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Abstract
Manufacturing industries are eager to replace traditional robot manipulators with collaborative robots due to their cost-
effectiveness, safety, smaller footprint and intuitive user interfaces. With industrial advancement, cobots are required to be
more independent and intelligent to do more complex tasks in collaboration with humans. Therefore, to effectively detect the
presence of humans/obstacles in the surroundings, cobots must use different sensing modalities, both internal and external.
This paper presents a detailed review of sensor technologies used for detecting a human operator in the robotic manipulator
environment. An overview of different sensors installed locations, the manipulator details and the main algorithms used to
detect the human in the cobot workspace are presented. We summarize existing literature in three categories related to the
environment for evaluating sensor performance: entirely simulated, partially simulated and hardware implementation focusing
on the ‘hardware implementation’ category where the data and experimental environment are physical rather than virtual.
We present how the sensor systems have been used in various use cases and scenarios to aid human–robot collaboration and
discuss challenges for future work.

Keywords Sensors ·Manipulators · Obstacle detection · Collaborative robots · Collision avoidance

Introduction

Digitisation and the increasing demand for unique and cus-
tomised products have motivated manufacturing industries
to move beyond the mass production paradigm and develop
smarter production systemsby involvinghumans as their core
parameter (Bragança et al., 2019; Sherwani et al., 2020) This
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has led to a concept named Industry 5.0 (I5.0) (Industry 5.0:
Towards More Sustainable, Resilient and Human-Centric
Industry, 2021) where humans work in parallel with robots.
Although smart machines, a key development in Industry
4.0, aremore precise and accurate than humans, robot-centric
manufacturing systems suffer from limitations in amore cus-
tom production environment as robots lack the flexibility
and adaptability of humanworkers. Therefore, by combining
humans’ coordination, proficiency and cognitive potential
with the accuracy, efficiency and dexterity of robots, I5.0
brings together the best of both to enable a mass customiza-
tion production environment.

Human–robot interaction (HRI) can generally be classi-
fied into three categories as illustrated in Fig. 1b–d. Figure 1a
shows the traditional industry where robots are totally iso-
lated from human operator. Then in HRI, first, Human–robot
coexistence, in which both humans and robots work together
but never overlap each other’s workspace and have differ-
ent tasks. Second, human–robot cooperation, in which both
human operator and robot have some common goals or tasks
to perform. In this category, both agents work in a shared
space but do not come in direct contact. The third category
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Fig. 1 Various level
human–robot working in an
industrial environment

of HRI isHuman–Robot Collaboration (HRC), inwhich both
agents interact with each other in one of two ways:

• Physical collaboration, in which robots are enabled to
identify and predict human interactions using force or
torque signals.

• Non-physical collaboration, in which the information
between human and robot is exchanged using either direct
(gestures, speech etc.) or indirect communication (facial
expression, human presence etc.) (Hentout et al., 2019)

Multiple robotic systems and architectures are present
in industry, including serial robot manipulators (either with
fixed base or mounted on mobile platforms), and parallel
systems (for example delta robots and gantry or Cartesian
systems). A robotic manipulator is an arm-like structure that
ismainly used to handlematerials without direct contact with
the operator. A manipulator can be mounted on a fixed base,
and carry out specific tasks by moving its end-effector [e.g.
a PUMA robot (Jin et al., 2017)], or it can have a mobile
platform to move around. Robots have been utilised in the
manufacturing industry for decades to enhance production
speed and accuracy. Industrial robots traditionally operate
inside cages, isolated from humans for safety reasons. The
ability to have robots sharing the workspace and working in
parallel with humans is a key factor within the I5.0 concept
and is at the core of the smart, flexible factory.

In HRC, a robot may help its human co-operator carry
and manipulate sensitive and heavy objects safely (Solanes
et al., 2018) or to position these precisely by hand-guiding

(Safeea et al., 2019a, 2019b).Moreover, as robots are becom-
ing cheaper, more flexible, and more self-governing by
incorporating artificial intelligence, they may replace human
workers, while others, whichwork alongsideworkers—com-
plementing them, are called collaborative robots or cobots.

Cobots have now been implemented in many fields and
sectors. In production, they are used in manufacturing, trans-
portation (autonomous guided vehicles or logistics) and
construction (bricks or material transfers). Moreover, there
has also been a rise in cobot applications in the medical field
for various operations, including robotic surgery (Sefati et al.,
2021) (manipulation of needles or surgical grippers), assis-
tance (autonomous wheelchairs or walking aid) or diagnosis
[automatic positioning of endoscopes or ultrasound probes
(Zhang et al., 2020a, 2020b)] etc. The use of cobots in the ser-
vice sector is also rapidly increasing. Cobots have potential
for growth in the coming years for various applications like
companionship, domestic cleaning, object retrieving or as
chat partners (Nam et al., 2021; Zhong et al., 2021). Sectors
like military and international space exploration are also tak-
ing advantage of collaborative robots (Roque et al., 2016).
For instance, the Space Rider (a planned uncrewed orbital
lifting body spaceplane) spent months on international space
missions where it often encountered debris. Therefore, for
the inspection and thorough cleaning of the plane, a cobot
was used (Bernelin et al., 2019). Moreover, recently cobots
are also seen working actively as front-line workers during
the global pandemic ofCOVID-19 (Deniz&Gökmen, 2021).
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Manufacturing industries are eager to replace tradi-
tional robot manipulators with cobots due to their cost-
effectiveness, safety and intuitive user interfaces (Ma
et al., 2020). Cobots are especially affordable for Small
and Medium Enterprises (SMEs), which face difficulties
automating their manufacturing using traditional industrial
robots (Collaborative Robotics for Assembly and Kitting
in Smart Manufacturing, 2019). On the other hand, Multi-
National Corporations (MNCs) are equally interested in
deploying cobots to maintain competitiveness and ensure
their factories adapt to the next level of advancement in man-
ufacturing. For example, cobots have been introduced in the
Spartanburg site of BMW Group to improve the worker’s
efficiency by taking over the repetitive and precise tasks like
equipping the car doors from inside with sound or mois-
ture insulation etc. (Innovative Human–robot Cooperation in
BMW Group Production., 2013).

An industrial cobot is developed for direct interaction
with human co-workers to provide an efficient manufac-
turing work environment to complete tasks. Cobots can
assist humans in various industrial tasks like co-manipulation
(Ibarguren & Daelman, 2021), handover of objects during
assembly (Raessa et al., 2020) picking and placing mate-
rials (Borrell et al., 2020), soldering (Mejia et al., 2022),
inspection (Trujillo et al., 2019), drilling (Ayyad et al., 2023),
screwing (Koç & Doğan, 2022), packaging etc., on a man-
ufacturing line. They can also relieve human operators (Li
et al., 2022) and precisely and quickly lift and place loads
(Javaid et al., 2021). To perform these tasks, cobots need to
actively perceive human actions.

Perception of human actions and intentions is critical to
have a safe and efficient collaboration. This is achieved in
cobots in different ways. In some scenarios, the human oper-
ator guides the cobot manually using hand or facial gestures
and sometimes using voice commands (Neto et al., 2018).
In other cases, the cobots are equipped with their own sens-
ing modalities to establish awareness of their environment
(Han et al., 2019; Siva & Zhang, 2020), recognise objects
(Juel et al., 2019) and behavior of things (Berg et al., 2019;
Ragaglia et al., 2018; Sakr et al., 2020), or detect and avoid
collisions (Su et al., 2020; Zabalza et al., 2019) to ensure their
own safety and that of their co-workers. As in HRC human
workers work in very close proximity to cobots, the safety of
the human operators is of utmost importance.

To equip the cobot with perception to keep track of its
working space and the entities present in it, sensors are used.
Sensors comprise an essential part of robotics to accomplish
any task. In robotics, sensors are generally categorized in two
groups. First, internal or proprioceptive sensors, come fixed
within the robot for example, position sensors, motors, and
torque sensors at joints. These obtain information about the
robot itself. Second, external or exteroceptive sensors, for
example, cameras, laser scanners, and IMUs, which gather

information about the environment. The data acquired from
both type of sensors can be used to analyse the circumstances
of the workspace and judge the state of the robot, which, in
turn, helps to control and regulate the defined tasks. In a
collaborative environment, where humans are working side
by side with robots, one of the vital tasks is to enable the
robot to detect the presence of humans in its workspace.

Recent review studies in robotics focus on applications of
cobots (Afsari et al., 2018; Hentout et al., 2019; Knudsen &
Kaivo-oja, 2020; Wang et al., 2020a, 2020b), programming
methods used in collaborative environments for various pur-
poses (De Pace et al., 2020; Villani et al., 2018; Wang et al.,
2019; Zaatari et al., 2019), specific tasks like gesture recog-
nition (Liu & Wang, 2018), path planning (Manoharan &
Kumaraguru, 2018), the methods used for human–robot col-
laboration (Halme et al., 2018;Martínez-Villaseñor&Ponce,
2019; Wang et al., 2019, 2020a), or tools/medium-specific
systems like vision or inertial etc. (Majumder&Kehtarnavaz,
2021; Mohammed et al., 2016).

Li and Liu (2019) reviewed the standard sensors used in
industrial robots and a briefworking principle. They have fur-
ther discussed the applications in which these sensors have
been used such as HRI, Automated Guided Vehicles (AVG)
navigation, manipulator control, object grasping etc. Ogenyi
et al. (2021) presented a survey on robotic systems, sensors,
actuators and collaborative strategies for a cobot workspace.
The robotic systems are also discussed in detail under cate-
gories including collaborative arms, wearable robotic arms
and robot assistive devices. Ding et al. (2022) present an
overview of state-of-the-art perception technologies used
with collaborative robots, focusing on algorithms for fus-
ing heterogeneous data from different sensors. The existing
sensor-based control methods for various applications in a
human–robot environment have been discussed in a recently
published work by Cherubini and Navarro-Alarcon (2021).
The authors surveyed the sensor types, their integrationmeth-
ods and application domains.

The existing literature, discussed above, reviews various
aspects of human robot collaborative environment includ-
ing application of cobots, programming methods to detect
collision, specific tasks such as gesture recognition or path
planning, tools/medium-specific systems like vision or iner-
tial sensors etc. In terms of sensor specific literature, reviews
on standard sensors used in industrial robots or their appli-
cations in HRI are documented. In contrast to the existing
literature, this paper provides an in-depth review of sensors
and methods that have been utilised specifically in detection
and tracking of humans in an industrial collaborative envi-
ronment (with both fixed andmobile base cobots). This study
provides a complete overview of sensor types, models, and
locations (where they were mounted in the workspace) when
detecting the obstacle. Moreover, we discuss in detail the
pros and cons of each sensing approach and the emerging
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technologies for human detection and tracking. Due to the
versatile nature of the obstacle detection module, we limit
our review to manipulator workspaces in this study.

The rest of the manuscript is organised as follows: section
“Obstacle detection and collision avoidance in cobots”
describes the cobot systems available in the industrial domain
and also the importance of external sensors in completing
cobot tasks. Section “Sensors used for detecting obsta-
cles” discusses in detail the types of sensors presented in
the relevant literature. Section “Methods used for detect-
ing the human in a human–robot collaboration environment”
discusses and highlights the various algorithms used for
detecting humans in industrial collaborative environments.
Section “Discussion” discusses the limitations and advan-
tages of the various sensor modalities and briefly discusses
the research on sensor fusion and its benefits in this context.

Obstacle detection and collision avoidance
in cobots

The interest in HRC has increased vastly in recent years from
both the research and the industrial perspective. One of the
main reasons for that is the advancement in technology that
hasmade robot systems safer around human co-workers, typ-
ically using geometric design to limit pinching risks and force
calculation or estimation to detect collisions. With respect
to the robot itself, there are several ‘safe’ generations of
robots which allow collaborative work between the robot and
human workers. Rethink Robotics (https://www.rethinkrob
otics.com/) offers a 7 degree of freedom robot arm, Sawyer.
The key feature is that the joint motors incorporate in series
with an elastic element (a mechanical spring) to ensure that
the robot arm remains soft (flexible) to external contact even
in case of software failure. The collaborative robots from
Universal Robots (https://www.universalrobots.com/) look
like traditional industrial robots but are certifiable for most
HRC tasks according to the ISO 15066 (ISO/TS 15066:2016,
2016). They include several features such as, force detec-
tion and speed reduction if a human is detected by external
sensors. Kuka robotics (https://www.kuka.com/) has intro-
duced LBR iiwa (KUKA AG, 2021) which is a powerful but
lightweight robot with extremely sensitive torque sensors in
the joints. The torque sensors provide immediate informa-
tion regarding contact with the environment, which can be
used for avoiding unsafe collision.Whilemore recentlyKuka
robotics have complemented the LKBR iiwa with the LBR
iisy system (KUKA AG, 2024).

Moreover, almost every robot manufacturer now includes
cobots in their portfolio. For example, Fanuc launched its
CRX Collaborative Robot Series (Fraka https://www.fran
ka.de/), ABB group (https://global.abb/group/en) (dual-arm
robot), Yaskawa has Motoman HC10 (YASKAWA (https://

www.yaskawa.eu.com/)), or COMAU with its cobot AURA
(COMAU(https://www.comau.com/en/)).Most of these new
generations of robots offer maximum flexibility to be pro-
grammed even by thosewithout specialised robotics training,
having intuitive methods to teach the robot about its environ-
ment and surrounding obstacles (De Gea Fernández et al.,
2017).

However, it should be noted that cobots cannot be con-
sidered intrinsically safe because of their design features,
indeed prior to deployment the cobot is considered a partially
completed machine. For instance, a cobot will decelerate
and stop when the force limit due to collision with an
object is exceeded. However, the definition of the force
limit is application dependent. To ensure the system is safe,
time-consuming mechanical testing must be carried out to
demonstrate that any collision at any configuration in the
reachable workspace does not exceed the force and pressure
limits defined per body part and per collision type in ISO TS
15066. Additionally, these tests must consider any potential
tool and/or environmental changes. Thus, to improve system
productivity it is often imperative to implement an efficient
collision avoidance in a human–robot collaborative environ-
ment i.e., the obstacles need to be detected, and their motion
needs to be predicted to prevent contact occurring.

For this study, we have categorised the previous research
work into three categories, entirely simulated (simulated or
generated data and an augmented environment), partially
simulated (real sensor data but augmented environment) and
hardware implementation (real sensor data and real physical
environment). Moreover, in a robot workspace the obstacles
can be static/fixed (e.g. machine equipment) or these can be
dynamic (moving objects like human co-workers) (Majeed
et al., 2021). The three defined categories are detailed below
and shown in Fig. 2.

• Entirely Simulated (ES): a simulated version of the cobot is
used, in different scenarios, using pre-defined or recorded
data. For example, Safeea et al. (2020), presented a work
in which they have applied newton’s formula for collision
avoidance. The method was tested in a simulated environ-
ment where the obstacles and targets were assumed only
by the coordinate’s positions. Moreover, in another work
(Safeea et al., 2019a), Safees et al., calculated the min-
imum distance between obstacles and human operators
using QR factorization method. The minimum distance
evaluations thus help in efficient collision avoidance. In
another work, Flacco and De Luca (2010) presented a
novel approach to avoid collision by formulating a proba-
bilistic framework of cell decomposition using both single
and multiple depth sensors. The work was implemented in
a purely augmented environment using simulated data.

• Partially Simulated (PS): In this category, the data was
collected from real sensors while treated in a simulated
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Fig. 2 Three categories of
obstacle detection in an industrial
workspace containing a
manipulator

environment. For example, Yang et al. (2018) collected
multi-source data using Kinect and leap motion sen-
sors. The comprehensive surrounding information was
collected by fusing the vision data, using a point cloud,
and the operator’s current movement data (captured using
leap motion sensors attached to the worker’s hand). In this
category, the developed models are not tested on real man-
ufacturing robots, which would require further tuning and
testing when deploying in a real time environment.

• Hardware Implementation (HI): In this category, for effi-
cient collision avoidance, both dynamic and static obsta-
cles were detected using real data, and the experimentation
is also physically performed on a real robot. For example,
Safeea and Neto (2019) investigated the use of laser scan-
ners along with inertial measurement units (IMUs). Data
from both kinds of sensors was fused to find the position of
human worker. Further, potential field method was used to
avoid the collision between a worker and Kuka iiwa robot.

The use of external sensors monitoring the work-space
environment can facilitate the adaptation of classical robot
systems to collaborative environments by providing extra
layers of safety for human co-workers. Therefore, the main

focus of this paper is to review the third category listed above,
where real-time data is captured using different types of
sensing modalities, and the system is implemented in a real
industrial work-space. However, the second category (i.e.,
PS) is also discussed to some extent.

Sensors used for detecting obstacles

Sensors are of utmost importance for collaborative industrial
robots to complete their operations. In particular, when the
robot cannot be considered safe, due to for instance a danger-
ous end-effector, the use of external sensors and monitoring
of the shared work-space, can enable the system to be used in
a coexistence environment. Even as themanufacturing indus-
try increasingly introduces new safe cobot technologies, the
use of additional sensing modalities in the workspace pro-
vides additional information, thus providing an extra layer
of safety for human operators. For example, if the cobot has
a sharp object at its end effector, any collision with a human
operator will be very dangerous, likely exceeding the pres-
sure threshold even if contact force is minimal. In this case, it
is necessary to guarantee that no collision with a human can
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possibly occur. Furthermore, even in scenarios where contact
below the threshold is allowable, the robot must be stopped
on contact. This leads to reduced productivity as there is
usually a delay as the system must be manually restarted.
Hence, external sensors not only provide safety by avoiding
collision, but can also help to improve productivity.

Sensors acquire information from the shared human–robot
work-space on the state of the robot and the environment.
With the help of this information, the controller issues
instructions for the robot to complete the appointed tasks.
Sensor-based obstacle detection strongly resembles our cen-
tral nervous system (The Brain’s Sense of Movement, 2002)
and its origin can be related back to the servomechanism
problem (Davison & Goldenberg, 1975). For instance, in
image-based environment servoing (Cherubini&Chaumette,
2012; Perdereau et al., 2002) vision sensors are used to obtain
visual feedback to control the motion of the robot. Shared
work-space information can be acquired using different kinds
of sensing modalities in an industrial environment. In a
shared workspace there are two phases: pre-impact/collision
and post-impact/collision. Hence, the type of sensors also
can be divided into these two categories. In this section,
the type of sensors used in pre-impact/collision and post-
impact/collision are discussed. Examples of sensors used for
obstacle detection in a human–robot collaboration environ-
ment are shown in Fig. 3.

Sensors used in pre-impact/collision phase

Visual sensors

Visual sensors have evolved expeditiously over the past
few years. They are now being used in many fields like
autonomous vehicles (Guang et al., 2018); enhancing secu-
rity using face recognition (Kortli et al., 2020); detecting
abnormal behavior in scenes (Fang et al., 2021); and human
arm motion tracking in robotics (Palmieri et al., 2020) etc.
Visual sensing technology includes various camera types,
such as RGB cameras, hyper-spectral and multi-spectral
cameras and depth cameras (Li & Liu, 2019). Different types
of cameras provide diverse data. RGB cameras, the most
common in daily life, are designed to create two-dimensional
images that simulate the humanvision system, capturing light
information in three color wavelengths, i.e. red, green and
blue, and their combination (INFINITI ELECTRO-OPTICS
(https://www.infinitioptics.com/)). Depth cameras add dis-
tance information to simple 2D RGB images, thus creating
stereo imaging. According to their operating principle, these
can be categorised as RGB binoculars, Time of Flight, or
structured light sensors. Even though processing of data
captured from visual sensors can be time consuming and

complicated, still, these enjoy vast popularity due to the ben-
efits of being economical, convenient, and the vast amount
of supplied information.

The majority of the research literature on obstacle detec-
tion and avoidance in a robotic environment is basedonvision
sensors (Melchiorre et al., 2019; Mohammed et al., 2016;
Perdereau et al., 2002; Schmidt & Wang, 2014; Wang et al.,
2013). The camera may be fixed somewhere in the work-
space or may be mounted on some moving part of the robot.
Khatib et al. (2017) used a depth camera (Microsoft Kinect)
mounted on the EEF (eye-in-hand) or on the worker’s head.
They achieved a coordinated motion between a KUKALWR
IV robot and human in a ROS environment. However, in this
work threemarkerswere placed around the robot for continu-
ous camera localization and the detectionwas not real time. In
another work, Flacco et al. (2012) proposed a real time colli-
sion avoidance approach by calculating the distance between
the robot and possible moving objects. A Microsoft Kinect
depth sensor was used in this work which was mounted on
the top of the robot workspace. Moreover, Indri et al. (2020a,
2020b) and Rashid et al. (2020) used IP and simple RGB
cameras to acquire imaging data. However, in most of the
literature 3D or depth cameras have been used (De Luca
& Flacco, 2012; Wang et al., 2016). The work done in the
industrial field of humandetection usingvision sensors is pre-
sented in Table 1. Moreover, the work is categorized in terms
of the main method used to detect the human/obstacle from
the sensor data. Some of the methods, particularly Skele-
ton/Joints detection is used not only with vision sensors but
also with inertial sensors (section “Inertial sensors”), hence
those works are also presented in the table. The algorithms
are discussed further in section “Methods used for detecting
the human in a human–robot collaboration environment”.

Laser sensors

Due to the homogeneity, direction and brightness, lasers are
widely used in many fields for various applications (Dubey
&Yadava, 2008). Laser sensors usually consist of an emitter,
a detector, and a measuring circuit. They are mainly used to
measure physical quantities like distance, velocity and vibra-
tion. The main types are laser displacement sensors, laser
trackers, and laser scanners. The main fundamentals of mea-
suring laser range are: triangulation, time of flight (TOF) and
optical interference (Bosch, 2001). TOF refers to the time
from projecting to receiving the laser. TOF laser sensors are
one of the most used range finders, especially for objects at
long distances. The triangulation concept, primarily imple-
mented in laser displacement sensors, uses trigonometric
function and homothetic triangle theory to compute the dis-
tance to objects. Optical interference works on the principle
that the superposition of two light beams with distinct phases
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Fig. 3 Examples of sensors used
for obstacle detection in human
robot collaborative environment

will generate fringes with different brightness. It is mainly
employed in laser tracker sensors.

Huang et al. (2021) present a robotic disassembly cell
comprising two cobots and a human operator. A safety
laser scanner along with active compliance control was used
to achieve complicated disassembly operations with safe
human–robot interaction. In another safe human–robot col-
laborative work, Safeea and Neto (2019) used a 2D LIDAR
along with IMUs to actively avoid the collision of human
workers with the KUKA iiwa robotic manipulator arm. We
have only discussed few examples here, more details of laser
scanners being used in industrial environments, especially
for manipulators detecting the obstacles, are summarized in
Table 2.

Inertial sensors

Inertial sensors are one of themost widely usedmotion track-
ing sensors. These sensors are comprised of an accelerom-
eter, gyroscope and magnetometer, and the combination of
these three is mainly known as an inertial measuring unit
(IMU). IMU sensors are mostly placed on the body of human
operator, generally close to the joints (Safeea & Neto, 2019).
In the literature, there is wide use of IMU sensors in obsta-
cle detection in an industrial environment, as these sensors
are cheap (compared to other sensors) and fast. Moreover, as
IMU sensors can be attached to every joint or part of inter-
est, it can increase the overall effectiveness and performance
of the obstacle detection system (Glonek & Wojciechowski,
2017).

IMU is mostly used in combination with other sensors or
technologies to provide an extra layer of information. For
example, Corrales et al. (2008) used a GypsyGyro-18 IMU
sensor with a ubisense tag to track a human operator in the
workspace of P A-10 robotic manipulator arm. Digo et al.
(2020) used MTx IMUs with spatial (V120: Trio tracking
bar with 17 passive reflective markers) sensors to acquire
data from upper limbs of human operator for typical pick
and place movements in an industrial environment. Amorim
et al. (2021) used 2 IMUs with 6 FLEX3 cameras for the
pose estimation of a human operator working in a robotic

cell. Further details on the usage of IMU sensors in robot
obstacle detection are outlined in Table 3 and also in Table 4
which summarizes multi-modal sensor systems.

Other sensors: proximity, ultrasonic, radar and acoustic

Apart from the aforementioned types of sensors, some other
sensors have been utilized to some extent in the literature
to detect obstacles/humans in robot workspaces, namely
proximity sensors, ultrasonic sensors, acoustic sensors, and
magnetic sensors.

Proximity sensors detect an object’s presence without
coming in contact with it. Based on the fundamental opera-
tion of the sensor, they can be categorized as capacitive or
inductive. Capacitive proximity sensors can detect anything
that carries an electrical charge, while the inductive ones can
only detect targets that carry a magnetic charge. The use of
these types of sensors in dynamic obstacle avoidance is very
limited in the literature. Another common type of proxim-
ity sensor is the distance proximity sensor. These sensors
are used to detect the presence of objects within the sensing
area. Mostly the fundamental operational unit of these types
of sensors works on ultrasonic, infrared or radar waves. Sahu
et al. (2014) developed a customised sensor base compris-
ing of a force sensor, two capacitive proximity sensors, one
inductive proximity sensor, an ultrasonic sensor, and a tactile
sensor. The sensors are interfaced using a micro-controller
and work as an integral part of the robotic arm.

Ultrasonic sensors are primarily used to detect the obsta-
cle by estimating the object’s distance from the sensor base
by sending ultrasonic sound waves towards it and comput-
ing the returned echo time. Although these are small in size
and cheap in price, as these can only be used for short range
distances, these are mostly used in combination with other
sensors in a human robot collaborative environment. Dániel
et al. (2012) have used the combination of an ultrasonic
sensor and an infrared proximity sensor to avoid joint level
collision in NACHI MR-20 robot.

Similarly, radar sensors detect the presence of objects by
sending electromagnetic waves, and infrared sensors do the
same by sending the energy of infrared wavelength (Stetco
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Table 1 Summary of obstacle detection using vision and inertial sensors in hardware implementation category

Sensor Algorithms used for human detection/recognition with the manipulator used

Visual
background/foreground
isolation

Visual object
recognition

Skeleton/joints
detection

Marker based
detection

Other

Stingray F201B
(RGB)

KUKA LWR IV
(Cherubini et al., 2016)

Microsoft Kinect
(depth)

Baxter robot (Han et al.,
2018; Wang et al.,
2016), KUKA DLR
(Kaldestad et al., 2014),
KUKA LWR IV
(Cefalo et al., 2017; De
Luca & Flacco, 2012),
MOTOMAN Yaskawa
SIA5F (Costanzo et al.,
2022)

MOTOMAN
Yaskawa SIA5F
(Costanzo et al.,
2022)

KUKA LWR IV+
(Saveriano & Lee,
2014), GOOGOL
GRB3016 robot (Du
et al., 2018), ABB
dual-arm robot YuMi
(Zanchettin et al.,
2016, 2019),
Kawasaki RS005L
(Secil & Özkan,
2022), ABB IRB 140
robot (Ragaglia et al.,
2018), ABB robot
arm (Wu et al., 2017),
Franka manipulator
(Zhang et al., 2020a,
2020b), fixed base
manipulator
(Melchiorre et al.,
2019)

KUKA LWR IV
(Flacco et al.,
2012; Khatib
et al., 2017)

Zed2 StereoLabs
(depth)

UR-5 (Antão et al.,
2019)

Asus Xtion (depth) KUKA LBR iiwa (De
Gea Fernández et al.,
2017)

UR-10 (Hawkins
et al., 2013)

3D-MLI sensor KUKA DLR (Ahmad &
Plapper, 2015)

ORBBEC Astra
(depth)

Summit XL robot
(Kenk et al.,
2019)

AXIX 2xx (RGB) ABB IRB140 (Bascetta
et al., 2011), FANUC
ARC MATE 100iBe
(Robla et al., 2014)

Pioneer 3DX
(Indri et al.,
2020a)

Other (RGB) KUKA KR180 (Rashid
et al., 2020); Stäubli
RX130 (Fischer &
Henrich, 2009a, 2009b;
Kühn et al., 2006), ABB
robot arm (Wu et al.,
2017)

No robot (Digo
et al., 2020)

SNC-RZ50 camera
(RGB)

Fixed base manipulator
(Tan & Arai, 2011)

DMK 73/C CCD Stäubli RX130 (Henrich
& Gecks, 2008)

Logitech C100
(RGB)

ABB IRB120
(Rajnathsing &
Li, 2018)
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Table 1 (continued)

Sensor Algorithms used for human detection/recognition with the manipulator used

Visual
background/foreground
isolation

Visual object
recognition

Skeleton/joints
detection

Marker based
detection

Other

IMU (inertial) KUKA (Neto et al.,
2018), Franka
manipulator (Zhang
et al., 2020a, 2020b),
fixed base
manipulator
(Uzunović et al.,
2018), TIAGo robot
(Diab et al., 2020),
No robot (Amorim
et al., 2021)

Xsens motion
capturing system

UR5 (Tuli et al., 2022)

Optris PI 450
(thermal)

MOTOMAN Yaskawa
SIA5F (Costanzo et al.,
2022)

MOTOMAN
Yaskawa SIA5F
(Costanzo et al.,
2022)

The Sensor column details the type of sensor used to detect the human, the Method column indicates the method used to detect the human operator
from the sensor data, and with what type of manipulator in the workspace. The details of the methods are discussed in section “Methods used for
detecting the human in a human–robot collaboration environment”

Table 2 Summary of obstacle detection using single laser sensors in hardware implementation category

Sr. Sensor Manipulator Detection details References

1 VL53LOX TOF sensor chip Universal robots UR-10 fixed base TOF sensor ring (made of 8 sensor
nodes) was placed on 3 major
links of robot which can detect
humans from 0.03 to 1.2 m with
25° FOV

Kumar (2017)

2 Triangulation based laser scan
(model not mentioned)

PUMA 560 fixed base Laser scanners attached to robot
wrist which can detect presence
of moving obstacles within its
range

Sensor (1999)

3 Custom TOF sensor Universal robots UR-10 fixed base A custom ring made up of 8 TOF
nodes with each of 27° FOV on
the end affector of robot

Adamides et al.
(2019)

4 Laser scanner (model not
mentioned)

KUKA LBR iiwa fixed base (two
robots)

A safety laser scanner was used to
configure the protection zones to
ensure that the operator and the
robots were not near to each
other

Huang et al.
(2021)

5 BOD 63M-LA02-S115 ABB IRB 140 fixed base Cumulative kinetostatic danger
field of the robotic arm is defined
using a laser sensor on robot end
effector

Lačević et al.
(2013)

6 SICK TiM551 Universal robots UR-10 fixed base Three laser sensors used to create
a dynamic envelope around the
robot to detect the presence of
operator or environmental
changes

Long et al.
(2017)
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Table 3 Summary of obstacle detection using single other sensors in hardware implementation category

Sr. Sensor Sensor details Manipulator Detection details References

1 Inertial GypsyGyro-18 and
Ubisense tag

PA-10 fixed-base Inertial motion capture sensors
and Ubisense are used to
measure the orientation and
position of human body
limbs

Ramón et al.
(2008)

2 Proximity Custom made cuffs using
ToF and capacitive
proximity sensors

KUKA LBR iiwa
fixed-base

Proximity servoing methods
mainly based on quadratic
and sampling-based
optimization are used to
detect and avoid the obstacle

Ding et al. (2019)

3 Proximity Custom cuff circuit using
AD7147 capacitive sensor
chip

KUKA KR 6 AGILUS
fixed-base and universal
robots UR5 fixed-base

A customised sensor on the
robot wrist is used to detect
the distance of nearby
objects/humans from the
robot by mainly comparing
the current values to the
expected values

Hoffmann et al.
(2016)

4 Proximity Custom made capacitive
circuit (AD7147) with
Atmel ATTiny84
microcontroller

Universal robots UR5
fixed-base

A neural network is used to
calculate a correlation
between the measured
capacitance of sensor and the
distance of human hand

Poeppel et al.
(2020)

5 Proximity Infrared (IR) sensor Staubli RX60 fixed-base Robot arm is covered by IR
sensors that can sense any
object between 5 and 30 cm
distance

Wang et al.
(2007)

6 Proximity Sharp GP2Y0A21YK IR
LED sensor

ABB FRIDA fixed-base Distributed distance sensors
are placed on 17 places on
robot arm to evaluate the
danger field generated by the
robot with respect to the
obstacle

Ceriani et al.
(2015)

7 Proximity Sharp GP2Y0A02YK
distance sensor

ABB IRB 140 fixed-base Danger field is calculated
using 20 distance sensors on
robot arm

Avanzini et al.
(2014)

8 Proximity Custom Universal robots UR10
fixed-base

7 proximity sensors were
placed on robot arm to detect
the presence of human
within its range

Moon et al.
(2021)

9 RF Infineon BGT6 RF sensor Universal robots UR10
fixed-base

Radar mounted on robot flange
and Optitrack marks around
the sensor to obtain
reference measurements.
Further Lambertian
reflectance model and
z-buffer method was used to
acquire depth image and
reflection estimates

Stetco et al.
(2020)

10 Ultrasonic Microsonic sensors RV30-16 fixed-base and
RV20-16 fixed-base

Robot arm equipped with
ultrasonic sensors to detect
human in its range

Ostermann et al.
(2013)
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Table 4 Summary of obstacle detection using multiple sensors

Sr. Manipulator Sensor Sensor details Sensor fusion
algorithm

Sensors mounting
locations

References

1 KUKA iiwa
fixed-base

Inertial and RF
technology

5 IMUs (echnaid
Tech-MCS),
UWB
positioning
system (ELIKO
KIO)

Extended Kalman
filter

5 IMU at the human
upper body and
UWB tag in the
human pocket and 4
anchors around the
room

Neto et al. (2018)

2 KUKA iiwa
fixed-base

Vision and laser 3 ASUS Xtion Pro
live camera and
SICK LMS100
2D LIDAR

Novel sensor
based person
tracking based
on Kalman filter
(KF)

3 cameras covering
the whole
workspace, 2
LIDAR mounted on
opposite corners of
the table

De Gea Fernández
et al. (2017)

3 KUKA iiwa
fixed-base

Vision, and internal
sensors

Microsoft Kinect Data from the
camera and joint
angles was fused
using potential
field method

Camera was placed
2.346 m high from
robot on the side

Nascimento et al.
(2021)

4 KUKA iiwa
fixed-base

Vision RGB cameras and
projector

None 2 RGB cameras and a
monochrome
digital light
processing-
projector covering
the workspace

Vogel et al., (2011,
2013, 2017)

5 KUKA LWR 4+
fixed-base

Vision Motion camera None 8 motion cameras,
model not
mentioned

Gabler et al. (2017)

6 KUKA KMR
mounted on
mobile
platform

Vision and Laser Stereo camera,
Microsoft Kinect
depth camera
and Hokuyo
Laser range
finder

KF 2 laser finders at the
bottom of the
manipulator, 2
stereo cameras at
the top of the arm, 1
Kinect camera at
the top of
workspace

Lim et al. (2017)

7 KUKA KR180
fixed-base

Vision and laser RGB camera and
3D M8 LiDAR
by Quanergy

Selective fusion
based on state
machine

Both camera and
LIDAR was
mounted on the
work-cell

Rashid et al. (2020)

8 Staeubli RX130
fixed-base

Vision DMK 73/C CCD
cameras and
DFG/BW1 frame
grabbers

None 4 CCD cameras were
connected to two
frame grabbers

Henrich and Gecks
(2008)

9 Staeubli RX130
fixed-base

Vision 19k PMD camera Fusion of detected
objects from
both depth
images

2 PMD cameras are
mounted on left and
right corners

Fischer and Henrich
(2009a)

10 Staeubli RX130
fixed-base

Vision 19K PMD camera
and RGB camera

Data fusion (no
details given)

4 PMD cameras and
8 RGB cameras
covered the
workspace

Fischer and Henrich
(2009b)

11 Staeubli RX130
fixed-base

Vision and torque Firewire color
camera and F/T
sensor

Selective fusion 4 cameras covering
the workspace and
F/T sensor mounted
at robot’s wrist

Kühn et al. (2006)
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Table 4 (continued)

Sr. Manipulator Sensor Sensor details Sensor fusion
algorithm

Sensors mounting
locations

References

12 ABB IRB 140
fixed-base

Vision Microsoft Kinect
and ASUS Xtion

KF 2 different types of
cameras covered
the workspace

Ragaglia et al.
(2018)

13 ABB fixed-base Vision Microsoft Kinect
and an industrial
camera

KF Not mentioned Wu et al. (2017)

14 ABB FRIDA
fixed-base

Vision Microsoft Kinect None 2 Kinect mounted at
different angle
above the
workspace

Ding et al. (2013),
Zanchettin et al.
(2016)

15 ABB IRB140
fixed-base

Vision RGB camera
(AXIS 212)

Particle filter 2 AXIS 212 cameras
mounted on ceiling

Bascetta et al.
(2011)

16 Universal robots
UR5 fixed-base

Vision Kinect V2,
HoloLens and a
3LCD projector

None Projector and Kinect
mounted on the top
while HoloLens is
worn by operator

Hietanen et al.
(2020)

17 Universal robots
UR5 fixed-base

Vision, proximity
and laser

Depth camera,
laser range finder
and several
reflective
proximity
sensors (harp
GP2 Y0A21)

None Laser range finder
and depth camera
mounted at the top
of the workspace, a
sensor belt consists
of four proximity
sensors around the
robot

Kallweit et al.
(2015)

18 Universal robots
UR5 fixed-base

Vision and
ultrasonic

Kinect and
HS-SR04

None Kinect at top and
three ultrasound
sensors fixed at the
base of robot

Rosenstrauch and
Krüger (2018)

19 Universal robots
UR10 mounted
on a mobile
platform

Vision and torque Kinect and
Robotiq FT300
F/T

None Kinect mounted at
the mobile base and
F/T sensor on the
robot’s arm
(immediately after
the final wrist joint
and before the
gripper)

Limoyo et al. (2018)

20 Franka fixed-base Vision and inertial Kinect and
LPMS-B2 IMU

Nonlinear
optimization
solver is
proposed to fuse
the two data
streams

1 Kinect and 5 IMUs
(2 wrists, 2 elbows
and 1 hip)

Zhang et al. (2020a,
2020b)

21 Franka Emika
panda
fixed-base

Proximity and
inertial

LSM6DS3
iNEMO IMU,
VL53L1X
time-of-flight
(ToF) sensor

None 4 sensor units on
robot arm and unit
consisting of both
IMU and proximity
sensors

Escobedo et al.
(2021)

et al., 2020). One thing to note is that proximity distance sen-
sors (ultrasonic proximity sensor, infrared proximity sensor
and radar proximity sensors) and general distance sensors
(ultrasonic sensors, infrared sensors and radar sensors) work
in a similar manner but provide different output. The main
difference between these two is that proximity sensors sense

the presence of an object within a specific range, but do not
necessarily provide distance information. Distance sensors
detect the object and provide distance information. How-
ever, there are some sensors present in the market, like
the HC-sr04 ultrasonic sensor (Ultrasonic Distance Sen-
sor - HC-SR04 (5V). https://www.sparkfun.com/products/

123

https://www.sparkfun.com/products/15569


Journal of Intelligent Manufacturing

Table 4 (continued)

Sr. Manipulator Sensor Sensor details Sensor fusion
algorithm

Sensors mounting
locations

References

22 PUMA 762
fixed-base

Vision, microwave
and passive
infrared (PIR)

Panasonic
WV–CP240, MS
SEDCO model
D38 and PIR
sensor

Data fusion
algorithm based
on Demp-
ster–Shafer
Theory

2 analog RGB
camera above the
workspace, 2
microwave sensors
at sides and 13 PIR
sensors (8 on the
base, 5 on the
ceiling)

Lu (2005)

23 PUMA 762
fixed-base

Vision Point Grey
Dragonfly2
camera

None 2 cameras 2.6 m
above the floor on
the corners of the
base

Elshafie and Bone
(2008)

24 FANUC ARC
MATE 100iBe
fixed-base

Vision RGB camera
(AXIS 205) and
a range camera
(SR4000)

Decision level
fusion

Both cameras are
mounted above the
workspace

Robla et al. (2014)

25 NACHI MR-20
fixed-base

Ultrasonic and
proximity

Parallax’s PING)))
ultrasonic and
2Y0A21F08
(SHARP) IR
proximity

None 8 ultrasonic sensors
on the robot body
and 5 proximity
sensors on the
forearm of robot

Dániel et al. (2012)

26 GOOGOL
GRB3016
fixed-base

Vision and Inertial RGB-D camera
and IMU

Particle filter and
KF

Camera above the
worksapce, IMU
hand-held by
human operator

Du and Zhang
(2016)

27 TIAGo mounted
on mobile
platform

Vision and RFID Not mentioned None Tags attached to
objects for
visualization from
camera

Diab et al. (2020)

28 VALERI
mounted on
mobile
platform

Vision Stereo and TOF
camera

Details not given 2 stereo cameras and
1 TOF camera
covering the
workspace

Saenz et al. (2017)

29 COMAU racer
fixed-base

Vision Depth cameras None 3 cameras: ---model
not mentioned---

Makris and
Aivaliotis (2022)

30 DENSO, VS-050
fixed-base

Proximity ToF and
self-capacitance
combined
proximity sensor

None 24 pieces placed on
robot arm

Tsuji and Kohama
(2020)

31 Fixed-base
manipulator

Vision RGB cameras Particle filter 3 SNC-RZ50 camera
system

Tan and Arai (2011)

32 Not mentioned Inertial Tri-axial sensors ANN based
algorithm

19 tri-axial sensors
on different parts of
human arms

Uzunović et al.
(2018)

33 Universal robots
UR5 fixed-base

Vision Xsens motion
capture

None Eight marks on
human upper body

Tuli et al. (2022)

34 MOTOMAN
Yaskawa SIA5F
fixed-base

Vision Kinect, Intel
RealSense D435,
Optris PI 450
thermal camera

CNN based fusion
of depth and
thermal images

2 depth camera on
two sides top of
workspace, thermal
camera attached
with Kinect

Costanzo et al.
(2022)

35 ABB IRB120
fixed-base

Vision Logitech C100
(RGB)

None 2 cameras mounted
on two sides of
workspace

Rajnathsing and Li
(2018)
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15569), which can be categorised as both. A summary of
the usage of these sensors to detect obstacles in a robotic
environment is outlined in Table 3.

Multiple sensors

Just as humans use different sensing capabilities, robots also
benefit from multiple artificial senses to acquire informa-
tion about the environment. Acquisition of information from
multiple sensors is achieved in two ways:

• Multiple sensors of the same modality: such as mul-
tiple cameras or laser scanners to cover a wider area.
Research shows that if two or more sensors are scanning
a workspace, if one sensor is unable to cover a space (for
example, if it is setup in such a way that there are blind
spots or if the sensor fails for any reason), the other sensor
will compensate (Schmidt & Wang, 2014).

• Data from multiple sensors of different modality: such as
a camera and a LIDAR installed in a workspace (Kousi
et al., 2018). This is usually known as amulti-modal sensor
system. A typical obstacle detection system works on a
singlemodality (discussed in previous sections). However,
in complex environments, no single sensor modality can
handle different situations in real-time. For example, if a
system contains both a laser scanner and a camera and
the obstacle is out of the laser scanner range, the camera
can still detect it. Therefore, the use of various kinds of
sensors for the same operation increases the chance of
the task being done successfully. For example, Safeea and
Neto (2019) used laser and inertial sensors to calculate
the minimum distance between the human operator and
KUKA iiwa robot.

A summary table (Table 4) containing the studies incor-
porating multi-sensor or multi-modal systems to obstacles is
listed below.

Sensors used in post-impact/collision phase

Tactile (touch) and torque/force sensors

In most human–robot collaborative environments, when a
robot approaches a human, it reduces its speed. However,
many kinematic concepts should also be considered. For
example, when a robot is about to reach its singular con-
figuration, the angular velocity of its joints is exceptionally
high even though the tip is often hardlymoving (Frigola et al.,
2006). In these situations, the robot can be extremely dan-
gerous. Therefore, in this case, it is always better to reduce
the speed of every part of the robot (joints as well as end-
effectors), and in case of contact, a robot must minimise its
contact pressure and force.

Table 5 Summary of obstacle detection using single torque or tactile
sensors in hardware implementation category

Sr. Sensor Manipulator References

1 ATI-gamma 6D
force sensor
(on wrist)

Staübli RX60 robot
fixed-base

Frigola et al.
(2006)

2 Custom made
1536 tactile
sensors floor

KUKA KR60 L45
fixed-base

Vogel et al.
(2016)

3 Joint torque
sensors

Kuka iiwa LBR
fixed-base

Popov et al.
(2017)

4 Joint torque
sensors

KUKA LWR and
DLR III
fixed-base

De Luca et al.
(2006), Likar
and Žlajpah
(2014)

5 F/T sensor:
M8128 by SRI

JAKA ZU7
fixed-base

Li et al. (2020)

6 Joint torque
sensor

Mitsubishi PA-10
fixed-base

Lu et al. (2006)

7 Custom made
tactile skin to
wrap around
the robot arm

CORVUS
fixed-base

O’Neill et al.
(2015)

8 Custom made
tactile sensor

KUKA omnirobe
mobile base

Fritzsche et al.
(2016)

9 6D force/torque
(F/T) sensor

KUKA KR5 Sixx
fixed-base

Mariotti et al.
(2019)

For a robot to recognize contact, tactile sensors are used,
and in the case of force, torque sensors are used. These two
types of sensors are discussed in this section as both come in
contact with the obstacle/human operator in case of collision.
A summaryof these sensors used in an industrial environment
is given in Table 5.

Tactile sensors equip collaborative robots with touch sen-
sation and thus helps enhance the intelligence of the robot.
There are several types of these sensors, including capaci-
tive, piezo-electric, piezo-resistive, and optical (Girão et al.,
2013). In an industrial environment, tactile sensing technolo-
gies are mainly used for object exploration or recognition.
However, in the literature, these have also been used for safe
human collaboration. For example, Cho et al. (2017) used
a custom-made tactile sensor to grasp an irregular shaped
object while avoiding the collision with the cup holding the
object. O’Neill et al. (2015) also developed a custom stretch-
able smart skin, made of tactile sensors, wrapped around the
robot arm, so that it can intelligently interact with its envi-
ronment, particularly sensing and localizing physical contact
around its link surfaces. In anotherworkbyVogel et al. (2016)
a floor with 1536 tactile sensors was used in the workspace
of KUKAKR60 L45 to detect the dynamic obstacles/ human
workers as soon as they step on the sensing floor.
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A torque sensor converts a torque applied to a mechan-
ical axis to an electrical signal. Nowadays, most cobots
that are being developed, come with built-in torque sensors
in arm joints. DLR-III Burger et al. (2010), KUKA LBR
iiwa [57], UR5e Lightweight (https://www.universalrobots.
com/products/ur5-robot/) and many more come with built-in
torque sensors in their joints to detect any collision. In the
literature, some work is reported on detecting and avoiding
collisions using these built-in sensors. Popov et al. (2017)
used joint torque sensors of the Kuka iiwa LBR 14 R820 to
detect an obstacle. Along with only detecting the collision,
they have also calculated the point of contact where the colli-
sion happened. To evaluate their point of contact results, they
have used data from a 3D LIDAR and a camera as a ground
truth to estimate the performance and the true position of
collision.

Similarly, Likar and Žlajpah (2014) and Hur et al.
(2014) also reported work on detecting obstacles using the
robot’s joint torque sensors. However, the use of external
force/torque sensors for obstacle detection in a collaborative
environment is less common. In one study, Li et al. (2020),
used a torque sensor at the JAKA ZU7 robot’s bedplate to
detect collision. A novel method was proposed based on the
dynamic model that measures the force reaction caused by
the robot’s dynamics at its bedplate. In another work, Lu et al.
(2006), used a torque sensor on a wristband of robot to detect
collision.

Methods used for detecting the human
in a human–robot collaboration
environment

In this section the main algorithms used to detect/highlight
the human in a collaborative workspace are discussed.
Where a human and robot are working in close proximity
there are two general phases; Pre-Impact/Collision and Post-
Impact/collision.

Pre-impact/collisionmethods

In the pre-collision phase, collision avoidance is the primary
task and at least local knowledge of the workspace and the
location of obstacles is required. Therefore, like the sensing
modalities, the methods that are used in this phase also focus
on detecting the object of interest before it comes in contact
with the robot.

Visual background/foreground isolation

Background/foreground isolation is a generic process to dif-
ferentiate the background (workspace including the robot)
and the foreground (objects and humans). It can be done in

several ways, for example (Cefalo et al., 2017) uses a virtual
depth image of the workspace, including a robot. The robot
kinematics was used to move the virtual model to match the
real robot configuration, and a sequence of linear transforma-
tions was defined to obtain the same point and field of view
depth image from the Kinect camera. Furthermore, the vir-
tual depth image is subtracted from the real camera image to
cancel the robot and fixed space and build a map containing
only the obstacles.

Another way to isolate the background from the fore-
ground is to use a reference frame. A reference frame can
be any image without the unknown objects that need to be
detected. Rashid et al. (2020) uses a reference frame to detect
the humans in the workspace. Henrich and Gecks (2008)
utilizesmultiple images to create a reference image. That ref-
erence image is further used to calculate a difference image
by evenly subdividing the current captured image into non-
overlapping tiles of a grid, where each tile contains some
pixels.

Instead of using a fixed reference image, an alternative is
to use the previous frame or number of previous frames as a
reference and to detect the changed pixels/regions as objects
Kahlouche and Ali (2007) and Rea et al (2019) used optical
flow to identify the dynamic instants. Furthermore, Bascetta
et al. (2011) used a static camera to produce one image as a
reference for each time step.

This method is easy and straightforward in the scenario
where exact information about the obstacle is not required,
and the workspace remains static. Also, it is more suitable
when the focus is on detecting not only the human but also
other static objects that may come in the way of the robot.
However, one of the main limitations of this method occurs
when a frame contains overlapping objects. For instance,
Kühn et al. (2006) used the difference imagemethod to detect
obstacles. However, when the objects are lined up behind
each other, the algorithm treats these as one object and they
are projected in the same area in a difference image.

Visual object detection

Trained neural networks are being used to detect and locate
objects of interest within an image. Convolutional Neural
Networks (CNN) have been widely used as these are highly
successful in object detection due to their ability to automati-
cally learn features. Indri et al. (2020a) andKenk et al. (2019)
used You Only Look Once (YOLO) based object detector to
detect and track humans.

Furthermore, objects can be detected using distance-based
sensing modalities like laser, ultrasonic, proximity etc. With
these type of sensors, only the distance from the object can be
knownwithout identificationof theobject itself. For example,
Huang et al. (2021) used a safety laser scanner for configuring
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protection zones so that the human and robot do not come
close to each other.

Object detection models like YOLO are popular for their
speed and accuracy. Additionally, new objects outside the
training set can easily be added to the network using trans-
fer learning. Using YOLO with a depth camera enhances its
application, beyond object detection, to determination of the
object’s distance. However, the object detection models only
register the global position and orientation of a person. In a
collaborative environment it is also necessary to have knowl-
edge of the location of the human joints and especially how
near the hands are to the system. Existing networks such as
YOLO are not currently useful in this respect.

Skeleton/joints detection

Human–robot interaction in the industrial environment may
be dangerous, especially when human operators are working
in close proximity to robots. Therefore, not only the global
position and orientation of humans is required, but also the
precise localisation of joints/body parts. To detect human
joints, different sensors can be used such as vision, IMU,
motion capture systems etc. In terms of vision, mainly the
OpenNI library from Kinect is used for human skeleton esti-
mation (Zanchettin et al., 2016; Zhang et al., 2020a, 2020b).
There are also numerous vision-based pose estimation neural
networks likeOpenPose.OpenPose is an open-source system
for the detection of 2D multi-person body including joints,
that uses deep learning and part affinity fields that enable
these type of methods to achieve high accuracy while detect-
ing pose in real-time. Antão et al. (2019) usedOpenPosewith
COCO dataset library to detect the body of a human operator
working with a UR5 robot.

As well as vision systems, inertial sensors are widely used
to detect human body joints. The IMUs are placed on the
desired joints, which can then be tracked (Uzunović et al.,
2018; Zhang et al., 2020a, 2020b). For example, Neto et al.
(2018) placed five IMUs on the upper body of a human opera-
tor and kept track of joint motion using an extended Kalman
filter. Another way to capture human joints information is
by using Motion Capture (MoCap) systems. In MoCap sys-
tems, users wear tags or sensors near each joint of the body
and the system calculates each joint movement by compar-
ing the positions and angles between the worn tags/sensors.
Tuli et al. (2022) used an Xsens motion capturing system
with eight tags on human upper body to locate and track the
human position.

Skeleton/joints detection method is the safest solution
when human and robot are working very closely together,
as these can detect and track the various pertinent parts of
the human body such as head, hands, arms, torso etc.

Marker based detection

Another method that has been used in an industrial environ-
ment to detect a human operator is marker based detection.
In this method, human operators wear specific color clothing
or markers on their body which are detected and tracked by
receivers, such as cameras or Radio Frequency systems. Tan
and Arai (2011) adhered sewn colored patches on the opera-
tor clothes representing shoulder, elbows andhead.Diab et al.
(2020) attached RFID tags to the target object. Hawkins et al.
(2013) created bright colored gloves to allow the detection of
human hands by the vision system. Marker based detection
is quick and easy, however, it requires the human to wear the
tags, leading to dangerous scenarios if someone enters the
workspace without wearing dedicated markers.

Discussion

Sensors constitute a vital part of an industrial workspace
where humans and robotswork together. In particular, relying
simply on force-power limitation to ensure operator safety
has stifled the deployment of fenceless collaborative robots
in manufacturing. From Tables 1, 2, 3, 4, 5, it may be noted
that several research works involve a combination of dif-
ferent sensors. The primary reason behind this being the fact
that a combination of sensors of different modalities (or even
of the same modality) provides a more reliable detection by
complementing each other’s limitations. Moreover, as dif-
ferent types of sensors are useful for different purposes in
each application, in Table 6 we summarise some useful char-
acteristics of sensors specifically for the scenario of human
detection in a collaborative environment.

One of the main advantages of pre-impact/collision meth-
ods is that these are capable of detecting the human before
any contact takes place. Below we discuss pros and cons of
each sensor type outlined in section “Sensors used in pre-im-
pact/collision phase”.

• Vision sensors: the significant advantage of using vision
sensors is that they are non-intrusive and allow a robot
to perform various tasks using only one sensor. How-
ever, like any other safety related system, implementing
redundancy through multiple or multimodal sensors is
imperative to ensure safety in case of any sensor failure.
Moreover, vision sensing modalities not only have diffi-
culty producing robust information when facing cluttered
environments, as light conditions can easily interfere with
the visual results, but they also place a high computational
burden on the system when using advanced vision algo-
rithms for stereo matching and depth estimation.

• Laser sensors: laser scanners are fast, accurate in scan-
ning, and can detect objects at a significant distance, but
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Table 6 Direct sensing properties of different sensors used for detecting/avoiding obstacles in a human robot collaborative environment

Sr. Sensor Range/distance Position Velocity Size Color

1 2D vision sensor No Yes Yes Yes Yes

2 3D vision sensor Yes Yes Yes Yes Yes

3 2D laser sensor Yes Yes No No No

4 3D laser sensor Yes Yes No Yes No

5 Radar sensor Yes Yes Yes No No

6 Tactile sensor No No No Yes No

7 Inertial sensor (mounted on the object) Yes Yes Yes No No

mostly these sensors, especially for 3D scanning, are quite
expensive and require high computational power. These
also provide a low number of images per second.

• Inertial sensors: inertial sensors provide data with good
precision if used for a short time, but as time goes by, the
error accumulates. Moreover, they only work if the human
is wearing them and therefore cannot be used in detecting
humans who may accidentally enter the robot manipulator
workspace without being fitted with sensors.

• Proximity sensors: proximity sensors are low cost, have
low power consumption, and high speed. However, these
cover a limited range and can be easily tempered by envi-
ronmental conditions like temperature etc.

Post-collision sensors are used to ensure minimal injury
to a human operator if a collision occurs. Cobots equipped
with only these types of sensors must operate at low speeds
and with low force when a human is present. Additionally,
reliance on force-power limitation requires assurances that
the limits respected throughout the workspace, a process that
typically requires testing. The pros and cons of these sensors
are discussed below:

• Tactile sensors: tactile sensors can detect an object even
when a vision sensor cannot due to an occluded sur-
face. Although tactile sensors are getting more and more
attention, their performance is not yet very reliable. The
development of these sensors requires advancement in var-
ious technological fields like electronics, materials etc.
Therefore, despite these sensors having significant poten-
tial, there is a long way to go for these to be successfully
used in obstacle detection modules of cobots.

• Force sensors: force sensors only trigger when an object
comes in contact; therefore, these are not ideal for avoiding
an obstacle.

Along with using multiple kinds of sensors in a system, it
is also important to note where these sensors will be installed
in the workspace. A sensor must be placed in such a way that
it covers the maximum area/angle of the robot workspace.

There is no defined location or position to install each kind of
sensor. In the literature, researchers have proposed different
locations to enhance the system’s efficiency. For example,
Perdereau et al.2002 used 5 IMU sensors and placed these
on the upper body of a human (two at each forearm, two at
each upper arm and one at the chest), while Digo et al. (2020)
used 7 IMU sensors, one at the table for reference and six on
the human body (one at right forearm, one at right upper arm,
two at both shoulders, one at sternum and last one at pelvis).
Therefore, in Table 4 we also list the location of installed
sensors in each study.

This review of the literature was conducted up to January
2023 and 171 paperswere identified as relevant to the topic of
external sensors for object detection in the robotic manipula-
tor environment. Of these, 76 papers satisfied the criteria of
hardware implementation as described in section “Obstacle
detection and collision avoidance in cobots”. Overall, from
this review, we can summarize that the use of vision sensors
(either single or in combination) dominateswith about 41.3%
usage in the literature. The use of other sensors, discussed
in this article, whether these were used alone or in a multi-
sensor system, is presented in Fig. 5. Moreover, if we make
a comparison of systems where either a single sensor is used
or a combination of these, then we can conclude that the use
of multiple sensors (51%) is fairly equal to the use of a single
sensor system (48.7%), as shown in Fig. 4. In multi sensors,
mainly multiple vision sensors are used but when it comes
of different modalities vision with laser, vision with inertial
are used most as compared to other combinations. Further,
if we focus on single sensor systems, again the vision sensor
dominates, having been used in 40% of the relevant studies.

Multi-modal sensing systems aim to get the best out of
different sensors. However, using external sensors in a sys-
temmeans increasing the price and computational cost; thus,
adding more sensors adds extra levels of complexity (Wang
et al., 2020a, 2020b). The best solution is to utilise opti-
mal mathematical and statistical methods to achieve the best
possible accuracy with minimal cost. This requires efficient
coding, and algorithms which can make optimal use of noisy
data from low cost sensors without a high computational
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Fig. 4 Multiple/multi-modal sensors vs single sensors used for obstacle detection in a robotic manipulator workspace

burden. A recent review (Ding et al., 2022), indicates that
the main algorithms which have been used so far in the lit-
erature for robot perception are stochastic algorithms such
as the Kalman filter and particle filters. Researchers have
also explored artificial intelligence based algorithms includ-
ing fuzzy logic and neural networks etc., however to date the
AI based approaches are not as mature in terms of accuracy
or computational cost.

For the specific task of detecting a human in workspace,
various kinds of algorithms are used in literature mainly
using vision sensors. From the review, we can summarize
that mainly the background/foreground method (41.0%) is
used to isolate the human operator or any dynamic mov-
ing obstacle from the static environment. The second most
used method is skeleton/joints detection (37.2%) using both
vision and inertial sensors. Figure 5 illustrates the percent-
age of research works using each method to detect humans.
Moreover Tables 2, 3, and 5, detail methods and algorithms
used when vision sensors are excluded.

Conclusions

In this study, a comprehensive review of sensors for human
detection in a robotic manipulator industrial environment
is presented. We have grouped the literature review into
three categories: entirely simulated (both the data and the
environment is simulated), partially simulated (real data but
simulated environment), and hardware implementation (both
data and environment is real). Focusing on hardware imple-
mentation, a range of different sensor modalities have been
implemented on a wide range of industry-standard manip-

ulators. From the review, it can be concluded that the most
used common sensor technology for obstacle detection is the
vision sensor, and specifically depth cameras, due to the rich
information they provide about the environment. However, a
major drawbackof using avision sensor is that it has difficulty
in producing robust information when facing cluttered envi-
ronments and it also places a high computational burden on
the system. To overcome this limitation of a vision sensor and
to get more accurate information (especially distance) in any
kind of environmental condition, laser sensors have been pro-
posed. Laser sensors provide fast and accurate information
but these tend to be expensive, especially 3D laser sensors.
Tactile sensors can be useful in aiding the robot in grasping
tasks but are of limited application in obstacle detection and
avoidance. Inertial sensors are particularly useful for detec-
tion and tracking of humans in the robot workspace, but the
major limitation of these types of sensors is that these have
to be worn by human operators and cannot protect a human
who may unintentionally enter the workspace for example.
Many works have used multiple sensors for enhanced envi-
ronment perception, but this also increases the complexity
and the cost. Therefore, future research should also focus
on methods to not only improve the reliability and accuracy
of the system but also to reduce the cost and computational
burden of the perception system.
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Fig. 5 External sensors used in reviewed articles for obstacle detection in a robotic manipulator workspace and breakdown of most common vision
based object detection techniques
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