issues. The
major one is the restriction created by contact sensors. Such
sensors limit humans’ ability tomove freely and can even dis-
tract their attention from the main focus point, as the sensors
cause discomfort. An alternative to this is the application
of non-contact methods, for example, based on computer
vision. However, computer vision-based methods are not so
accurate and reliable. Moreover, they require stable envi-
ronmental conditions (light intensity, the position of a light
source, etc.) and higher computational power than methods
based on contact sensors, for example, electromyography.

The most advanced approach nowadays to detecting and
predicting human motion is the implementation of vari-
ous machine learning algorithms (Table 6). It combines
the advantages of both previously described methods and
simultaneously allows us to avoid their drawbacks. Such
algorithms can be trained using accurate data collected
using various sensors in predefined/controlled conditions and
later implemented in systems equipped only with basic sen-
sors. For example, algorithms can be trained using precise
data about motion obtained from accelerometers or elec-
tromyography and implemented in systems equipped with
average-resolution vision sensors.

In terms of complexity in humanmotion detection andpre-
diction, the most challenging tasks require motion synchro-
nization (Table 7). A successful solution to such problems
must include human motion detection, prediction models
(Vianello et al., 2023), and real-time trajectory generation
capabilities.

Concerning Table 7, the most recent research on
human–robotmotion synchronization indicates that the latter
is more applicable in home appliances and general service
robots than in industrial ones. Such a situation could be
explained by the industry’s low popularity of collabora-
tive robots and strict work safety regulations. Nevertheless,
pressure in the labor market develops an increasing num-
ber of collaborative robot installations in the industries, thus
fostering an interest in the highest degree of human–robot
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Table 3 Summary of research focused on implementing robots for the specific case

Aim Method Equipment Achievements Refs

To analyze the potential of
HRI in shipbuilding

Distinguishing problems
of unique processes and
proposing solutions

Portfolio of tools
designed for
non-expert users

Determined which
operations can and
cannot be assisted by
robots

(Zacharaki et al., 2022)

To investigate the
possibility of using
robots for equipment
demolition

Investigating various
demolition machinery
operations

– Derived suggestions to use
robots in utilization
processes

(Hjorth &
Chrysostomou, 2022)

To investigate the
suitability of the robots
for harvesting crops,
fruit, and vegetables

Reviewing the main
features of current HRI
approaches in agriculture

– Analyzed methods of
supplementing human
hand work with the
robots

(Vasconez et al., 2019)

Deploying code for HRI in
a medical facility

Development and
simulation of a new
model

CoppeliaSim robotic
simulator
ROS framework

Physiological and
psychological human
behavior has been
evaluated

(Lestingi et al., 2021)

To study the performance
of a medical robot

Review of the challenges
for communication with
robot

– An algorithm
distinguishing priority
tasks from others was
developed

(Wan et al., 2020)

To use unmanned aircraft
systems in forest fire
search engine

Simulations and
experiments with
bushfires

One-to-Many simulator
with UI

The created framework
was evaluated with an
unmanned aircraft
system simulation

(Lim et al., 2021)

To investigate the
feasibility of using robots
to treat autism

Modeling child-robot
interactions and
proposing a safety
architecture

Unified Modeling
Language;
Virtual NAO robot

An architecture for a
model of safe interaction
has been proposed

(Katsanis &
Moulianitis, 2021)

To study the suitability of
robots for human limb
rehabilitation

Simulating the torque of
the HRI

Robotic exoskeleton
with a developed
controller

A dynamic human–robot
system model has been
developed

(Shi et al., 2021)

To study agriculture
robot—human issues

Analyzing robot efficiency
in different operating
modes

– Analyzed cases where
manual labor cannot be
replaced but can be
complemented with
robots

(Hentout et al., 2019)

collaboration. An excellent example of human–robot col-
laboration is provided in (Rahman, 2021), where a robotic
manipulator defines the weight of the box lifted by a human.

Human–robot communication

Proper understanding of the situation and future actions plays
an essential role in the life of humans, clever life beings, and
intellectual equipment. Communication between humans
and robots is artificial; therefore, an intuitive understand-
ing of signals and signaling back requires additional effort.
The advantages of such communication bring high benefit-
s—remote controlmode, diminishing of technical breaks and
interoperation stops, enhancement of human comfort level,
allowing the operator to control a robot with lower stress
level. While communication between robots and humans is

still artificially driven, robot behavior toward humans is dis-
closed by technical means. Depending on the implemented
technique, three main types of human–robot communication
techniques can be distinguished: speech-based communica-
tion (Table 8), sensors-based communication (Table 9), and
symbolic language/gest-based communication (Table 10).

The voice and speech recognition-based technique
(Richards & Matuszek, 2021) promises a powerful tool for
robot control and expression of natural human reactions. The
proposed speech recognition technique reaches recognition
accuracy up to 90.3% using a dataset containing more than
7000 descriptions of 300 items.

Research provided by (Maggioni, 2023) proves the impor-
tance of verbal reaction. Authors experimentally defined that
implementing verbal functions to the robot makes it possible
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Table 4 Human motion detection using predefined algorithms

Aim Method Equipment Achievements Refs

To simulate robot-human
physical contact

Experiments creating
physical HRI primitives

Sawyer robot arm The proposed method
showed decreased
severity during collisions
with only 2 trajectories
from 20 going through the
obstacles

(Lai et al., 2022)

To prevent injury when a
person works with a robot
in the household

A virtual simulation for
collision avoidance

Gazebo simulator Software tools for safe HRI
in the household have
been developed

(Kaonain et al.,
2021)

To study the effectiveness of
human action prediction
based on posture and eye
contact with a robot

Theoretical neural
network-based model,
verified with a data set

ANTICIPATE and
CAD120 RGB-D
datasets

A neural network-based
model robot reaction to a
corresponding human
pose or gaze was created

(Schydlo et al.,
2018)

To investigate the robot’s
ability to avoid human
contact

Modeling dynamic
situations and improving
FaSTrack algorithm

Quadrocopter A simulation of a
quadrocopter flying
around a person and not
colliding with him

(Fisac et al., 2018)

To evaluate the repeatability
and predictability of human
behavior during HRI

Systematic overview and
analysis of existing
reports

– A theoretical base of the
repeatability of human
behavior on HRI has been
created

(Leichtmann et al.,
2022)

Table 5 Human motion detection using physical sensors

Aim Method Equipment Achievements Refs

To create the ability for
the robot to predict if a
person is ready to take
over the tool

Experimenting using tests
with prediction and tests
without prediction

UR3 robot with Microsoft
Kinect SDK software

A system that can predict if
a person
is ready to take over the
tool has been developed.
This system allows to
minimize operator waiting
time till 1 s

(Melchiorre et al.,
2021)

To use electromyography
(EMG) signals to predict
human movement

Experiments with elbow
flexion

Experimental robotic
platform with software

Developed signal filtering
and recognition system

(Khairuddin et al.,
2021)

To train the robot to
predict human actions
and respond adequately

Predicting human motion
based using Generative
Adversarial Networks

OpenPose library;
Pepper robot

An HRI model that rejects
large errors in motion
prediction was developed

(Gui et al., 2018)

To predict human
movement by
electromyography

Literature analysis – Defined communication
strategy for humans by
generating questions

(Bi et al., 2019)

to achieve a higher robot acceptance ratio since it becomes
more attractive for interaction.

Efforts to teach natural language are most prospective
from the point of intuitive control, but they contain a lot
of obstacles and technicalities. Firstly, language understand-
ing anchor differs from language to language. Secondly,
the lexicon of the operator should be limited by a set of
keywords. Training of language with a particular operator
(Higgins et al., 2021) solves a task with more limitations, but
it is not transferable to another operator directly. This tech-
nique works well in individual cases, but operator change

brings extra expenses and resources in the long run. Voice
recognition tasks in a noisy environment remain compli-
cated, especially when signal/noise power and spectrum are
in a similar range. Interesting selective voice recognition is
described in (Fukumori et al., 2022), where the Doppler-
effect sensor distinguishes voice signals from environmental
noise. Miscommunication with robots due to accident fear
or general robophobia can be detected by instrumental meth-
ods since the speed of humanmovement and their type differs
from standard human operation mode. (Richardson, 2020).
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Table 6 Motion trajectory prediction using databases and machine learning

Aim Method Equipment Achievements Refs

To create a system that
predicts the movement of
human hands

Simulation using Long
Short-Term Memory
Recurrent Neural
Network

V-REP Simulator An approach to upper-limb
movement intention
prediction is presented

(Buerkle et al.,
2021)

To create a methodology for
predicting a person’s
movements from their
posture

Toy problem simulation
and real experiments

Franka robot The algorithm
characterizing human
posture by 24 rotational
joints was developed and
tested experimentally

(Vianello et al.,
2021)

To create a methodology
that predicts human
movements

Neuromechanical
simulation of human
motions

Reinforcement learning in
OpenSim-RL environment

A software platform for
neuromechanical
simulations has been
developed

(Song et al.,
2021)

To develop an adaptive
motion prediction system

Generative Adversarial
Neural Networks;

Vicon mocap system A motion prediction
system was developed

(Liu et al., 2021)

To create a robot that assists
the disabled person

Utilizing an algorithm with
a Long Short-Term
Memory Neural Network

Simulation equipment and
experimental home robots

A robot that helps a
disabled person to stand
up and can recognize the
intention to stand up has
been created

(J. Li et al.,
2021)

Table 7 Human motion detection and trajectory definition to synchronize for common operations

Aim Method Equipment Achievements Refs

To create a person
movement copying
algorithm for the robot

Utilizing motion planning
algorithm and validating
with experiments

Omni-directional robot A robot control system
allows the robot to copy
the movement of a
human. Human-like
behavior validated by
300 spectators

(Kitagawa et al., 2021)

To create a system for a
humanoid robot that
allows predicting the
characteristics of human
walking

Center of Mass trajectory
prediction introduced to
non-linear Walking Pattern
generator

Gazebo simulator;
TALOS humanoid
robot

A humanoid robot is
equipped with a system
that allows it to walk
along the person

(Maroger et al., 2021)

To improve the ability to
predict human movement
by robot-exoskeleton

Designing a robot control
system and verifying it by
experiments

6 DOF dual-arm
custom-made
exoskeleton

Software capable of
distinct, predictable, and
unpredictable human
movement

(G. Li et al., 2022)

To investigate the robot’s
ability to predict human
movements

Driving behavior modeling
testing novel algorithmic

MATLAB with
third-party Robotics
Toolbox

Algorithms for
recognizing predictable
and unpredictable
human movements

(H. Hu & Fisac, 2022)

To predict human intent
based on gaze

Modeling human behavior
using data collected from
HRI experiments

iCub humanoid robot An algorithm for how a
robot can guess human
intentions with 85%
accuracy has been
developed

(Duarte et al., 2018)

To study the mutual
prediction of
human–robot actions

Questionary strategy for
human impression
revealing

– A model that allows the
robot to distinguish
when a person
understands its reaction
and when it does not

(Hellström & Bensch,
2018)
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Table 8 Voice/speech-based human–robot communication

Aim Method Equipment Achievements Refs

To create a robot control
system using human
language

Combine language with
CNN-based visual
identification of objects

RGB-D dataset, WordNet,
personal computer

A general language
recognition algorithm
has been developed

(Richards & Matuszek,
2021)

To train a robot for human
speech

Creating a simulator and
testing it out in VR

Python API;
RIVR simulator

Simulator configuration
identified for realistic
VR testing

(Higgins et al., 2021)

To research sound
recognition in noisy
environments

A laser vibration meter
was used to collect data
for sound analysis

LDV Polytec NLV-2500;
ECM Sennheiser MKH
416-P48U3

Proved the efficiency of
optical laser
microphones in a noisy
environment

(Fukumori et al., 2022)

Table 9 Sensor based human–robot communication

Aim Method Equipment Achievements Refs

To study contactless
human–robot
communication

Experiments based on
speech, facial, and
gesture recognition

UR5e cobot, RG6
gripper;
a TV with a ToF Kinect
camera;
Kinect microphones

A robot-human
communication
subroutine was created
for a specific topic

(Strazdas et al., 2022)

To create a system
evaluating the
ergonomics of
human–robot
cooperation

Developing an ergonomic
toolbox and testing it in
real industrial
applications

CoppeliaSim simulator
with SteamVR; sEMG
sensors, accelerometer;
MATLAB

A VR model evaluating
whether the robot
bothers a person or not

(Caporaso et al., 2022)

To propose a new method
for probabilistic
interaction using
demonstration learning

Simulating Virtual Agents
based Single-axis
Uniform Interval
Interpolation

Kinect sensors;
UR5 robot

The proposed method is
implemented for
industry-motivated HRI
scenarios

(Qian et al., 2022)

To study robot’s ability to
detect a group of people
and integrate within it

Computer modeling of
virtual agents and
experiments with robots

Pepper humanoid robot A developed system that
can recognize humans,
define their head
orientation using 6
facial key points and
interact with humans
from an egocentric view

(Pathi et al., 2022)

To investigate the
possibility of using
clothing materials as
sensors

Experimenting to
determine the
performance under
various stimuli

Fiber/material actuators;
fiber/yarn artificial
muscles;
smart clothing

The integration of
electronic components
with clothing is depicted

(Xiong et al., 2021)

To investigate the robot’s
ability to communicate
with divers and monitor
their activities

Synchronizing data from
sensors and using
gestures to validate the
reliability of visual
detection

BUDDY-AUV;
DiverNet;
Point Grey Bumblebee
XB3 color stereo
camera

Presented the recording
platform, sensor
calibration procedure,
and software tools

(Gomez Chavez et al.,
2019)

Currently, sensors-based human–robot communication is
one of the fastest emerging research trends in human–robot
interaction. Such an increase is mainly caused by the increas-
ing need for more advanced communication methods and
significant developments in sensing, signals acquisition,
and data processing technologies. Simultaneously, with the
development of techniques intended to transform human

action or reaction into a robot control command, much atten-
tion is dedicated to the inverse case—feedback from the robot
to the human as a response to the actual action.Haptic devices
that use force, vibration, or motion to create a sense of touch
are popular in the HRI (Kuhail, 2023). Their main develop-
ment trend is optimizing design and enhancing functionality
to achieve more realistic and intuitive responses from the
machine. The robot’s appearance also plays a significant role
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Table 10 Symbolic/gest-based human–robot communication

Aim Method Equipment Achievements Refs

To create a sign language
for humans to conversate
with robots

Determine the most
convenient gestures and
rank them with the
proposed scale

Pioneer 3-DX mobile robot After analyzing 97
gestures from 84
participants, an
elementary system of 7
gestures has been
created

(Canuto et al.,
2022)

To study non-verbal
human–robot
communication

Experiments with a robot
that encourages human
nodding

PARLO humanoid robot A system that translates
non-verbal
communication signals
into records

(Obo & Takizawa,
2022)

To develop human-to-robot
sign language

Recording alphanumeric
images and testing with a
robot trained by a CNN

Microsoft Kinect V2;
BAZAR dual-arm
mobile robot

A set of 10 gestures has
been created. Gesture
recognition accuracy
reached 98.9%

(Mazhar et al.,
2019)

To train a robot in
non-verbal language

Create an algorithm and
experiment with a cobot

KUKA LWR IV+robot;
WSG50 2-finger gripper

A new method for fast and
efficient robot training

(Caccavale et al.,
2019)

in human–robot communication (Song, 2022). It could pro-
vide feedback for the human, for example, by changing the
robot’s eye color or providing associative images on the robot
control screen.

The communication system between robots and humans
usinghumanexpressions likemimic, hand, andbodygestures
has a particular perspective on human–robot cooperation and
collaboration. For this purpose, most solutions distinguish
gesture language as a special command language (Canuto
et al., 2022), which is not intuitively developed and requires
human education. Nevertheless, such language generates
better and clearer commands due to their active character.
Special gestures, which significantly differ from the natural
human reaction, were developed and presented in (Mazhar
et al., 2019).

Another way of human–robot communication lays in the
robot’s understanding of natural human gestures. It is a more
technically complicated option, but it eliminates the need
to educate operators or bypass personnel about special ges-
tures. One of these methods translates gestures into control
commands (Obo & Takizawa, 2022). Another method trains
robots to understand gestures (Caccavale et al., 2019). Both
ways are prospective, but their reliability and dependency
on human personality require additional research. Misunder-
standing human gestures by robots in case of unnatural fear
or general robophobia requires a separate robot operation
mode, but no certain research is available. Social behavior
for fear of robots is analyzed better (Fraune et al., 2019).

Human emotion and physical state evaluation
as input for robot controls

Emotions and subconscious body language play a crucial role
in inter-human communication, as they are the fundamental
modes of communication in the animal world. Natural emo-
tional messaging is unconscious and is known as emotional
contagion (Hatfield et al., 2014).Despite the traditional belief
that robots generally are ill-suited for emotional communi-
cation, there is plenty of ongoing research about computer
recognition of human emotions and the emotional appear-
ance of the robots (Kulke et al., 2020; Lim et al., 2020;
Noroozi et al., 2021; Park & Whang, 2022; Ruhland et al.,
2015; Toichoa Eyam et al., 2021; Weis & Herbert, 2022).
While the latter aspect is more relevant for social and service
robots, reading human operators’ emotional contagion and
non-verbal cues is becoming an important control input if a
human–robot collaborative environment is established.

Safety is supposed to be a priority over other human–robot
collaborative aspects, such as production effectiveness or
speed. Boredom, fatigue, and stress are human-specific
variables that can lead to physical and psychological acci-
dents during human–robot interaction. Biometric artificial
intelligence methods, such as facial, speech, and body lan-
guage recognition, can be applied to read these variables.
Commonly, reading electrical signals of the human body
employing electrocardiography (ECG), electromyography
(EMG), and electroencephalography (EEG) remain funda-
mental non-invasive methods for emotional state detection
(Dzedzickis et al., 2020). Brain activity measurement by
EEG was recently shown to be adequate for measuring the
emotional state of humans’ joint work with the collabora-
tive robot during the assembly process (Toichoa Eyam et al.,
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2021). Moreover, the detected emotional state of the human
operator (such as stress level) was used as an input for the
robot velocity adjustment. It was found that emotional feed-
back to the robot increased the trust and comfort levels of the
human operator but reduced the engagement due to routine
settlement.Also, the authors admit that EEG is themost accu-
rate and reliable technique of human emotion measurement
among the other widely known techniques.

Still, EEG can be uncomfortable and even unacceptable
in many practical situations. Therefore, biometric emotion
measurement methods are gaining importance, especially as
they are backed by the rapid development of artificial intel-
ligence and augmented reality algorithms. The human face
is one of the most important instruments of emotional com-
munication, and the eyes are central to conveying emotional
information between humans (Ruhland et al., 2015). There
are plenty of parameters to be tracked to utilize the eyes for
emotion detection: eyeball position and movements, eyelid
position andmovements, pupil diameter and its variation, fix-
ation duration, saccade, and many others (Lim et al., 2020;
Ruhland et al., 2015). The taxonomy of emotion recognition
using eye-tracking is shown in Fig. 4. Desktop and wearable
(mounted onto glasses) eye trackers were recently created to
read most of the important eye parameters, and they are often
used in augmented reality applications.

Although there is some basic knowledge about the rela-
tionship between the above mentioned eye parameters and
particular emotions, there is an obvious lack of up-to-date
experimental research demonstrating any practical applica-
tion of eye tracking for emotional feedback to the robots. At
present, eye tracking is seen only as a component of mul-
timodal emotion measurement systems (Lim et al., 2020).
In their latest study from 2022, (Lewandowska et al., 2022)
employed eye-tracking technology to gauge user focus and
emotional reactions to both negative and positive webpage
content. However, it’s worth noting that the findings from
Lewandowska’s research do not offer any real-time feedback
based on the eye-tracker data.

Rapidly developingAI-backed facialmovement and facial
expression analysis algorithms, based on the Facial Action
Coding System proposed by American psychologist Paul
Eckman (Ekman, 1992), is another trend for recognition
of basic human emotions, such as “happy”, “angry” and
“neutral”. Recently it was found that AI-detected emotional
states correlate well with the results of the parallel emotion
measurement done by interpreting EMG data (Kulke et al.,
2020). However, the conditions under which this research
was performed are quite far off from the practical situations of
human–robot collaborative environments since participants
of the study (twenty students) were explicitly instructed to
imitate emotions.

Similarly, AI-backed classification of body postures and
their relationships with intense emotions are currently being

researched by behavioral and technology scientists. The
pipelined concept of automatic emotion detection from body
postures is illustrated in Fig. 5. It involves several detec-
tion stages, starting from capturing the person in a video
stream or a photo, estimating its body pose, which is based
on the part-based skeletal or kinematic model of the human
body, and recognition of emotion based on several emotions
models: categorical, dimensional and componential. Still,
the system’s output remains of limited reliability and doubt-
ful value since many personal, cultural, and gender related
disturbances may cause serious misinterpretations (Noroozi
et al., 2021).

The topic of emotional feedback from humans to robots
remains at the basic research and demonstration level. Most
authors admit the lack of a more general understanding of
the importance of the relationships between human emo-
tions and the parameters of the robot control programs. The
measurement of emotions, in general, remains technologi-
cally complicated and of low reliability since the variability
between the subjects is one of the unsolved challenges in this
field. Also, different efforts are needed to measure or clas-
sify emotions since negative or neutral emotion recognition
brings more challenges than the measurement or classifica-
tion of positive ones. Furthermore, recognition of emotions
often leads to big data issues, and a successful solution
requires edge computing available by using centralized cloud
resources. On the other hand, such an approach raises cyber-
security issues (Yao et al., 2022). A summary of research on
human emotions evaluation data as an input variable for HRI
is presented in Table 11.

Human perception of robots

Human perception of robots defines human reaction to the
robot frompsychological, social, and economic perspectives.

Socializing with a robot is not science fiction nowadays;
several social robots with empathetic functionalities have
been recently released to themarket. Themost widely known
models are Softbanks Pepper and Jibo by NTT Disruption,
which were created almost a decade ago. Several startups
followed with similar products, loading them with valuable
functions ranging from remote presence and entertainment
to shopping assistance. Still, despite many early promises
and heavy marketing, social robots lack true popularity.
One of the most probable reasons is limited human trust in
robots and artificial intelligence in general. Sometimes, this
is expressed as an anxiety disorder called robophobia, which
is specific for almost 20% of the world’s population, accord-
ing to (Davey, 1997). Much greater numbers of humans are
possibly deeply biased against the robots in many ways, not
only because of their experiences of limited efficiency and
performance during previous application and/or collabora-
tion attempts but also because of some irrational disbelief.
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Fig. 4 Taxonomy of emotion
recognition using eye-tracking
(Lim et al., 2020)

Fig. 5 General overview of an
Emotion Body Gesture
Recognition system

123



Journal of Intelligent Manufacturing

Table 11 Human emotion evaluation as input for robot control systems

Aim Emotions Equipment Achievements Refs

To study human emotional
state varying robots’
ability to take it into
account

Positive and negative
emotions

Participant PC,
Psychological testing
software—Inquisit
Web

Experimental validation
that emotional
self-concept became
more positive after
interacting with robots

(Weis & Herbert, 2022)

To study robot-human
empathy

Human and robot
empathy, empathic
response

– A framework for creating
a more empathic robot
was suggested

(Park & Whang, 2022)

To investigate the
capabilities of robots to
recognize human
emotions and adapt to
them

Engagement, interest,
relaxation, stress, and
excitement

ABB YuMi cobot;
Commercially
available EEG headset

Working with cobots
increased the comfort of
humans but reduced
engagement by repeating
the same task more than
3 times

(Toichoa Eyam et al.,
2021)

To assess a person’s
emotional state based on
the biometric data of the
eye

Attention, interest,
dominance, sharing
and openness

Software for analyzing
eye and head
movements

A summary of guidelines
for animating the eye
and head from the
perspective of a
character animator

(Ruhland et al., 2015)

To investigate the
possibility of controlling
human–robot empathetic
interaction

Primary emotions (fear),
Secondary emotions
(regret)

Questionnaire; PC
measuring response
time; NAO robot

Method for semantic prime
measurement to assess
whether participants
view humans and robots
as similar

(Spatola & Wudarczyk,
2021)

Research robot’s ability to
quickly recognize a
persons’ character

Levels of anxiety,
motivation, and mood

NAO robot Prove that using a social
robot in brief cognitive
testing allows more
objective and replicable
assessment

(Desideri et al., 2019)

This is presently identified as a social problem, preventing the
general humankind from more efficient technological devel-
opment. Therefore, there is a number of ongoing research
directed towards exploring perceptional, cognitive, behav-
ioral, cultural, existential, or economic concerns of humans
related to the application of robots and artificial intelligence
(Tables 12, 13, 14 and 15).

The term “empathy” is employed to summarize, under-
stand, and explore the affective (emotional, primitive) and
cognitive (associated with the ability to understand the men-
tal state or perspective of another person) parameters of
human–robot interaction (HRI) (Park & Whang, 2022). A
model of empathy in HRI is illustrated in Fig. 6. Generally,
the study revealed the absence of the cognitive responses
of humans during interaction with robots, while affec-
tive response dominates. The authors note the importance
of sophisticated emotional models in robotic software for
improved human perception and admit the lack of research
that would disclose the models with the potential of a more
positive perception of the robot by a human user.

One of the few more or less successful emotional mod-
els for improved HRI is related to dog-like (canine) social

robots, such as Sony Aibo (De Visser et al., 2022; Krueger
et al., 2021). While investigating the emotional reaction of
humans to the robots (Table 12), authors hypothesize that
framing a robot as a puppy, which has a corresponding
appearance and mimics a dog, the learning process will have
a higher potential for positive acceptance than simply a robot,
such as Spot by Boston Dynamics (De Visser et al., 2022).
Authors identify the “uncanine valley” phenomenon in the
emotional reaction versus dog-likeness graph (Fig. 7). Exper-
iments with the appearance of a canine robot by dressing it
in fur showed that the presence or absence of fur changed the
emotional reaction of human participants. However, these
changes depend on whether a robot is framed as a puppy or
just a robot. Overall, it was concluded that framing a canine
robot as a learning puppy will lead to a richer interactive
pattern and human perceptions in HRI, and this experience
can be elaborated for human and robot collaborative envi-
ronments and situations.

Social touch is another research track of HRI and robot
social acceptance improvement. The phenomenon of social
touch is investigated mainly in behavioral sciences, and it
is widely known that it can elicit a vast range of emotional
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Table 12 Human reaction to the robot

Aim Method Equipment Achievements Refs

To create a robot capable of
performing the emotional
effects of a dog on a
human

Developing several
algorithms for dog
communication with
humans

AIBO robot dog Experiments involving 29
participants proved that
framing a robot as a dog
has a stronger emotional
effect on humans than
initially framing it as a
device

(De Visser et al., 2022)

To study the laws of human
attachment to a robot

Classifying forms of
human attachment to
the computer

– An algorithm evaluating
the strength of
attachment was
developed

(Rabb et al., 2022)

To compare the relationship
quality between a robot
imitating a dog and a
human

Modeling
human–dog-robot
interaction and testing
with different robots

Various AIBO robot dog
models

A methodology to assess
the quality of interaction
was developed

(Krueger et al., 2021)

To distinguish between a
human reaction to a robot

Questionnaires;
simulations

PR2 robot A methodology capable
of recognizing human
reaction to a robot, as a
person or machine

(Fischer, 2022)

To study human comfort in
training a robot

Literature review – Defined guidelines for
improving human–robot
collaboration quality by
implementing robot
learning from
demonstrations

(Wang et al., 2019)

To focus on ethical issues
related to HRI

A survey by observing
the behavior of robots

Video of Pepper robot in
action
Questionnaires

The results show that the
most important ethical
issue is change and its
implications for work

(Etemad-Sajadi et al.,
2022)

To evaluate the difference
between soft robots and
conventional robots

Users interacting with
robots and completing
surveys

Custom soft robotic and
rigid robotic platforms

Qualitative analysis of
results showed that soft
and rigid robots elicit
different interaction
patterns and behaviors

(Jørgensen et al., 2022)

To investigate the ethics of
robots

Experimenting with
robots working with
elderly

Pepper robot by Softbank
Robotics;
questionnaires

It has been established
that the solutions of
ethical issues using
artificial intelligence in
robots are still very
limited

(Van Maris et al., 2021)

To research if robots can be
used to persuade humans

Playing a game with a
robot and completing
various tasks

Telepresence robot
CHRIS (Collaborative
HRI System)

Observed a strong
foot-in-the-door effect,
indicating that the robot
can persuade people
using verbal messaging
strategies

(Lee & Liang, 2019)

and behavioral responses. Recently it was shown that a social
touch from a robot could be perceived positively by a human
participant, reducing stress and improving the sense of inti-
macy between a human and a robot (Willemse & van Erp,
2019). Still, this research focuses on human psychology,
and robot operation was only imitated via the master–slave
configuration involving ahumanmoderator at themaster con-
trols.

Present research on the human reactions to robots intro-
duced new concepts or paradigms known as anthropomor-
phism (Fischer, 2022) and “computers are social actors”
(J.-E. R. Lee & Nass, 2010). Anthropomorphizing behavior
is a specific psychological phenomenon when people tend
to attribute human-like traits to robots. Anthropomorphizing
behaviorwas observed inmanypsychological andphysiolog-
ical studies, but this phenomenon still lacksmore generalized
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Table 13 Human trust and safety analysis

Aim Method Equipment Achievements Refs

To study the safety of
industrial robot
collaboration with a
human

Experimenting with the
robot and measuring
operator confidence after
each run

UR5 cobot No significant
interactions were found
between human trust
and robot speed or
distance

(Story et al., 2022)

To study the laws of human
trust in robots

Experimental online study
and competing robot
generated quizzes

Social robot Pepper Feedback perceived as
being self-directed
allows the robot to
attribute more agency,
responsibility, and
competence

(Horstmann & Krämer,
2022)

To investigate the feeling of
safety when working with
a robot

Simulating discomfort and
surveying people about
their experience

E4 wristband, social
robot Pepper

Results revealed that the
feeling prediction speed
was higher from the
physiological signal
data

(Akalin et al., 2022)

To compare the laws of
human trust in a robot
with those of human trust

Experimenting with an
augmented and adapted
version of the Trust
Game

Nao humanoid robot In the selected cases, no
significant effect of
partnering with a
human and an
anthropomorphic robot
was found

(Alarcon et al., 2021)

To evaluate and quantify
the effects of the human,
robot, and environmental
factors on perceived trust
in HRI

Applying meta-analytic
methods to the available
literature on trust and
HRI

– Defined that the
performance and
attributes of the robot
were the most
significant contributors
to the trust in HRI

(Hancock et al., 2011)

To study the possibilities of
anthropomorphism
(humanity) of robots

Investigating the possible
sexuality of robots by
surveying

ABOT Database for
images in
questionnaires

Defined that robot design
features should
reinforce functionality
rather than
gender-specific features

(Roesler et al., 2022)

To study human–robot
subjectivity in relation

The separate reaction of
the human and the robot
is compared under
various circumstances

Godspeed
questionnaires

Suggested human
anthropomorphism
tendency as an
influential factor in HRI

(Xiao et al., 2022)

To study the use of robots
for employee training

Develop an architecture for
HRI

Baxter robot Equipment has been
developed that allows a
robot to be trained so
that it can train humans

(Páez & González, 2022)

To develop the sociality of
a robot

Propose methods for
avoiding negative robot
behavior

– An algorithm for
recognizing and
avoiding unethical
interactions between
robots and humans is
modeled

(Londoño et al., 2022)

explanations. Systematic qualitative research (Fischer, 2022)
demonstrated significant intra- and interpersonal variation
in the responses of human participants to identical robot
behavior patterns, with easy switching from anthropomor-
phizing behavior to technical behavior (treating the robot
as a machine). These observations are taken as arguments
that the paradigm “computers are social actors” does not

hold in general since anthropomorphizing behavior is tem-
poral and will be different for different persons. However,
the conditions under which this behavior was studied in this
particular research were not universal since the appearance
and behavior of a robot used in the experiment were far from
anthropomorphic.

123



Journal of Intelligent Manufacturing

Table 14 Instrumental human reaction evaluation

Aim Method Equipment Achievements Refs

To develop an adaptive
HRI framework

Collecting data from
physical and
physiological sensors
while a person interacts
with the robot

Sawyer cobot;
photogrammetric
cameras; EMR eye
tracker;
Shimmer3 GSR

Defined dependencies
between human
biological indicators
variation and human
characteristics during
HRI

(Y. Hu et al., 2022)

To research the robot’s
ability to perform up to
human expectations as
the task content changes

Developing a mechanism
and experimenting with
real robots

3-DoF haptic device;
7-DoF manipulator;
mobile platform

Provided a rigorous
analytical evaluation of
the proposed method in
terms of stability

(Khoramshahi & Billard,
2019)

Studying the effect of
physical contact (touch)
of a robot on a person

Experimental study of 67
participants

Nao robot Robot touch attenuated the
physiological stress
response and increased
the perceived intimacy
of the human–robot
connection

(Willemse & van Erp,
2019)

Table 15 Analysis of robots’ suitability to social applications

Aim Method Equipment Achievements Refs

To understand the
influence of HRI from
the viewpoint of
hoteliers and guests

Interviewing focus groups – Human staff services are
perceived as having
higher interaction quality
than the services of
service robots

(Choi et al., 2020)

To investigate whether
robots adhere to social
norms and the
expectations of human
users

Review of research papers
and survey of specialists

– Provided insight into the
nonverbal behavior of
robots considering the
previously mentioned
types of influence

(Saunderson & Nejat,
2019)

To study the suitability of
a robot to work with the
elderly

Experiments with the
elderly interacting with
avatars

Robot Casper mounted on
VirtualME mobile
omnidirectional base

Human-like robots with
expressive faces and
hand gestures
significantly increased
engagement, positive
affect, and perceived
social intelligence

(Moro et al., 2019)

Fig. 6 Conceptual model of
empathy of HRI (Park & Whang,
2022)
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Fig. 7 Representation of the “uncanine” valley, a hypothesized adaption
of the uncanny valley (De Visser et al., 2022)

Furthermore, human reactions and behavior with respect
to robots strongly depend on the actual robot implementa-
tion use case (Etemad-Sajadi et al., 2022) and the robot’s
structure as well as external look (Jørgensen et al., 2022).
Questioning respondents after reviewingPeper robots in vari-
ous actions brought answers that robot acceptance by humans
is mainly affected by safety and trust as well as by robot
behavior scenarios. Evidently, the more similar to humans
it is, the higher acceptance can be achieved (Etemad-Sajadi
et al., 2022). However, according to (Van Maris et al., 2021),
higher acceptance of robots leads to positive consequences
only if it is related to broader implementations of the robots.
In other cases, it can lead to stronger emotional attachment,
dependence on robots, and self-isolation, especially when
using service robots to assist older people. A similar involve-
ment in affection is demonstrated in (Lee & Liang, 2019),
where authors have proved that a foot-in-door strategy—s-
maller requests followed by large ones could be successfully
implemented in HRI to persuade humans to perform required
actions.

The study provided by (Jørgensen et al., 2022) defined
that human reaction and behavior patterns differ in the case
of interaction with conventional and soft robots. Neverthe-
less, the experiment participants could not specify which
robot type seemed more natural. Such behavior proves the
complexity of human perception and the need for further
extensive multifactorial research in this field.

Human trust and safety in robotic installations were ana-
lyzed in many references, which are embraced in Table 13.
Direct evaluation of human trust in the robot operation is
a complicated task, and the indirect definition of trust level
experimental research is provided in (Story et al., 2022) and
(Horstmann & Krämer, 2022). In addition to experimental
methodology, a simulation of the robot’s impression to the
examined person in the working environment exists (Akalin
et al., 2022). A modern augmented reality method and game
environment are useful for human trust research and bring

outstanding results (Alarcon et al., 2021). The game envi-
ronment can attract young people into robotic and industrial
action circumstances and help promote industrial careers.

Theoretical analysis of human behavior and comfort level
in HRI by using meta-analysis and a broad view in the
available literature presented in (Hancock et al., 2011).Meta-
analysis can predict HRI at an early stage and provide fast
results for frequent cases, but local influence (human habits,
societal opinion, etc.) opens a broad space for further analy-
sis.

Human acceptance of the robot environment develops
a certain human reaction to them. The reaction can be
expressed as acceptance of different degrees. Evaluation of
this degree was analyzed in the paper (Roesler et al., 2022). It
can be based on the level of anthropomorphism (Xiao et al.,
2022)(Páez & González, 2022b)n mode (Páez & González,
2022) or general sociality (Londoño et al., 2022).

Another issue limiting the implementation of emotional
models into HRI is related to the challenges of evaluating
real human emotions: subconscious (instrumental) and con-
scious (questionnaires) evaluation often provide opposite or
noncorrelating responses. Therefore, it is necessary to foster
the development of instrumental human emotions evaluation
models suitable for HRI (Table 14).

Recent research (Y. Hu et al., 2022) involving 35 par-
ticipants proved the existence of the relationships between
humans’ physical and psychological data and their age,
gender, perception, and personality during HRI. Such depen-
dencies are vital in developing adaptive HRI frameworks
capable of responding to the physical and mental state of
the robot operator. Furthermore, it has been experimentally
proved that humansmisunderstanding robot intentions is one
of the major issues (Khoramshahi & Billard, 2019). The
authors performed experiments on developing a task-based
HRI, where the robot must recognize the human intention,
switch to a corresponding task, or adjust motion parameters.
Nevertheless, it was found that sometimes humans falsely
assume that robot has recognized their intention, and as a
result, humans disturb the process by themselves. Therefore,
reliable adaptive HRI requires not only instrumental evalu-
ation of human intentions but also feedback from the robot.
Furthermore, this study defined that a different data update
rate is required to ensure stable operation: 1 kHz for the haptic
device, 200 Hz for the lightweight robotic arm, and 125 Hz
for the mobile robot. The benefits of the feedback from the
robot to the human are discussed in (Willemse & van Erp,
2019). Researchers defined that the touch initiated by the ser-
vice robot has a similar positive effect as the friendly touch of
a human. It minimizes psychological stress, creates stronger
bonds between robots and humans, and could extend non-
verbal communication capabilities.

Implementing robots in social-based applications brings
other HRI issues (Table 15). Humans’ reactions to robots are
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highly hidden due to their complexity and frequent possibil-
ity of avoiding undesired interactions. Outstanding research
(Choi et al., 2020) on laymen’s human social behavior reveals
a reaction to the robots serving the hotel. Interviews with
hotel guests reveal quite a strong reaction vector to robots’
existence in the hotel; a study with 400 participants showed
that human staff services are perceived as having slightly
higher interaction quality than the service of service robots.
Theoretical research on human expectations from robots and
robotic technologies is provided in the review (Saunderson
& Nejat, 2019), where some specialists’ survey brings the
main direction on the acceptance degree of robot non-verbal
behavior. Special robot social conditions in operation in the
social area of aged persons are defined experimentally (Moro
et al., 2019) using a very intelligent robot, Casper. Based on
the findings, it was confirmed that human emotion expres-
sion capability raises engagement ofHRI andbrings a general
positive effect.

To summarize, all the recent research on the human reac-
tion to robots is at the beginning of a quest to discover the
complexity of human-to-robot reactions and corresponding
behavior models. The complexity of certain technological
developments can make it difficult to fully understand their
causes and consequences. Such a lack of understanding can
lead individuals or society as a whole to resist or accept these
technologies. However, it is also important to note that other
factors, such as ethical issues, privacy concerns, or social
impact, may contribute to this unacceptability. Scientists and
technology developers must establish open and transparent
communication with individuals, communities, and society
to better understand their concerns and find solutions that
meet everyone’s needs. This may include research to eval-
uate the technology, developing ethical guidelines to ensure
its responsible use, or considering alternative methods that
address problems and promote acceptance.

Provided theoretical and experimental research in HRI
opens the free space for the psychological impact of robots
on human measurement. Another big issue is the improve-
ment of human attitudes toward robots and their installations.
These issues stimulate new research and development of new
technologies in the future.

Discussion

The recent research on HRI and related sociopsychological
phenomena, such as robophobia and anthropomorphism, is at
the beginning of the process of disclosing the vast complex-
ity of its context and indicates the necessary contributions
fromawide variety of disciplines.Here, engineering is taking
just a minor part of the whole, while psychology, sociology,
humanities, and design are becoming equally important.

1. Human–robot cooperation and collaboration can be
effective in industry and possibly in other partially pre-
defined environments;

2. Communication and messaging in HRI are at slow
progress but lack a systematic approach;

3. HRI reveals new socio-psychologic phenomena;
4. The general acceptance of robots over the entire popula-

tion is mixed and underexplored;
5. Emotional communication is very effective between

humans, but achieving better understanding and classi-
fication is necessary for improved human-robot interac-
tion.

Dynamic intrusion and the limited success of social
robotics during the last decade are significant motivators
for investments in further HRI research. In our review, we
found the confirmation that HRI reveals some new socio-
psychologic phenomena. As our review has shown, not many
publications describe successful collaboration between dif-
ferent disciplines, which defines the context of such HRI
research. On the contrary, technology research continues to
progress rapidly at its own pace, while psychology and social
research are often organizedwith outdated and obsolete tech-
nical equipment, without explicit practical value.

Even in the wide public exists Grimwade’s Syndrome
known as the effect of robophobia. Relations between robo-
phobia and access to robots have a multiverse connection.
The performed analysis discovered that robophobia mostly
affects the broad public with minimal access to robots.
Regarding levels of HRI, the first level (isolated robotic cell)
is mostly safe and causes fear for untrained people. Higher
levels of interaction typically happen with trained personnel,
with minimal tendencies to robophobia. On the other hand,
this research doesn’t reveal the cause of such phenomena—-
possibly, that Grimwade syndrome can be cured by contact
with robots or personnel with such conditions avoid robots.

Our review found a sound positive backing for our
hypothesis about the effectiveness of human–robot cooper-
ation and collaboration in industry and other environments.
The collaborative approach between humans and robots is
being demonstrated as productive in industry and medicine,
although reliable and unambiguous feedback from humans
to robots remains an issue. This also supports our hypothesis
about the slow progress of communication and messaging
in HRI. While several works demonstrate promising results
in applying and developing tactile sensors, others target the
development of gesture languages. We found that high adap-
tivity based on effective machine learning of various types
and corresponding AI is essential when humans and robots
share the workplaces, synchronize their work, cooperate, and
collaborate.
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We found support for the hypotheses about emotional
feedback as another promising field of HRI research. How-
ever, we identify it as still remaining at the basic research and
demonstration level. It appears that there is a lack of a more
general understanding of human emotions to be considered
as important feedback inputs for robot algorithms. Also, the
measurement of emotions remains technologically compli-
cated and of low reliability, mainly because of the variability
between human subjects.

In the current discussion, we would like to emphasize
the complexity of the human perception of the robots. We
found support for our hypothesis about the mixed accep-
tance of robots over the entire population. Although early
work identified computers as potential social actors, more
recent research has demonstrated mixed and easily switch-
able social perceptions and acceptance of robots. There are
situations in which the same robot can be perceived as an
anthropomorphic entity. At the same time, it can be treated
as just a machine if the situation has changed. For example, a
robot created for entertainment purposes, such as a humanoid
or quadrupedal robot that can dance or play games, may be
perceived by audiences as an anthropomorphic or zoomor-
phic entity. In contrast, a robot for industrial use, such as a
task to assemble a robot arm, may be perceived by operators
and maintenance personnel as just a machine.

Future research inHRIwill develop intuitively predictable
robot signaling to humans, discovering intended actions
before they are estimated rather than factual operations; this
will add some trust to robot perception by laymen in inter-
ference with robots or robotic complexes. Human emotion
evaluation by the robotic system will ass flexibility to robot
operation, especially in the mobile mode. All these enhance-
ments require new HRI conception and backing of such
conception by hardware and software. Pure emotional fac-
tors of robot perception, like design, coloration, and sound,
significantly impact HRI, so a broad area is open for new
activities and design findings.

Social science and psychology have their own challenges:
early robophobia detection and prevention, suggestive pho-
bia treatment, or social prevention of phobia-induced people
to access robots on a physical level. Psychologists should ini-
tially develop questionaries for robophobia detection; there
are existing ones for agoraphobia, social phobia or other
types of phobias. Special cases with children’s phobias raise
requests for education methodologies or even social ani-
mation material, including graphic games. Reconsidering
recently existing games and proper visualization of robots,
there will be an aim to reduce robotic fear in general because
the maturing of young generation will not be infected with
some mysterious-born phobias. Treatment of specific pho-
bias lacks a methodology for robotic phobia as well; there
are no references pointing to robophobia treatment method-
ology so far.

Additionally, people’s perceptions of robots can be influ-
enced by factors such as their design, the way they interact
with humans, and the tasks they perform. Also, the same
situation is valid for humans, and different perceptions can
result fromeducation. These interpersonal variations are sim-
ilar in principle to thosementioned in the emotional feedback
context and, therefore, similarly challenge the robot develop-
ers. While emotional feedback can be a highly effective data
source for improving the collaborating robots, our hypothe-
sis about the need for better understanding and interpretation
of human emotions has also found good support.

Conclusions

Many areas in daily life show potential for robotization;
however, many factors must be assessed and successfully
combated to employ robotsworking alongside humans seam-
lessly. Different intensity levels of robot-human interaction
propose their own benefits and drawbacks, signifying the
increase in relational complexity as wemove up the intensity
scale. To achieve efficient human–robot collaboration, a lot
of work in defining guidelines, safety measures, and design
is yet to be done. Considering these factors, further research
on human trust, reaction, and response must be conducted to
provide more data for generalizations.

There are several recent demonstrations of successful
human–robot cooperation with sensory and emotional feed-
back. However, the extension of these achievements to wider
application areas, except in industry and medicine, remains
limited.

Effective human-to-robot communication remains an
issue despite several examples of gesture language, AI-
backed speech and face recognition, and emotion recognition
algorithms. New gesture, body language, or speech recogni-
tion features for robots are required, but such research is not
available in public sources.

New sociopsychological phenomena such as robophobia
and sporadic anthropomorphism are gaining importance in
HRI research. In contrast to others, these phenomena are still
new and indicate very indirect effects on the human psyche
in the absence of robots.

Emotional feedback of humans to robots is assumed to
be the preferable adaptive input to cooperative/collaborative
robot behavior. However, realistic human emotion recogni-
tion remains a big issue and has low reliability. Moreover,
general acceptance of robots and caused emotion as such
requires deeper analysis.

Human perception of robots is very complex and presently
can be regarded as sporadic, i.e., hardly predictable, easily
spreading over the audience, and having strong interpersonal
variability. Emotional human–robot communication is and
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will continue to remain limited; forthcoming progress will
decrease communication limits.

Future HRI will intensify and cover the broader public,
which implies some challenges in this field. Authors sup-
pose that industrial robots should be classified intomore than
now existing two groups (robots and cobots), according to
operation intensity. As a result, safety standards will appear,
describing all categories of robots, thus developing optical
and other markings to distinct security levels of this robot,
defining human behavior in robot environments and safety
levels where robots can enter as service. There is a predic-
tion for big society preparation for robotic safety rules, like
behavior in the streetwith traffic. Therefore, all these changes
must be naturally understandable and clear for everybody.
Specialized production areas will keep no-enter zones for
the public, and the robot interaction level will still require
training and education. Ultimately, authors would encourage
leaving space for humans in HRI and unlimited robot devel-
opment for a comfortable human life, unshaded by massive
robophobia.
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Bubnienė, U., & Bučinskas, V. (2021). Advanced applications of
industrial robotics: New trends and possibilities.Applied Sciences,
12(1), 135. https://doi.org/10.3390/app12010135

Ekman, P. (1992). An argument for basic emotions. Cognition and
Emotion, 6(3–4), 169–200. https://doi.org/10.1080/0269993920
8411068

Etemad-Sajadi, R., Soussan, A., & Schöpfer, T. (2022). How ethical
issues raised by human-robot interaction can impact the intention
to use the robot? International Journal of Social Robotics, 14(4),
1103–1115. https://doi.org/10.1007/S12369-021-00857-8

Faccio, M., Granata, I., Menini, A., Milanese, M., Rossato, C., Bot-
tin, M., Minto, R., Pluchino, P., Gamberini, L., Boschetti, G., &
Rosati, G. (2023). Human factors in cobot era: A review ofmodern
production systems features. Journal of IntelligentManufacturing,
34(1), 85–106. https://doi.org/10.1007/s10845-022-01953-w

Fisac, J. F., Bajcsy, A., Herbert, S. L., Fridovich-Keil, D., Wang, S.,
Tomlin, C. J., & Dragan, A. D. (2018). Probabilistically safe robot
planning with confidence-based human predictions.Robotics: Sci-
ence and Systems. https://doi.org/10.48550/arxiv.1806.00109

Fischer, K. (2022). Tracking anthropomorphizing behavior in human-
robot interaction.ACMTransactions onHuman-Robot Interaction,
11(1), 1–28. https://doi.org/10.1145/3442677

Fraune, M. R., Sherrin, S., Šabanović, S., & Smith, E. R. (2019). Is
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