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Abstract
Melt pool characteristics reflect the formation mechanisms and potential issues of flaws. Long-term, high-precision, and
real-time detection of melt pool characteristics is one of the major challenges in the industrial application of additive man-
ufacturing technology. This work proposes, for the first time, the melt pool characteristics detection platform based on
multi-information fusion in the plasma arc welding (PAW) process, which fully utilizes real-time photodiode signals and
high-precision, information-rich melt pool temperature fields. By optimizing the detection area and wavelength selection of
the platform, particularly through the unique photodiode signal acquisition system capable of detecting the high-sensitivity
area of themelt pool, we effectivelymitigate the influences of intense arc light andweldingwire obstruction on the temperature
signals and photodiode signals. Through applying machine learning, the trained model integrates photodiode signals with
temperature signals from the high-sensitivity area, thereby achieving real-time acquisition of high-precision average temper-
ature. By combining the fused signals collected from the platform and the scanning results frommicro-computed tomography
(CT), we evaluate and verify the influence of flaws and droplets on the melt pool characteristics, realizing the determination
of flaw occurrence based on the abnormal variations of average temperature. The experimental results demonstrated that the
platform fully utilized the advantages of long-term and real-time acquisition of the photodiode signal and the high-precision
and information-rich of the melt pool temperature field, achieving long-term, high-precision, and real-time detection of melt
pool characteristics.
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Introduction

Metal additive manufacturing (AM) technology usually
incorporates powder bed fusion (PBF) or directed energy
deposition (DED) (Everton et al., 2016). Depending on the
heat sources, PBFmainly occurs through selective lasermelt-
ing (SLM) and electron beam melting (EBM), while DED
mainly occurs through laser engineered net shaping (LENS)
and wire arc additive manufacturing (WAAM) (Xia et al.,
2022). As one type of WAAM, plasma arc welding (PAW) is
a fusionweldingmethod using a plasma arc high-energy den-
sity beam as the welding heat source. PAW has advantages
such as energy concentration, high productivity, fast welding
speed, low stress and deformation, and a stable arc. Com-
pared with traditional subtractive manufacturing, a WAAM
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system can reduce manufacturing time by 40–60% and post-
processing time by 15–20% depending on part sizes (Wu
et al., 2018). Because PAW uses an arc as the heating source,
it has different characteristics from other high-energy beams
such as lasers: the area of the metal melt pool is relatively
large, the change in the melt pool is intense during the form-
ing process, the melt pool is more affected by the stability of
the arcwelding power source, and the change in the surround-
ing environment maintains the melt pool in an unstable state.
Therefore, the most advanced PAW may still produce flaws
and other anomalies even under the optimal printing parame-
ters, which is the key factor limiting the further development
of this technology.

As the basic macro-level unit of a production sample, the
melt pool characteristics can embody whether the sample is
abnormal. Many in situ monitoring studies of melt pools in
metal AM processes (Wang & Kovacevic, 2002; Wang &
Chen, 2002; Zhang et al., 2014; Liu et al., 2017a, 2017b,
2017c, 2017d; Wu et al., 2021) have been conducted. In our
previous work, we monitored melt pools under SLM (Ma
et al., 2022; Mao et al., 2023) and LENS (Feng et al., 2022;
Hao et al., 2020) processes. In addition, the monitoring of
melt pools under EBM (Boone et al., 2018) andWAAM (Liu
et al., 2013; Saad et al., 2006; Veiga et al., 2022; Zhang et al.,
2022) has also been studied by many researchers. Sensors
were used for data acquisition in all these studies (Liu et al.,
2017a, 2017b, 2017c, 2017d; Wu et al., 2020), so it is impor-
tant to select appropriate sensors for the in situ monitoring
of melt pool characteristics. During the monitoring process,
photodiodes and cameras are sensors used for the acquisition
of melt pool characteristic data.

Photodiodes arewidely used in the industrial field ofmetal
AMbecause of their fast response, low redundant data, online
monitoring, and low price (Berumen et al., 2010; Clijsters
et al., 2014; Gökhan et al., 2018; Kruth et al., 2007; Liu
et al., 2017a, 2017b, 2017c, 2017d). Photodiodes are cur-
rently mainly used for characteristic detection of the melt
pool in the SLM process. For example, Taherkhani et al.
(2021) developed a flaw detection platform using photodiode
signals emitted from the melt pool of SLM, and pores larger
than 120 μm initiated from the lack of fusion phenomena
could be detected. Photodiode signals were used to establish
an association model with various SLM process parameters
and key geometry features through a machine learning algo-
rithm, and the effectiveness of the forward model and inverse
model was demonstrated. Through a data-driven method,
experimental diagnosis was used to optimize laser process
parameters before printing (Lapointe et al., 2022). The fea-
ture data extracted from three different photodiodes in SLM
were processed by several unsupervised clustering meth-
ods, and the goal of predicting the final construction quality
measurement based on purely photodiode data was achieved
(Jayasinghe et al., 2022). The photodiode data under SLM

were correlated with the scanner position and the laser state
during the buildup of Inconel-718 components under varying
powers, scan speeds, and hatch spacing parameters through a
line-to-continuum approach. Then, the photodiode data were
compared against post-build computed tomography scans to
prove that the photodiode data were related to the processing
conditions and manufacturing quality (Dunbar et al., 2018).
Mao et al. (2023) proposed a continuous online flaw detec-
tion method combining the photodiode signal and melt pool
temperature based on deep learning algorithms in SLM, and
a robust correlation could be established between the photo-
diode signal and the average melt pool temperature through
the neural network. In addition, under the LENS process, a
photodiode was also used to characterize the change in amelt
pool, and a statistical method was used to handle photodiode
signal data with variations in the laser power, scanning veloc-
ity, and powder feeding rate (Zhang et al., 2021). However,
there are fewstudies onphotodiodes used in thePAWprocess.
Wang and Kovacevic (2002), Wang and Chen (2002) used a
photodiode to obtain the light signal of the efflux plasma and
provide a reference signal of the keyhole status instead of
using the photodiode for the characteristic detection of the
melt pool. Analogously, Saad et al. (2006) used a photodiode
to monitor the keyhole mode from the backside of the sam-
ple without collecting the melt pool signals. However, from
these literatures, it is evident that the application of photodi-
odes in AM is relatively rudimentary. Because the detection
area of photodiodes is often uncertain or much larger than
the melt pool area, many interfering light sources other than
the radiated light from the melt pool can potentially affect
the accuracy of the photodiode signal in representing melt
pool characteristics. The theoretical significance of photodi-
ode signals and how to more accurately represent melt pool
characteristics using photodiode signals have not yet received
attention from researchers.

Cameras have been utilized for melt pool monitoring
because pixels give the signal spatial resolution, and the com-
mon cameras are CCD and CMOS (Spears et al., 2016).
The signals captured by the camera have two main pur-
poses: one is to directly measure the morphology of the melt
pool (de Winton et al., 2021), and the other is to obtain
the melt pool temperature field by combining the princi-
ple of dual-wavelength thermometry (Feng et al., 2022; Hao
et al., 2020; Ma et al., 2022; Mao et al., 2023). This work
focuses more on the application of the latter. The melt pool
temperature field obtained from camera signals is primarily
used in LENS and SLM processes, but its application in the
PAW process is still not mature. Many studies have demon-
strated the correlation between melt pool temperature and
the macroscopic and microscopic structures of the samples
(Hojjatzadeh et al., 2019; Kirka et al., 2020; Sun et al., 2020;
Rezaeifar&Elbestawi, 2021). The rich information provided
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by melt pool temperature can be utilized for flaw identifica-
tion (Feng et al., 2022; Mao et al., 2023). For example, Ma
et al. (2022) used the temperature field to obtain the char-
acteristics of temperature distribution, profile, temperature
gradient, and cooling rate of a melt pool. Mao et al. (2023)
took the melt pool temperature field as the ground-truth to
verify whether flaws are generated in the SLM process and
confirmed the accuracy of the photodiode signal’s prediction
of flaws. Feng et al. (2022) utilized the similarity of the melt
pool temperature field to conduct online flaw detection in the
LENS process. Using the melt pool temperature field as the
medium, Hao et al. (2020) verified the accuracy of an online
measurement system developed under the LENS process.
Khanzadeh et al. (2019) realized high-precision prediction
of porosity location based on the temperature distribution of
a melt pool during the LENS process. Kriczky et al. (2015)
used coaxial thermal images collected during the LENS pro-
cess to analyze and visualize thermal metrics, which enabled
the assessment of part quality. However, the application of
the melt pool temperature field in the PAWprocess is still not
mature, mainly due to factors such as intense arc light and
welding wire obstruction, which prevent the acquisition of a
complete and accurate temperature field. In addition, existing
high-speed cameras for collecting the melt pool temperature
field are usually limited by transmission rate and memory
storage capacity, resulting in their inability to work for a
long time at high acquisition frame rates.

The latest research on real-time detection of AM (Ren
et al., 2023) involves the use of machine learning to establish
a training model for high-speed synchronized X-ray imaging
and thermal imaging signals. This enables real-time detection
of keyhole flaws based on thermal imaging signals. However,
the high cost and limited penetration capability of high-speed
synchronized X-ray imaging prevent its full application in
practical industrial additive manufacturing processes.

Therefore, to address the challenges of high cost, small
melt pool size, uncertain detection area of photodiode, low
accuracy of photodiode signal, inability to obtain long-term
melt pool temperature signals, and interference from intense
arc light and welding wire obstruction in real-time detection
of the PAW process, this work develops a multi-information
fusion-based melt pool characteristics detection platform
that fully utilizes real-time photodiode signals and high-
precision and information-rich melt pool temperature fields.
The platform mainly consists of a unique photodiode signal
acquisition system and a designed temperature signal acqui-
sition system, featuring three main innovative functionalities
that directly contribute to the performance improvement of
the melt pool characteristics detection platform.

Firstly, the high-sensitivity areas of the signals can be
determined, especially the high-sensitivity area of the pho-
todiode signals, which can be identified by the unique
photodiode signal acquisition system. Our previous work

(Feng et al., 2022) has demonstrated that the front heating
region of the melt pool temperature field exhibits a more sen-
sitive response to flaws, particularly to the response of open
void flaws. The unique photodiode signal acquisition system
enables the detection of the highly sensitive area of the melt
pool. By optimizing and determining the detection area of
the platform, we simultaneously obtain temperature signals
and photodiode signals from the front heating region of the
melt pool, while effectively avoiding the influence of intense
arc light and welding wire obstruction.

Secondly, the average temperature of the melt pool can be
obtained in real time. Through utilizingmachine learning,we
develop a method to represent the photodiode signals from
the high-sensitivity area of the melt pool as the temperature
signals, thereby achieving real-time acquisition of the aver-
age temperature of the melt pool with high precision.

Thirdly, the presence of flaws can be determined in real
time through the analysis of the average temperature. The
main oscillation frequency and the temperature field evolu-
tion process of the melt pool can be estimated separately
using the photodiode signals and the temperature signals.
By combining the grayscale image of the melt pool and
the photodiode signals, the abnormal variations in melt pool
characteristics caused by droplets are estimated. Similarly,
by combining the rich information from the melt pool tem-
perature field and the scanning results from micro-computed
tomography (CT), the abnormal variations in melt pool char-
acteristics caused by flaws also are estimated. Therefore,
once the model is established, the presence of flaws can be
determined bymonitoring the real-time output of the average
temperature.

The workflow of the melt pool characteristics detection
platform based on multi-information fusion is shown in
Fig. 1. The platform is mainly composed of a photodiode sig-
nal acquisition system and a temperature signal acquisition
system. The photodiode signal acquisition system captures
the photodiode signals, which are used to estimate the main
oscillation frequency of the melt pool. Meanwhile, the tem-
perature signal acquisition system captures the temperature
signals, which are used to evaluate the evolution process of
the melt pool temperature field. First, the signals from the
high-sensitivity area of the melt pool, including the pho-
todiode signals and temperature signals, are used to train
a model through a machine learning approach. Then, this
model converts the input photodiode signals into the average
temperature of the melt pool. Finally, the presence of flaws
can be determined by analyzing the abnormal variations in
the average temperature signal output. Additionally, the melt
pool temperature field and CT scanning results are used to
verify the presence of flaws.
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Fig. 1 Workflow of melt pool characteristics detection platform based on multi-information fusion

Fig. 2 Developed melt pool characteristic detection platform. a Schematic diagram. b Physical diagram
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Platform design

Figure 2 a and b are schematic and physical diagrams of
the developed melt pool characteristic detection platform,
respectively. The platform primarily consists of the photo-
diode signal acquisition system and the temperature signal
acquisition system. In “Design of photodiode signal acquisi-
tion system” and “Design of temperature signal acquisition
system” sections, we will provide detailed explanations of
the design rationale and composition of the photodiode sig-
nal acquisition system and the temperature signal acquisition
system.

Theoretical analysis and verification of photodiode
signals

The theoretical analysis and experimental verification of
photodiode signals are helpful in providing support for the
representation of melt pool characteristics. PDA100A2 is an
amplified, switchable-gain silicon detector designed for the
detection of light signals ranging from 320 to 1100 nm. The
responsivity R(λ) of the photodiode can be defined as the
ratio of the photocurrent IPD generated at a given wave-
length to the incident light power P:

R(λ) � IPD

P
(1)

Thus,

U � IPD R� � R(λ)PR� (2)

where R� represents a constant resistance. Therefore, at a
given wavelength, the output signal of the photodiode is the
one-dimensional voltage value U , which is proportional to
the incident light power P. The incident light power P is the
energy passing through a certain Section S in unit time (note
that it is a certain section, not a unit section), so the incident
light power P is proportional to the area S.

The detection platform focuses on high precision, so it is
necessary to verify whether the error of the output signal of
photodiode PDA100A2 is within the acceptable range. The
light of the adjustable power lamp is shot into the photodiode
fixed on the wall, which is perpendicular to the flat wall. To
confirm whether the light in the collection area of the pho-
todiode is uniform, as shown in Fig. 3a, a camera is used to
replace the photodiode to collect the gray information of the
detection area. The average value, average difference value,
and average relative difference value of the gray of the circu-
lar detection area collected by the camera are 220.10, 3.68,
and 1.6%, respectively. To ensure that the incident light is at
a constant wavelength, the camera is equipped with a 650 nm
narrowband filter. The central wavelength of the narrowband

filter is not often a constant value. The central wavelength
of the 650 nm narrowband filter is 650 ± 10 nm. Therefore,
the error of the gray value is acceptable, and the light in the
collection area of the photodiode is considered uniform and
parallel.

To verify the relationship between the output signal of the
photodiode and the detection area, as shown in Fig. 3b, rings
with small radii r of 1 mm, 2 mm, and 3 mm are placed at
the front of the photodiode to change the actual detection
area of the photodiode. The specific steps of the experimen-
tal verification are as follows: 1. Place a ring with a small
radius of 1 mm at the front end of the photodiode; 2. Fix the
650 nm narrowband filter on the front end of the photodiode;
3. Collect the photodiode signal at this time; 4. Turn on the
lamp, set the light power to 70%, and use the data acquisition
card to obtain the photodiode signal; 5. Set the light power to
90%, and use the data acquisition card to obtain the photo-
diode signal; 6. Turn off the lamp, place the rings with small
radii of 2 mm and 3 mm at the front end of the photodiode,
and repeat steps 2–5.

Tables 1 and 2 show the output photodiode signals before
and after the lamp is turned on when the light power is set to
70% and 90%, respectively.

Therefore, the signal generated by the lamp is in direct
proportion to the detection area (πr2). The photodiode sig-
nal corresponding to the ring with a small radius of 1 mm is
taken as the reference, and whether the photodiode signal is
within a reasonable range is judged by analyzing the error
of the theoretical and actual ratio of the ring with small radii
of 2 mm and 3 mm to the reference. The error between the
actual ratio of the photodiode signal and the reference of the
ring with small radii of 2 mm and 3 mm and the theoretical
ratio is within 10%, and the minimum error is only 0.5%.
Since the distance between the lamp and the photodiode is
1.5 m, the 650 nm narrowband filter further filters the light
intensity of the lamp into the photodiode, and the photodiode
signal generated by the lamp is small. Due to the influence
of factors such as the incomplete accuracy of the ring size,
the incomplete flatness of the ring itself, and the weak effec-
tive light intensity, the error between the actual ratio and the
theoretical ratio of the photodiode signal is acceptable.

Design of photodiode signal acquisition system

As shown in Fig. 2, the photodiode signal acquisition sys-
tem mainly consists of a photodiode, a data acquisition card,
a 905 nm narrowband filter, and a long working distance
microscope. The details of the photodiode are introduced in
“Theoretical analysis and verification of photodiode signals”
section. The long working distance microscope has excellent
linearity, depth of field, small distortion, and chromatic aber-
ration. In addition, the working distance is 0.55–1.7 m, the
field of view range is 0.9–15 mm, the resolution is 2.7 μm,
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Fig. 3 Schematic diagram.
a Experimental verification of
light uniformity. b Experimental
verification of relationship
between photodiode signal and
detection area

Table 1 Photodiode signals before and after the lamp is turned on when
the light power is 70%

Ring with 

small

radius

r

1 mm 2 mm 3 mm

Signal before lamp turned on 0.013944 0.013936 0.013958

Signal after lamp turned on 0.01419 0.014829 0.015883

Signal generated by lamp 0.000246 0.000893 0.001925

Theoretical ratio 4 9

Actual ratio 3.63 7.83

Output 
signals / V

Table 2 Photodiode signals before and after the lamp is turned on when
the light power is 90%

Ring with 

small 

radius r

1 mm 2 mm 3 mm

Signal before lamp turned on 0.014074 0.014073 0.014063

Signal after lamp turned on 0.01432 0.015112 0.016291

Signal generated by lamp 0.000246 0.001039 0.002228

Theoretical ratio 4 9

Actual ratio 4.22 9.05

Output 
signals/ V

and the selected 16 mm eyepiece can achieve 125× magni-
fication.

In the Introduction, we have analyzed that the current
research work suffers from the uncertain detection area of
the photodiode, which results in difficulty in accurately rep-
resenting the melt pool characteristics using the collected
photodiode signals. Therefore, the design of a photodiode
signal acquisition system with a defined detection area is
necessary. This work creatively designs a photodiode signal
acquisition system that can determine the detection area. The
camera in the system is used to determine the detection area,

and then the camera is replaced with the photodiode. There-
fore, the detection areas of the photodiode and the camera
will only be the same when their image distances are equal.
Therefore, only when the image distances of the photodiode
and the camera are equal, the detection area of the two sensors
can be identical. As shown in Fig. 4, the distance between the
upper surface of the camera and its target surface is 3.4 mm,
and the distance between the upper surface of the photodiode
and its target surface is 3.3 mm. According to the length of
the connecting sleeve between the photodiode and camera
with the long working distance microscope in Fig. 4, when
17.4 mm + 30 mm + X � 3.3 mm + 13.5 mm + 26.2 mm
+ 7.4 mm, the unity of the photodiode and camera in image
distance can be achieved. Therefore, X � 3 mm is required
and can be achieved by adjusting the thread.

After achieving the physical alignment of the image dis-
tances, experimental verification is conducted to determine
whether the detection area error between the photodiode and
the camera is within an acceptable range. The specific steps
of the experimental verification are as follows: 1. As shown
in Fig. 5, place the iron plate with a hole of 3 mm in diameter
in front of the lamp; 2. Connect the camera with a ring with
a small radius of 3 mm and a 650 nm narrowband filter to the
long working distance microscope through the connecting
sleeve; 3. Adjust the camera position to focus, and make the
field of the camera almost identical to that of the hole; 4. Set
the light power to 40%, 60%, 80%, and 100%, and collect the
gray image. 5. Replace the camera and its connecting sleeve
with the photodiode and its connecting sleeve, set the light
power to 40%, 60%, 80%, and 100%, and collect the signal.

Equation (2) illustrates that the photodiode signal repre-
sents the integration of the light intensity in the detection area.
Therefore, in theory, when the detection area of the camera
and the photodiode is the same, under different light intensi-
ties, the ratio of the integration (or average value) of the gray
value collected by the camera to the corresponding photodi-
ode signal is always constant. Table 3 shows the average gray
value, photodiode signal, and their ratios under different light
powers. The relative error between the predicted photodiode
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Fig. 4 Length information of
photodiode signal acquisition
system. a Camera and
connecting sleeve. b Photodiode
and connecting sleeve

Table 3 Average gray value, photodiode signal, and their ratios under
different light powers

Light power
(%)

Average gray
value

Photodiode
signal (V)

Ratios

40 92.6569 0.3841 241.2381

60 126.5560 0.5433 232.9360

80 156.4504 0.6904 226.5936

100 183.1315 0.8267 221.5214

Fig. 5 Schematic diagram of experimental verification of photodiode
detection area

signal (0.7840) and the actual photodiode signal (0.8267) is
5.1662% when the average ratio (233.5892) corresponding
to 40%, 60%, and 80% of the light power is used to fit the
photodiode signal with 100% of the light power. Considering
that the field of the camera is not completely identical to that
of the hole and that the design optical path itself has errors,
the result is acceptable. The experimental verification proves
that the detection area of the photodiode can be accurately
determined by using the unique photodiode signal acquisi-
tion system.

Design of temperature signal acquisition system

The temperature signal acquisition system is mainly based
on the principle of dual-wavelength thermometry, and it is
designed on the basis of previous work (Feng et al., 2022;
Hao et al., 2020).

As shown in Fig. 2, the temperature signal acquisition
system mainly includes a dual-channel filter device, a long-
focusmicroscopic lens, and aCMOScamera. The parameters
of the long-focus microscopic lens are as follows: the model
is LY-WN-SLDM650, the working distance is 13–200 cm,
and themaximumspatial resolution is 3μm.Themodel of the
CMOS camera with 3 million pixels is MER-301-125U3M.
The long-focus microscopic lens and camera can enlarge the
melt pool temperature field.

The temperature signal acquisition system processes the
dual-bandmelt pool grayscale images into themelt pool tem-
perature field using Eq. (3).

T �
hc
k

(
1
λ1

− 1
λ2

)

ln K + ln I + 5 ln λ2
λ1

(3)

where c represents the speed of light, h represents the Planck
constant, k represents the Boltzmann constant, K represents
the scale coefficient obtained from the system calibration
experiment, and I represents the ratio of the grayscale image
obtained under the two bands λ1 and λ2.

We take into account the radiation band of the melt pool,
plasma interference band, camera sensitivity band, satura-
tion, and temperature measurement range, and set λ1 and λ2

to 780 nm and 900 nm, respectively. The bandwidth, trans-
missivity, and other key parameters of the 780 nmand 900 nm
narrowband filters are calculated and designed. In addition,
an accurate calibration method for the light splitting propor-
tion distribution of the dual-channel filter device is proposed,
a subpixel precision dual-band image matching method is
developed, and the method of multi-parameter cooperative
optimization and calibration of proportionality coefficients
K ,λ1,λ2 is developed, which provides themeasurement sys-
tem with high-temperature measurement accuracy in harsh
conditions such as plasma, soot, and particle splashing. The
parameters of the long-focus microscopic lens are as fol-
lows: the model is LY-WN-SLDM650, the working distance
is 13–200 cm, and the maximum spatial resolution is 3 μm.
The model of the CMOS camera with 3 million pixels is
MER-301-125U3M. The long-focus microscopic lens and
camera can enlarge the melt pool temperature field.
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Experiment

In PAW, the forming process of a single line directly deter-
mines the quality of the final sample. As the basic unit in
the forming process of the sample, the signal change of the
melt pool can accurately embody the evolution of the form-
ing process of a single line. The formation and elimination of
micro flaws, as well as the regulation of microstructures dur-
ing AM, are closely related to the spatiotemporal evolution
characteristics of themelt pool temperaturefield.Meanwhile,
the abnormal distribution of the melt pool temperature field
caused by flaws is a strong signal for the online monitor-
ing of AM. The evolution law of the temperature field in the
melt pool shows that the peak temperature of the melt pool
causes great interference with flaw detection, and the accu-
racy of flaw detection near the melt pool can be significantly
improved by using the front heating region of the melt pool
temperature field (Feng et al., 2022).

Therefore, this research will focus on collecting the radia-
tion light signal from the front heating region of themelt pool
temperature field through the optical path design and exper-
imental calibration. This design has three main advantages:
1. The front heating region of the melt pool temperature field
is far from the welding gun, and it is less or not affected by
the arc light. 2. Once the signal of the front heating region
is abnormal, the influence caused by flaws and other factors
can be reduced or even eliminated by adjusting the process
parameters. 3. The detection area of the photodiode is com-
pletely in a melt pool, which effectively avoids the influence
of the light outside the melt pool on the photodiode signal
and improves the accuracy and sensitivity of the response
signal.

Focusing and determination of detection area

As shown in Fig. 2, the photodiode signal acquisition sys-
tem and temperature signal acquisition system are located
on both sides of the PAW working platform. The distance
between the long working distance microscope and the sub-
strate is 0.65 m, and the distance between the dual-channel
filter device and the substrate is 0.69 m.

After the platform is constructed, it is necessary to perform
focusing on the photodiode signal acquisition system and the
temperature signal acquisition system, as well as determine
the detection areas for both systems. For the temperature
signal acquisition system, the developed dual-band image
matching method with subpixel accuracy and the propor-
tionality coefficient K, λ1, λ2 multi-parameter cooperative
optimization and the calibration method (Hao et al., 2020)
have completed the focusing. The focusing of the photodi-
ode signal acquisition system is based on the focusing of
the temperature signal acquisition system. To ensure that the
photodiode can only detect the front heating region of the

melt pool temperature field, a ring is added at the front end
of the photodiode. The focusing of the photodiode signal
acquisition system is completed by replacing the position of
the photodiode with a camera and adding a ring at the front
end of the camera. After the mark point is made on the sub-
strate, the detection area of the photodiode signal acquisition
system is determined by the position of the mark point in the
camera field of view. As shown in Fig. 2, the 905 nm narrow-
band filter is also added to the front end of the photodiode to
filter the arc light.

Setting of PAW parameters and experimental design

PAW is affected by many factors, such as ionic gas flow,
welding current, welding speed, nozzle distance, and shield-
ing gas flow. These factors usually have a greater impact on
the stability of the forming process and the quality of the sam-
ple. To avoid a large number of flaws caused by unreasonable
parameter settings, the optimal parameters applicable to 314
stainless steel with a diameter of 1.2 mm are selected accord-
ing to experience.As shown inTable 4, the specific parameter
settings are as follows: the peak current is 100 A, the base
current is 50 A, the pulse interval is 1 s, the proportions of
peak current and base current in a pulse interval are 15% and
85%, respectively, the wire feeding speed is 80 cm/min, the
welding speed is 30 mm/min, the plasma gas flow rate is 2
L/min, the shielding gas flow is 15 L/min, and the distance
between nozzle and work-piece is 15 mm. The setting of the
above experimental parameters is optimal, which has been
confirmed in the CT scanning results of the sample because
the porosity of the specimen is low. In addition, the frame rate
of the temperature signal acquisition system is 125 Hz, and
the frame rate of the photodiode signal acquisition system
is 250 kHz. As shown in Fig. 6, with a length of approxi-
mately 20 mm, two single-line samples are designed. When
collecting the photodiode information of single-line 1, a ring
with a small radius of 3 mm is added to the front end of the
photodiode. When collecting the photodiode information of
single-line 2, the front end of the photodiode has no ring
(the radius of itself is 4.9 mm), and the starting position of
single-line 2 covers the end position of single-line 1. The
gray distribution and light intensity signal changes of the arc
under the base current are also collected by the platform.

Pretreatment of experimental results

Under the action of peak current, PAW has a large arc energy
density and high arc column temperature, which leads to
overexposure of the melt pool temperature field calculated
by Eq. (3). Therefore, only the melt pool temperature field
at the base current is calculated and corrected. Due to the
small distance between the welding wire and the melt pool,
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Table 4 Specific parameters of PAW

Peak current
(A)

Base current
(A)

Pulse interval
(s)

Wire feeding
speed (cm/min)

Welding
Speed
(mm/min)

Plasma gas
flow rate
(L/min)

Shielding gas
flow (L/min)

Distance
between
nozzle and
work-piece
(mm)

100 50 1 80 30 2 15 15

Fig. 6 Welded sample of single-line 1 (green line) and single-line 2
(black line) (Color figure online)

it is difficult to completely avoid the influence of the weld-
ing wire when collecting the melt pool temperature field.
Therefore, it is necessary to remove the welding wire from
the melt pool temperature field. Besides, the influence of
arc light should be eliminated to obtain an effective melt
pool temperature field. Figure 7 shows the process of cor-
recting the melt pool temperature field and extracting the
local melt pool temperature field. The process of correcting
the melt pool temperature field is mainly based on the dis-
tribution characteristics of the welding wire and arc light in
the grayscale image. Some areas in the effective melt pool
temperature field do not have any data. These areas mainly
include the area where the welding wire is located and the
area where the temperature is far beyond the measurement

range of the temperature signal acquisition system. The blank
area where the welding wire is located is represented by a
black circle and the letter “W”. However, according to the
above analysis, the arc light will rotate irregularly due to the
influence of the fluid flow. Even after correction, the tail end
and central area of the melt pool may also be affected by
the arc light at some moments. Therefore, a ring is added
to the front of the photodiode to ensure that the detection
area is the front heating region of the melt pool temperature
field. Through the inverse scale transformation of the aspect
ratio of the marking point in the focusing stage of the two
systems, the mask of the corresponding region of the ring in
the melt pool temperature field can be obtained, and then the
high-sensitivity area in the melt pool temperature field and
the photodiode detection area are completely coincident. In
this way, we simultaneously obtain temperature signals and
photodiode signals from the high-sensitivity area of the melt
pool, while effectively avoiding the influence of intense arc
light and welding wire obstruction.

In addition, since the frame rate of the temperature sig-
nal acquisition system is 125 Hz and the frame rate of the
photodiode signal acquisition system is 250 kHz, in order to
fit the curves of the temperature signal and the photodiode
signal, the photodiode signals within each pulse interval are
averaged to match the number of temperature signals.

Fig. 7 Process of correcting melt
pool temperature field and
extracting local areas. W
represents the blank area after
removing the welding wire inside
the black circle
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Analysis and discussion of experimental
results

The developed platform obtains the evolution process of the
melt pool temperature field, estimates the main oscillation
frequency, fits the relationship between the photodiode signal
and temperature signal, and evaluates the influence of flaws
and droplets on the characteristics of the melt pool.

Evolution process of melt pool temperature field

According to the CT scanning results of the two single-line
samples shown in Fig. 6, there are no pore flaws in single-line
1, and there are pore flaws in single-line 2. The pore flaws in
single-line 2 have no influence on research on the evolution
of the melt pool.

In the process of welding single-line 1, the evolution pro-
cess of the melt pool can be clearly observed in the melt pool
temperature field obtained by the temperature signal acquisi-
tion system. The timing starts from the end of the preheating
phase, and the evolution process is divided into the form-
ing stage, stabilization stage, and cooling stage. This work
primarily focuses on the stabilization stage. The stabiliza-
tion stage lasts for 38 pulse intervals. In this stage, the shape
of the melt pool gradually increases from the initial size of
12.8 mm in length and 7.9 mm in width to the final size of
15.1 mm in length and 8.5 mm in width, as shown in Fig. 8.
In the 38 pulse intervals, the average temperature of all melt
pool temperature fields minimally affected by arc light in
each interval is obtained, and the average temperature of the
melt pool barely fluctuates.

Estimation of main oscillation frequency

Many researchers (Xiao & Den, 1990, 1993; Aendenroomer
& Den, 1998) have studied the correlation between the oscil-
lation frequency and the geometric shape of the melt pool in
gas tungsten arc welding (GTAW) technology, which proves
the significance of predicting the oscillation frequency of
the melt pool. Although PAW is similar to GTAW, there
are few studies on estimating the oscillation frequency of
the melt pool specifically for PAW technology. Compared
with GTAW, PAW has a more concentrated heat source and
a greater influence of arc light. Therefore, this work makes
full use of the advantages of the developed platform and uses
the photodiode signal of the melt pool to study the oscilla-
tion frequency. The oscillation index is the photodiode signal
of the melt pool obtained by the photodiode signal acquisi-
tion system. The photodiode signal represents the sum of the
intensity of the radiation light of the melt pool in the detec-
tion area, which is consistent with the sum of pixel values in
the grayscale image of the melt pool as an indicator in the
literature (Caprio et al., 2020). This work mainly estimates

the oscillation frequency of the melt pool when the melt pool
characteristics are relatively stable under the base current.
Then, the oscillation frequency is evaluated by estimating
the PSD. The PSD of the photodiode signal in 38 pulse inter-
vals in the stabilization stage of single-line 1 is calculated
with 212,500 data points in each pulse interval. The oscil-
lation frequency of the melt pool is in the low-frequency
mode within 200 Hz, and the main oscillation frequency is
approximately 20 Hz. The estimation result of the oscillation
frequency of the PAWmelt pool using the photodiode signal
and PSD is consistent with that in the literature (Zhao et al.,
2009), which proves the simplicity and effectiveness of the
method developed in this work.

The above analysis is not affected by flaws, which can
be confirmed by grayscale images of the melt pool and CT
scanning results.

Fitting relationship between photodiode signal
and temperature signal

In this Section, the fitting relationship between the photodi-
ode signal and the temperature signal of the melt pool under
the base current is analyzed n. First, the correlation between
the photodiode signal and the temperature signal of the melt
pool is analyzed. Then, the real-time representation of the
temperature signal using the photodiode signal of the melt
pool is explored.

Correlation between photodiode signal and temperature
signal

In order to explore the correlation between the photodi-
ode signal and the temperature signal, it is quantitatively
represented by the correlation coefficient. The closer the cor-
relation coefficient is to 1, the stronger the positive correlation
between the two signals.

According to Eq. (2), the photodiode signal represents
the sum of the light intensity in the entire detection area.
Theoretically, the correlation between the photodiode signal
and the sum of temperature signals in the detection area is
expected to be excellent. Considering that the detection area
of the photodiode is constant, the correlation between the
photodiode signal and the average temperature signal would
be appropriate. Moreover, the average temperature is physi-
cally more interpretable than the total temperature. In order
to demonstrate a better correlation between the photodiode
signal and temperature signal within the same area, the corre-
lation coefficients between the local temperature signal and
the local photodiode signal are compared with the correla-
tion coefficients between the global temperature signal and
the local photodiode signal. In “Pretreatment of experimental
results” section, the global temperature field, local temper-
ature field (front heating region), and photodiode signal of
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Fig. 8 Evolution process of melt
pool in stabilization stage. W
represents the blank area after
removing the welding wire inside
the black circle

Fig. 9 Melt pool temperature field within 44th pulse interval of single-
line 1. aGlobal temperature field.bLocal temperature field correspond-
ing to detection region of a photodiode with a 3 mm radius circular ring.
W represents the blank area after removing the welding wire inside the
black circle

the melt pool are obtained and pretreated. In “Evolution pro-
cess of melt pool temperature field” section, we have already
analyzed that the melt pool area is large in the PAW process.
Although the radius of the photodiode is 4.9 mm, when there
is no 3 mm radius circular ring at the front end of the photo-
diode, the collected signal still represents a local signal of the
melt pool, but with a larger corresponding area of the melt
pool.

First, we analyze the correlation between the photodiode
signal collected with a ring at the front end and the tempera-
ture signal. Figure 9 shows the global temperature field and
local temperature field of the melt pool at a certain moment
within the 44th pulse interval during the welding process of
single-line 1. It should be noted that at this moment, there is
a 3 mm radius circular ring at the front end of the photodi-
ode. Figure 10 shows the curves of the photodiode signals,
the global average temperature signals, and the local aver-
age temperature signals of the melt pool during the 44th
pulse interval of single-line 1. Figure 11 shows the fitting
line between the photodiode signal and the global average
temperature signal, as well as the fitting line between the
photodiode signal and the local average temperature signal.
The correlation coefficient between the photodiode signals
and the local average temperature signals is 0.97, while the
correlation coefficient between the photodiode signals and
the global average temperature signals is 0.87. Therefore, the

correlationbetween thephotodiode signals and the local aver-
age temperature signals of the melt pool is better. The fitting
between thephotodiode signal and theglobal average temper-
ature signal is poor, mainly because of the difference in area
corresponding to the photodiode signal and the global aver-
age temperature signal. The photodiode signals correspond
only to the front heating region of the melt pool, while the
global average temperature signals correspond to the entire
melt pool.

In order to verify whether it is appropriate to correlate the
photodiode signal with the local average temperature signal
instead of the local total temperature signal, the local total
temperature signal of the melt pool is also correlated with the
photodiode signal. Figure 12 shows the curves of the photodi-
ode signals and the local total temperature signals of the melt
pool during the 44th pulse interval of single-line 1. Figure 13
shows the fitting line between the photodiode signals and the
local total temperature signals during the 44th pulse inter-
val of single-line 1. The correlation coefficient between the
photodiode signals and the local total temperature signals
is 0.92. The correlation coefficients between the photodiode
signal and the local average temperature signal, as well as the
local total temperature signal, are both above 0.90.Moreover,
the correlation coefficient between the photodiode signal and
the local average temperature signal is larger. This indicates
that it is appropriate to replace the local total temperature
signal with the local average temperature signal to correlate
with the photodiode signal.

Next, we analyze the correlation between the photodiode
signal collected without a ring and the temperature signal.
Figure 14 shows the global temperature field and local tem-
perature field of the melt pool at a certain moment within the
48th pulse interval during the welding process of single-line
2.

Figure 15 shows the curves of the photodiode signals, the
global average temperature signals, and the local average
temperature signals of the melt pool during the 48th pulse
interval. Figure 16 shows the fitting line between the pho-
todiode signal and the global average temperature signal, as
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Fig. 10 Curves of photodiode
signals, global average
temperature signals, and local
average temperature signals
during the 44th pulse interval of
single-line 1. Photodiode signals
are collected by the photodiode
with a 3 mm radius circular ring

Fig. 11 Fitting lines between
photodiode signals and
global/local average temperature
signals during the 44th pulse
interval of single-line 1.
Photodiode signals are collected
by the photodiode with a 3 mm
radius circular ring

Fig. 12 Curves of photodiode
signals and local total
temperature signals during the
44th pulse interval of single-line
1. Photodiode signals are
collected by a photodiode with a
3 mm radius circular ring

Fig. 13 Fitting lines between
photodiode signal and
global/local average temperature
signals during the 44th pulse
interval of single-line 1.
Photodiode signals are collected
by the photodiode with a 3 mm
radius circular ring
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Fig. 14 Melt pool temperature field within the 48th pulse interval of
single-line 2. a Global temperature field. b Local temperature field
corresponding to detection region of photodiode without a ring. W rep-
resents the blank area after removing the welding wire inside the black
circle

well as the fitting line between the photodiode signal and
the local average temperature signal. The correlation coeffi-
cient between the photodiode signals and the local average
temperature signals is 0.93, while the correlation coefficient
between the photodiode signals and the global average tem-
perature signals is 0.88. Similarly, the correlation between the
photodiode signals and the local average temperature signals
of the melt pool is better.

Meanwhile, the photodiode signal is also correlated with
the local total temperature signal of the melt pool. Figure 17
shows the curves of the photodiode signals and the local
total temperature signals of the melt pool during the 48th
pulse interval. Figure 18 shows the fitting line between the
photodiode signals and the local total temperature signals.
The correlation coefficient between the photodiode signal
and the local total temperature signal is 0.91, which further

confirms the suitability of correlating the photodiode signal
with the local average temperature signal.

Furthermore, through the data analysis of the two single-
lines, it is found that the average correlation coefficient
between the photodiode signals collected with the ring and
the local average temperature signals is slightly higher than
the average correlation coefficient between the photodiode
signals collected without a ring and the local average tem-
perature signals. The temperature of the melt pool is related
to the macrostructure, microstructure, and flaw formation of
the sample, and it is a significant melt pool characteristic.
The excellent correlation between the photodiode signal and
the average temperature signal indicates that the photodiode
signal has the potential to represent the average temperature
of the melt pool.

Real-time representation of temperature signal

The existing high-speed cameras used for collecting melt
pool temperature signals are often limited by transmission
rate and memory storage capacity, resulting in their inability
to work for extended intervals at high frame rates. Although
photodetectors can continuously capture and store data at
frame rates of 250 kHz or higher, achieving a complete repre-
sentation of melt pool characteristics similar to temperature
signals using photodiode signals still requires algorithmic
processing.

Fig. 15 Curves of photodiode
signals, global average
temperature signals, and local
average temperature signals
during the 48th pulse interval of
single-line 2. Photodiode signals
are collected by the photodiode
without a ring

Fig. 16 Fitting lines between
photodiode signals and
global/local average temperature
signals during the 48th pulse
interval of single-line 2.
Photodiode signals are collected
by the photodiode without a ring
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Fig. 17 Curves of photodiode
signals and local total
temperature signals during the
48th pulse interval of single-line
2. Photodiode signals are
collected by the photodiode
without a ring

Fig. 18 Fitting lines between
photodiode signal and
global/local average temperature
signals during the 48th pulse
interval of single-line 2.
Photodiode signals are collected
by the photodiode without a ring

Fig. 19 Schematic diagram of BP neural network

Machine learning is a branch of artificial intelligence that
enables computers to learn from data and improve perfor-
mance automatically using algorithms and statistical models.
The backpropagation (BP) neural network is an algorithm in
machine learning that is commonly used to predict or esti-
mate object variables. The core idea of the BP neural network
is to calculate the error between the predicted values and
the actual values, and then propagate the error backwards
through the layers to adjust the weights and biases of the
network, aiming to minimize the error. As shown in Fig. 19,
the BP neural network typically consists of an input layer,
hidden layers, and an output layer (Mao et al., 2023). Each
node is connected to all nodes in the previous layer and has
weights and biases.

Choosing the BP neural network for fitting the photodi-
ode signal and local average temperature signal is based on
two reasons. Firstly, correlation between the two signals at
the physical level. The photodiode signal corresponds to the
radiation light from the melt pool. According to Planck’s
Radiation Law, radiation light is correlatedwith temperature.
Furthermore, as demonstrated in “Platform design” section,
the photodiode signals collected by the platform exhibit a
linear relationship with the radiation light. Therefore, the
photodiode signal and the temperature signal are correlated
on a physical level, as also supported by the signal correlation
results presented in “Correlation between photodiode signal
and temperature signal” section. Secondly, the applicabil-
ity of the BP network structure. The BP neural network has
the ability to approximate any complex nonlinear function,
exhibiting strong fitting capability. Additionally, it demon-
strates low latency and fast inference or prediction speed
when processing input data, showcasing strong real-time per-
formance. The simplified structure of the BP neural network
is suitable for the practical industrial application of the plat-
form because it avoids unnecessary complexity.

The network employs the tansig activation function. The
dataset for the BP neural network consists of 9600 pairs of
photodiode signals and temperature signals. Among these,
7680 pairs are used as the training set, and 1920 pairs are used
as the test set. In Fig. 19, P represents the input photodiode
signal, and T represents the output local average temperature
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signal. The trained model has an average relative error of
2.82% and is able to output the local average temperature
signal in real-time based on the input photodiode signal.

Therefore, when the photodiode signals from the 44th
pulse interval of single-line 1 are input into the model, the
predicted local temperature signals are obtained. Figure 20
shows the curves of the photodiode signals, the predicted
local temperature signals, and the ground-truth local tem-
perature signals. The correlation coefficient between the
photodiode signals and the predicted local temperature sig-
nals is 0.96, which is the same as the correlation coefficient
of 0.96 between the photodiode signals and the ground-
truth local temperature signals. The correlation coefficient
between the predicted local temperature signals and the
ground-truth local temperature signals is 0.97, which is
higher than the correlation coefficient between the photo-
diode signals and the ground-truth local temperature signals.
Additionally, as the variation coefficient can further reflect
the relative fluctuation of the curves (Mao et al., 2023; Zhang
et al., 2021), the variation coefficients of the photodiode sig-
nals, predicted local temperature signals, and ground-truth
local temperature signals are compared. The values of the
variable coefficient of the photodiode signals, predicted local
temperature signals, and ground-truth local temperature sig-
nals are 0.151, 0.088, and 0.082, respectively. Therefore, the
comparative results of correlation coefficients and variation
coefficients have demonstrated that the predicted local tem-
perature signal is closer to the ground-truth local temperature
signals compared to the photodiode signal. Consequently, the
representation capability of the photodiode signal for melt
pool characteristics has been optimized through training.

Figure 21 shows the relative error distribution between the
predicted local temperature signals and the ground-truth local
temperature signals. The average relative error of predicted
temperature signals and ground-truth temperature signals
is 1.52%, demonstrating that the model can output high-
precision temperature signals in real-time.

Melt pool characteristics under influences
of droplets and flaws

In this Section, the influence of flaws anddroplets on the char-
acteristics of the melt pool is analyzed. First, the abnormal
variations in melt pool characteristics caused by droplets are
estimated by combining the grayscale image of the melt pool
and the photodiode signals. Then the abnormal variations in
melt pool characteristics caused by flaws are estimated and
verified by combining the rich information from the melt
pool temperature field and the scanning results from CT.

Melt pool characteristics under influences of droplets

As shown by the blue circle in Fig. 22, there is significant
fluctuation in the photodiode signals and temperature sig-
nals during the initial stage of the 27th pulse interval in
single-line 1 under the influence of the base current. This
is believed to be attributed to the frequent droplet trans-
fer. Figure 22 shows the curves of the photodiode signals,
the predicted local temperature signals, and the ground-truth
local temperature signals of the melt pool during the pulse
interval. The correlation coefficient between the photodiode
signals and the actual ground-truth local temperature signals
is 0.97, while the correlation coefficient between the photo-
diode signals and the predicted local temperature signals is
0.98. The correlation coefficient between the predicted local
temperature signals and the ground-truth local temperature
signals is 0.98, which is higher than the correlation coeffi-
cient between the photodiode signals and the ground-truth
local temperature signals. The values of the variable coeffi-
cient of the photodiode signals, predicted local temperature
signals, and ground-truth local temperature signals are 0.136,
0.185, and 0.182, respectively. Therefore, the comparative
results of correlation coefficients and variation coefficients
have demonstrated that the predicted local temperature signal
is closer to the ground-truth local temperature signals com-
pared to the photodiode signal under influences of droplets.

Figure 23 shows the relative error distribution between
the predicted local temperature signals and the ground-truth
local temperature signals. Simultaneously, the average rela-
tive error of predicted temperature signals and ground-truth
temperature signals is 2.23%.

Before droplets melt into the melt pool, they are not part
of the melt pool. Therefore, the droplet transfer process can-
not be directly observed through the melt pool temperature
field. As shown in Fig. 24, continuous grayscale images of
themelt pool are used to observe droplets. The droplets in the
blue circle have just formed, and the droplets in the green cir-
cle are melting into the melt pool. The dropping frequency
of the droplet is consistent with the fluctuation frequency
of the temperature signals and photodiode signals shown in
Fig. 22. The droplet transfer increases the energy of the melt
pool, while the heat exchange between the melt pool and the
environment leads to energy dissipation. The droplet transfer
that occurs at the initial stage of the base current causes obvi-
ous fluctuations in the temperature signals and photodiode
signals, and the main oscillation frequency is approximately
64 Hz.

Therefore, in the presence of droplet influence causing sig-
nificant signal fluctuations, the fitting relationship between
the temperature signal and the photodiode signal is still excel-
lent, and the model remains robust.
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Fig. 20 Curves of photodiode
signals, predicted local
temperature signals, and
ground-truth local temperature
signals during the 44th pulse
interval of single-line 1.
Photodiode signals are collected
by the photodiode with a 3 mm
radius circular ring

Fig. 21 Relative error
distribution between predicted
local temperature signals and
ground-truth local temperature
signals during the 44th pulse
interval of single-line 1

Fig. 22 Curves of photodiode
signals, predicted local
temperature signals, and
ground-truth local temperature
signals during 27th pulse interval
of single-line 1. Photodiode
signals are collected by a
photodiode with a 3 mm radius
circular ring. The blue circle
represents abnormal variations in
signals (Color figure online)

Melt pool characteristics under influences of flaws

As shown by the blue circles in Fig. 25, there are abnormal
variations in the photodiode signals and temperature signals
during the 40th pulse interval and the 33rd pulse interval
in single-line 2 under the influence of the base current. The
abnormal variations are primarily characterized by an aver-
age difference in amplitude between adjacent signals that is
8–12 times higher than in other time intervals.

Figure 25 shows the curves of the photodiode signals,
the predicted local temperature signals, and the ground-truth
local temperature signals of the melt pool during the 40th
and the 33rd pulse interval.

During the 40th pulse interval, the correlation coefficient
between the photodiode signals and the ground-truth local
temperature signals is 0.91, while the correlation coefficient
between the photodiode signals and the predicted local tem-
perature signals is 0.90. The correlation coefficient between

the predicted local temperature signals and the ground-truth
local temperature signals is 0.93, which is higher than the
correlation coefficient between the photodiode signals and
the ground-truth local temperature signals. The values of the
variable coefficient of the photodiode signals, predicted local
temperature signals, and ground-truth local temperature sig-
nals are 0.155, 0.076, and 0.084, respectively.

During the 33rd pulse interval, the correlation coefficient
between the photodiode signals and the ground-truth local
temperature signals is 0.94, while the correlation coefficient
between the photodiode signals and the predicted local tem-
perature signals is 0.95. The correlation coefficient between
the predicted local temperature signals and the ground-truth
local temperature signals is 0.96, which is higher than the
correlation coefficient between the photodiode signals and
the ground-truth local temperature signals. The values of the
variable coefficient of the photodiode signals, predicted local
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Fig. 23 Relative error
distribution between predicted
local temperature signals and
ground-truth local temperature
signals during the 27th pulse
interval of single-line 1

Fig. 24 Droplet transfer process observed from grayscale images of the melt pool. The blue circles represent newly formed droplets, while the green
circles represent droplets that are melting into the melt pool (Color figure online)

Fig. 25 Curves of photodiode
signals, predicted local
temperature signals, and
ground-truth local temperature
signals. a During the 40th pulse
interval of single-line 2. b During
the 33rd pulse interval of
single-line 2. Photodiode signals
are collected by a photodiode
without a ring. The red circle
represents the anomalous
high-temperature point. The blue
circle represents abnormal
variations in signals (Color figure
online)
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Fig. 26 Relative error
distribution between predicted
local temperature signals and
ground-truth local temperature
signals. a During the 40th pulse
interval of single-line 2. b During
the 33rd pulse interval of
single-line 2

temperature signals, and ground-truth local temperature sig-
nals are 0.193, 0.090, and 0.091, respectively.

Therefore, the comparative results of correlation coeffi-
cients and variation coefficients have demonstrated that the
predicted local temperature signal is closer to the ground-
truth local temperature signals compared to the photodiode
signal under influences of flaws.

Figure 26 shows the relative error distribution between
the predicted local temperature signals and the ground-truth
local temperature signals of the melt pool during the 40th
and the 33rd pulse intervals. The average relative error of
predicted temperature signals and ground-truth temperature
signals during the 40th pulse interval is 2.47%, while during
the 33rd pulse interval, it is 2.35%.

Therefore, even in the presence of abnormal variations,
the fitting relationship between the temperature signal and
the photodiode signal is still excellent, and themodel remains
robust.

To identify the cause of the abnormal variations during
the 40th and 33rd pulse interval of single-line 2, we obtained
the global temperature field and local temperature field of the
melt pool corresponding to the time of the anomalies. Rep-
resentative images of the global temperature field and local
temperature field are shown in Fig. 27. During the two-time
intervals when the abnormal variations occurred, the melt
pool front encounters the spatter, and there is an anomalous
high-temperature point between them, as indicated by the

red circle in Fig. 27. The previous work (Khairallah et al.,
2020) has demonstrated that spatter is an influencing factor
in the occurrence of flaws during the AM process. Therefore,
the heat transfer between the spatter and the melt pool may
lead to abnormal variations in local temperature. Under the
influence of buoyancy, Lorentz force, surface tension, arc
pressure, self-gravity, and droplet transfer, the flow behav-
iors of the melt pool are complex rotational flow motions. In
this scenario, the main oscillation frequency of the melt pool
increases to 32–36 Hz, which is higher than the main oscilla-
tion frequency under normal conditions. The possible reason
is that when the melt pool encounters the spatter, the spatter
resists the flow of the melt pool, making the flow behaviors
of the melt pool more complex. In particular, the rebound of
flowvelocity can result in short-termdisturbances on themelt
pool surface, and these disturbances may lead to an increase
in the main oscillation frequency.

To further confirm that the abnormal variations reflect the
process of flaw formation, the CT scanning results of single-
line 2 are analyzed. According to the CT scanning results
shown in Fig. 28, it can be observed that pore flaws with
diameters of 0.13 mm (in the red circle) and 0.15 mm (in
the black circle) are generated during the welding process
of single-line 2. Based on the three-dimensional coordinates
of the pore flaws and the welding speed, it can be deter-
mined that the time of pore flaw occurrence corresponds to
the abnormal intervals in the 40th and 33rd pulse intervals.
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Fig. 27 Global temperature field (upper) and local temperature field
(lower) of melt pool. a During the 40th pulse interval of single-line 2.
bDuring the 33rd pulse interval of single-line 2.W represents the blank

area after removing the welding wire inside the black circle. The red
circle represents the anomalous high-temperature point (Color figure
online)

Therefore, the developed platform can convert photodi-
ode signals into real-time temperature signals in a long-term
manner through the model, and then accurately detect the
generation of flaws based on the specific threshold of the
amplitude difference between adjacent signals. However, it
must be noted that the current platform is primarily suit-
able for detecting anomalies caused by significant defects
such as spatter, and the detection indices also have limi-
tations and practical considerations. For smaller defects or
processes with very small melt pools, it is necessary to fully
utilize other information from the melt pool signal, such as
frequency (Ren et al., 2023).

Conclusion

In this work, the melt pool characteristics detection plat-
form based on multi-information fusion is developed. The
platform primarily consists of a unique photodiode signal
acquisition system and a designed temperature signal acqui-
sition system.

Firstly, the unique photodiode signal acquisition system
accurately collects the photodiode signals from the high-
sensitivity area of the melt pool by enlarging the field of view
and optimizing the detection area. Secondly, the temperature
signal acquisition system obtains the global temperature field
and the local temperature field of the melt pool. Thirdly,
the platform continuously and in real-time obtains high-
precision temperature signals from the melt pool. Finally,
the platform detects the generation of flaws based on real-
time abnormal variations in temperature signals. Therefore,
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Fig. 28 Views of CT scanning results. a Top view. c Side view. The red
circle and black circle represent the pore flaw (Color figure online)

this platform can provide important technical and data sup-
port for sample quality evaluation and intelligent control of
the PAW process.

Themain focus of future research is to utilize two photodi-
odes and the colorimetric temperaturemeasurement principle
to detect the melt pool temperature. This approach avoids the
dependency on the object’s emissivity and overcomes the
influence of measurement environment, distance, angle, and
other factors. Additionally, the melt pool temperature field
acquisition system can be eliminated, significantly reducing
the economic cost and better meeting the practical needs of
the industry.
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