
Journal of Intelligent Manufacturing
https://doi.org/10.1007/s10845-024-02340-3

These technologies can be used to discover failure causes, 
optimize product performance outcomes, and enhance pro-
duction efficiency (Kusiak, 2017).

Meanwhile, certain companies are facing situations such 
as unsteady demand and shortened time-to-market outcomes 
in recent years, leading to new requirements in factory 
design (Tao et al., 2018; Tao & Zhang, 2017). For example, 
as a way to address the above situations, high flexibility is 
required at production facilities, as are rapid improvements 
of assembly lines. To respond flexibly to market conditions 
during the production planning process, flexible changes 
and improvements in factory layouts are required to suit the 
circumstances (Tliba et al., 2022). At this time, new designs 
or redesigns of factory layouts must consider various future 
situations to ensure profitability in all cases, as shown in 
Fig. 1 (Dombrowski & Ernst, 2013).

In general, to design or improve an assembly line, com-
panies use various types of tools suitable for each stage, 
such as optimization solutions and simulation environments 
for verification, and rely on the experience of experts at each 
stage, as shown in Fig. 2 above (Kim et al., 2019). These 

Introduction

As internet and communication technologies (ICTs) such as 
big data, machine learning, digital twins, and edge comput-
ing develop in the era of the fourth industrial revolution, 
the manufacturing industry is becoming more advanced by 
applying them in a variety of ways (Lim et al., 2020; Zhuang 
et al., 2021). Various manufacturing companies are attempt-
ing to build their own smart manufacturing system by com-
bining ICTs (Redelinghuys et al., 2020; Kim et al., 2020). 
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Abstract
In the era of the fourth industrial revolution, various internet and communications technologies (ICTs) are being applied 
to manufacturing systems. Based on these technologies, many companies utilize smart manufacturing systems to opti-
mize the design and operation of their lines and to diagnose failures. To build and/or improve production lines, various 
computer-aided engineering (CAE) tools such as optimization solvers and simulation tools for validation are required. 
In addition, experts depend on their experience or utilize numerous trial and error processes, implying that a large time 
investment is required obtain the best layout design, without any guarantee that the result is in fact the best. Therefore, 
the paper proposes an integrated intelligent layout design framework that automatically derives an optimal layout accord-
ing the requirements of the layout. The proposed framework uses mixed integer linear programming, simulation-based 
optimization, and digital twin to perform processes such as assembly line balancing, cell/buffer optimization, and layout 
planning sequentially and repeatedly to derive an optimal layout. By applying this, it is possible to automatically derive 
the optimal layout design considering limited resources and physical constraints. In addition, it can contribute to improv-
ing productivity and work efficiency at manufacturing sites.
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tools support them by testing different variants in different 
scenarios, such as discrete-event simulations of the logistics 
(Dombrowski & Ernst, 2013). Therefore, much time and 
effort are required to derive the optimal layout, and there is 
no guarantee that the results will be the optimal case suit-
able for production planning or the actual environment.

If we look at the scope of layout design broadly, it can 
encompass all logical and physical steps of assembly line 
balancing, cell/buffer optimization, and physical layout 
planning, as shown in Fig. 2 above. Although many stud-
ies of layout designs have been conducted in the past, the 
focus is mostly on solving only one problem among the 
overall steps above. In other words, researchers have yet to 
define an overall layout design process that is not standard-
ized and that organically integrates each step. Therefore, an 
integrated design framework that encompasses the entire 
factory layout design phase is required.

Therefore, this paper proposes an intelligent factory lay-
out design framework that automatically derives an optimal 
layout according to the conditions of an assembly line or a 
goal of production planning. The proposed framework auto-
matically creates and optimizes layouts by repeating the 
steps of alternative design, validation, and improvement by 
integrating the tasks previously performed by each expert 
using individual solutions, as shown in Fig.  2. The alter-
native design includes three stages in detail: assembly line 
balancing, cell/buffer optimization, and the physical layout 
arrangement. In addition, corresponding strategies of linear 
optimization, discrete event simulation, and digital twin 
techniques are utilized to complete these steps. Through the 
proposed research, anyone can easily and quickly design a 
layout by standardizing and automating the layout design 

process of the factory assembly line, a process that requires 
much time and effort.

The remainder of the paper is organized as follows. Sec-
tion  “Preliminaries” describes the preliminaries and Sec-
tion  “Intelligent layout design framework” proposes the 
intelligent factory layout design framework. A case study 
that applies the proposed framework is described in Sec-
tion  “Application”. Finally, Section  “Conclusion” con-
cludes the study.

Preliminaries

Prior to describing the proposed approach, this section 
briefly deals with preliminaries and related works on the 
topic of layout design. As mentioned earlier, several power-
ful commercial tools already exist in the production domain, 
such as PlantSim (Siemens, 2022), Automod (Rohrer and 
McGregor, 2002), FlexSim (Nordgren, 2003), and DEL-
MIA (Dassault Systèmes, 2022). The tools have convenient 
and advanced libraries for productivity analyses and visu-
alization tools using 3D. Many studies are being conducted 
on factory layout planning using them (Lin et al., 2014, 
Leiber et al., 2022, Kovács & Kot, 2017, Hadi-Vencheh 
& Mohamadghasemi, 2013). As well as the theoretical 
research, various application cases such as simulation-based 
digital shipyard construction (Woo & Oh, 2018), assembly 
line optimization (Ben-Arieh & Grabill, 2008), and facil-
ity layout optimization (Roux et al., 2008) are also being 
studied. The optimal layout was modeled by reflecting the 
physical constraints of the actual factory, and the optimal 
results were derived through simulations in the studies. 

Fig. 1  Various layout design requirements
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However, only physical factors were considered, assuming 
that assembly line balancing and the logical arrangement 
have already been completed. Therefore, it is not possible to 
consider the aspect of assembly line balancing with the ini-
tial information. In addition, because the stage before cell/
buffer optimization required for the assembly process is not 
considered, the usability is significantly reduced in the early 
line design stages.

That is, it is essential to solve the assembly line worker 
assignment and balancing problems with work and resource 
information (e.g. worker, task, work station) in the initial 
stage of layout design. This is also one of the traditional pro-
duction optimization problems and has long been studied by 
many researchers (Miralles et al., 2007, Shin et al., 2019, 
Araújo et al., 2012). Generally, mixed-integer linear pro-
gramming (MILP) and heuristics are used to develop math-
ematical models for the optimal balancing of the assembly 
line to suggest line candidates. The established models can 
be analyzed with commercial or open-source solvers for 
linear optimization problems. However, because these stud-
ies focus on logical optimal arrangements, physical aspects 

such as the buffer length, cell shape, and layout arrangement 
are not considered.

Meanwhile, the optimal arrangement of available 
resources within the available space of the factory is the 
final step of the layout design. This step, called facility 
layout planning (FLP), has also been studied using vari-
ous techniques. The purpose of FLP is to arrange the layout 
optimally in consideration of adjacency and obstacle avoid-
ance aspects as well as resource arrangement rules, while 
also minimizing logistics costs (Esya and Santoso, 2020). 
Many researchers have studied this using techniques such 
as genetic algorithms (Azadivar & Wang, 2000; Besbes et 
al., 2020; Ye et al., 2023) and other algorithms (Azevedo et 
al., 2017, Banerjee et al., 1994, Guan et al., 2019, Ariafar 
& Ismail, 2009), depending on the type of problem to be 
solved. In addition, with the development of machine learn-
ing in recent years, many cases applying it have been con-
ducted (Klar et al., 2021; Sun, 2022). However, contrary to 
the previous studies mentioned above, they only focus the 
physical aspects of the factory for the optimal arrangement 
and do not consider the logical optimization phase.

Fig. 2  Concept of the intelligent layout design framework
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Intelligent layout design framework

Figure 3 shows the overall structure of the proposed intel-
ligent layout design framework. It is largely composed of 
three steps: assembly line worker assignment/balancing, 
cell optimization, and the layout arrangement. The design 
alternatives produced through this framework are evaluated 
according to various evaluation criteria, and all steps are 
sequentially and iteratively performed until the criteria are 
achieved. Then, optimal layouts are automatically derived. 
This section describes the details of the proposed frame-
work, including the applied techniques, the input/output of 
each step, and the interface for integrating all steps.

Assembly line worker assignment & balancing

The first step of layout design is to assign and balance assem-
bly line workers optimally by utilizing the initial informa-
tion. First, to configure an assembly line that produces 
products, information about precedence, process times, and 
resources is required as the initial information. Precedence 
refers to the preliminary task that must be done before pro-
ceeding with the main task, and process time is the working 
time required to complete the task. Resource information 
such as resource types and the number of detailed subtasks 
required to perform each main task is also required. Using 
this information, line designers must initially determine the 
number of physical stations constituting the line and the 
resources to be put into the work (worker/machine). Then, 

In addition, there are papers that utilized the digital twin 
for factory design (Guo et al., 2019, 2021). They used the 
digital twin to design the interior and layout of the factory, 
but it was used simply for physical arrangement with the 
logical design already completed. Also, a study was con-
ducted that applied not only physical design using digital 
twin but also logical design in Zhang et al. (2017). Logical 
optimization and even physical optimization using digital 
twins were performed, but only a case study for a specific 
line were performed, and a framework for general assembly 
lines was not provided.

As noted above, previous studies are focused on solving 
and improving one problem at each stage. However, to the 
best of our knowledge, there has been no study that defines 
the overall layout design process and that organically inte-
grates each step. Also, it is not easy to graft and organically 
connect each technique by reflecting the actual factory situ-
ation. Therefore, this paper proposes an intelligent layout 
design framework that encompasses all design stages by 
reflecting all product, work, resource information, and fac-
tory information. This strategy can advance the factory lay-
out design problem through the complementary cooperation 
of digital twin models, a core technology in Industry 4.0, as 
well as traditional linear optimization and simulation-based 
optimization with a discrete-event simulation environment. 
Through this, it is possible finally to complete a framework 
that integrates the layout design process from the beginning 
to the end.

Fig. 3  Overall structure of the intelligent layout design framework
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within an assembly line considering line balancing aspects 
to meet the required production conditions. The established 
model can be analyzed with commercial or open-source 
solvers such as Gurobi or CPLEX for mixed-integer linear 
programming (MILP). Figure 4 shows the overall process of 
solving the assembly line worker assignment and balancing 
problem. This includes examples of a simple initial dataset, 
a MILP model, and the optimization process result.

Table 1 presents several parts of a sample dataset show-
ing the task time, precedence, and required resources for 
each task of an assembly line that produces refrigerators. In 
this paper, the detailed roles of the tasks are omitted. After 
the number of stations to configure and the number of work-
ers to allocate are set using this dataset, the MILP model 
proposed above is analyzed using Gurobi. Table 2 shows the 
simple results of the first step through the optimization pro-
cess with only sample input data. This represents the result 
of configuring three to nine stations for the task in Table 1 
and assigning the maximum number of workers, which is 
ten in this case. The result shows that the optimal assem-
bly consists of two parallel jobs at seven stations, requiring 
a total of eleven resources. At this time, the product cycle 
time of the line is determined to be the value having the 
longest cycle time at the configured stations, and the LOB 
of the line is calculated according to the common LOB for-
mula. Figure 5 presents the result of this first step using a 
procedure graph.

tasks within the station must be allocated and the number of 
resources required for each task must be specifed (Kim et 
al., 2019). Subsequently, the expected throughput and line 
of balance (LOB) can be calculated according to the cycle 
time of the entire line by checking the cycle time per sta-
tion according to the resources allocated to each task. Origi-
nally, the line designer repeats this process empirically to 
determine alternatives with shorter cycle times and higher 
LOBs as the initial solution. This manual work takes a long 
time, and it is difficult to derive the most optimal alterna-
tive. In addition, there is some difficulty in performing the 
line design step in consideration of work-time deviations 
between processes that contain a task bundle.

Therefore, it is necessary to develop a mathematical 
model that minimizes the cycle time so as automatically to 
provide an optimal alternative (Miralles et al., 2007). This 
model can assign each task and worker to a workstation 

Table 1  Initial work information for a refrigerator assembly task
No Task Task time

(sec)
Precedence # of resource Task group

1 Task 1 34.4 - 1 worker -
2 Task 2 38.6 1 2 workers -
3 Task 3 64.6 2 1 worker -
4 Task 4 65.4 3 1 worker -
5 Task 5 62.0 4 1 worker -
6 Task 6 9.5 5 1 machine -
7 Task 7 14.6 6 1 worker -
8 Task 8 10.8 7 1 worker -
9 Task 9 68.3 8 1 worker -

Fig. 4  Process of assembly line worker assignment & balancing
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cell, such as the call method, the standby positions of the 
parts, the length of the buffer inside the cell, and the cell 
assignment priority levels, among others.

Among them, the cell type is one of the most important 
factors to consider. With regard to a parallel cell as a result 
of the first step above, it can actually have various forms 
depending on the characteristics of the task. In other words, 
it is necessary to model the parallel process by reflecting the 
rules related to the characteristics of the process, product, 
equipment, and other factors.

For example, in the results of Fig. 5, station 3 to station 
5 can be composed of two-stage parallel cells. It can be 
built as a single parallel cell containing all three tasks from 
task 3 to task 5 but can also be devised as three parallel 

Cell/buffer optimization

Cell optimization

After the first optimal worker assignment is completed, the 
second step is carried out using this result as the input. This 
is the stage of optimally arranging the logical assignment 
result in a concrete form that can be placed on an actual line 
including conveyors, converters, workstations, etc. For the 
actual arrangement of an assembly line, a range of variables 
must be considered according to the characteristics of the 
product. These variables include not only the cell type but 
also variables related to several characteristics within the 

Table 2  Work assignment & balancing result
No Station # of Stations # of Resource Task Total

time
Cycle time

1 Station 1 1 1 Task 1 34.4 34.4
2 Station 2 1 2 Task 2 38.6 38.6
3 Station 3 2 1 Task 3 64.6 32.8
4 Station 4 2 1 Task 4 65.4 34.7
5 Station 5 2 1 Task 5 62.0 31.0
6 Station 6 1 1 Task 6 9.5 34.9

Task 7 14.6
Task 8 10.8

7 Station 7 2 1 Task 9 68.3 34.2

Fig. 5  Procedure graph of worker assignment & balancing
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shown in the figure, in addition to the common parallel cell, 
there are various cell types, such as a block cell, a one-sided 
wingbody cell, and a two-sided wingbody cell, among oth-
ers. In other words, by simulating and analyzing all possible 
combinations for all parallel cells, it is possible to derive 
an optimal cell type among them. Because the assembly 
cells can be modified into various forms by reflecting the 
characteristics of the company/business/product, it is neces-
sary to model appropriate cell types after identifying these 
characteristics for improved cell type optimization. It is also 

cells containing only one task each. Alternatively, it can be 
composed of a combination of a parallel cell with two tasks 
and a parallel cell with one task. In this way, because the 
result of the worker assignment can consist of various com-
binations of parallel cells, all of these combinations must 
be considered in the cell type optimization stage. Among 
these combinations, let’s check out a parallel cell contain-
ing all three tasks in one cell. Although it has a single logi-
cal arrangement, it can use various forms for the physical 
arrangement in a factory. Figure 6 shows examples of cell 
types in which a two-stage parallel cell can be placed. As 

Fig. 6  Examples of various cell types
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simulation-based optimizations are undertaken by adjusting 
the buffer length between all stations based on the product 
size.

The table inside Fig.  7 shows how the performance 
changes depending on the presence or absence of buffers 
when the deviated working time is taken into account at this 
line. Due to congestion in the absence of a buffer between 
stations, it has a high tact time and shows a low capacity. 
Conversely, when assigning unlimited buffers, good per-
formance can be realized theoretically, but because it is 
impossible actually to arrange the tasks due to a physical 
limitation, it is important to find an optimum level with the 
highest efficiency given the minimum amounts of resources. 
As shown in the table, with the optimal buffer, the productiv-
ity is very high compared to when there is no buffer despite 
not adding a small buffer compared to an unlimited case.

To obtain the optimum solution in the minimum amount 
of time, the problem should be solved iteratively where, dur-
ing each iteration, the solution moves closer to the optimum 
solution (Nguyen et al., 2014). Such methods are referred 
to as simulation-based optimizations, and the second step 
described above uses them as a solution. They include rank-
ing and selection methods (Choi & Kim, 2017), heuristic 
methods, and response surface methodologies depending on 
the problem to be solved (Wortmann, 2019). In this study, 
heuristic methods, specifically genetic algorithms, are used 
to find a good solution in less time compared to traditional 
methods. This method is a metaheuristic approach inspired 
by the process of natural selection, relying on operators 
such as mutation, crossover and selection (Mitchell, 1998). 
The simulation model required for the application of such 
an algorithm can be modeled using PlantSim, a powerful 
manufacturing modeling and simulation tool for discrete-
event simulations.

In this paper, a simulation model that can reflect vari-
ous cell types and their characteristics is created, and a 

necessary to manage various modeled cell libraries through 
the database.

Meanwhile, for each cell type, it is necessary to optimize 
the characteristics inside each cell mentioned above. One of 
the variables inside the cell is the call method, which deter-
mines whether to use the push or the pull strategy when each 
station requests a product. The location where the product 
is waiting before entering the station, the length of the con-
veyor between the stations in a parallel cell, and the pres-
ence or absence of each station’s buffer are also variables 
to consider. In this paper, only the call method and the con-
veyor inside the cell are reflected; all others will be con-
sidered in future work. Cell optimization is completed by 
undertaking the optimization of all cell types and variables 
for all combinations of parallel cells with the worker assign-
ment results.

Buffer optimization

After the optimization of individual parallel cells is com-
pleted, it is necessary to assign the buffers between the sta-
tions across the entire line. At this time, it is important to 
optimize the physical characteristics of the buffer, i.e., the 
length of the buffer, and the cell type and the shape of the 
entry/exit conveyor should also be considered. To reflect 
the actual field in the simulation, it is important to consider 
deviations in the working time, and in this case, allocating 
the optimal buffer greatly affects the performance. Figure 7 
illustrates the necessity of buffer optimization through the 
previously assigned assembly line. The assembly line in 
Fig. 5 is a logical design that assumes no buffer and does 
not take into account deviations. At this time, if the devia-
tion of the working time for each task is considered, a buffer 
is essential to prevent blocking between stations. Therefore, 
a buffer with an appropriate length should be positioned 
between the stations to maximize productivity. To do this, 

Fig. 7  Example of a productivity increase through buffer optimization
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Layout planning

The final step is for layout planning, in which the physi-
cal information of the factory is received and the alterna-
tives derived in the previous stage positioned in the actual 
factory. This physical arrangement of the assembly line 
can significantly affect the productivity. At this time, it is 
necessary to consider the physical constraints of the plant, 

module that automatically executes a genetic algorithm is 
built using the model. Then, this module is run to create sev-
eral near-optimal layout alternatives preferentially. Among 
them, several proper layouts are automatically derived by 
comparing the layout constraints and performance indexes. 
Figure 8 shows the results after the execution of the second 
step using the results of the first step. These results are used 
as input for the final step.

Fig. 8  Detailed process and cell/buffer optimization result
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results can vary depending on changes in the factory layout. 
First, Fig. 10(a) and Fig. 10(b) show the initial factory lay-
out and planning results to be placed in that layout, respec-
tively. At this time, if a rack is added to the initial layout, the 
layout planning result as shown in Fig. 10(c) is derived, in 
which the direction of the line is changed because the same 
arrangement used before is impossible. Next, if an unused 
space is added to this layout, a valid planning result cannot 
be derived, as shown in Fig.  10(d), as logical line results 
cannot be physically placed in the current layout.

Additionally, in addition to this simulation-based opti-
mization method, faster layout planning is possible using 
reinforcement learning (Kaelbling et al., 1996). In order to 
apply this approach to layout planning, the environment for 
reinforcement learning is defined as the placement area and 
unusable spaces are designated as they were before. Also, 
the agent is defined as objects to be placed, such as stations, 
buffers, and cells, and the action is defined as where from 
among four directions to place the next object in the current 
state. The reward is received after each object is placed. If 
the object is placed in an unusable space, it will receive a 
negative infinite reward and will also receive a low reward 
when the adjacency is high or the direction of the line is 
changed. The defined model is repeatedly learned through 
an algorithm such as Q-learning (Sutton & Barto, 2018) 
until the cumulative reward is maximized. At this time, it 
can be seen that this is an optimal layout, because maxi-
mizing the reward means minimizing overlap with unusable 
spaces, the degree of adjacency, and the bending of lines.

Application

Usage analysis

In this section, a simple assembly process is applied to the 
framework proposed in Section  “Intelligent layout design 
framework”, and the results are analyzed. Also, the contri-
butions of the proposed work are explained. As mentioned 
in Section “Introduction”, according to the various require-
ments of manufacturing sites, use cases of this framework 
can be divided into three types: new layout suggestions, lay-
out extensions, and layout remodeling cases, as shown in 
Fig. 11. Depending on the use case, the framework can be 
applied in the following way.

The first is when a new line is needed when developing 
a new product or building a new factory. In this case, new 
line alternatives should be proposed using work informa-
tion and factory information. The example described pre-
viously while proposing a framework corresponds to this 
case. The second is a case where there is an existing line, but 
the line must be expanded because an increase in production 

such as obstacles, columns, unused spaces, free space for 
workers, and passageways. Also, various characteristics 
such as adjacency between resources, fixed locations of spe-
cific equipment, and logistics flows can be considered. For 
layout planning, as mentioned above, in-depth studies are 
being conducted to improve efficiency rates, including those 
focusing on nesting algorithms and machine learning. How-
ever, because this paper proposes an overall framework, it 
focuses solely on avoidance planning on the assembly line 
rather than increasing the performance by considering a 
range of variables in this layout planning stage using digi-
tal twin model of actual factory layout. Factors other than 
avoidance planning will be considered in future work. When 
undertaking layout planning, information about alternative 
lines, which are the results of the second step, is needed. 
This information includes not only the optimized line struc-
ture but also physical information about the station/con-
veyor/product size required for actual planning. In addition 
to this, layout information, including the size of the layout 
to be placed and the aforementioned physical constraints, 
is required. After that, it is necessary to build a digital twin 
model for the factory layout using this information.

First, in the layout planning stage, in order to use the 
optimized line as the input, it is converted into attribute data 
tables including the sequence number, object sizes, object 
types, input/output locations, and safety areas, as shown in 
Fig. 9. At this time, the aforementioned physical informa-
tion is also reflected in the attribute data. Also, with regard 
to parallel cells, the assumption is that they form a single 
unified object. Through this process, a table including both 
logical and physical information about alternative lines is 
completed. Next, based on the completed input table, the 
first to last objects are sequentially placed in the factory dig-
ital twin until all objects are placed. At this time, the input 
layout can be gridded in terms of the unit size and can be 
divided into usable spaces and unusable spaces including 
obstacles.

The first object is placed at a random starting point; 
after the current object is placed, placement is basically 
attempted in the current direction. After the current object is 
placed, the next object is placed in the current direction by 
default. At this time, by checking the overlap between the 
expected position of the next object and the unused spaces 
in the layout, it is decided whether the next object should be 
placed as it is or in a different direction. Nevertheless, if it is 
not possible finally to arrange all objects in the current lay-
out, the placement step is repeatedly attempted while chang-
ing the starting point. Through this process, the result of the 
physical arrangement of the assembly line is automatically 
derived in the layout, as shown in Fig. 9. It basically reflects 
the avoidance of unusable spaces and the securing of a 
safety area. Figure 10 also shows that the layout planning 
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used in Sect. “Intelligent layout design framework”. In other 
words, after automatically deriving the optimal layouts 
only with the initial work information, expected capacity, 
LOB, operation efficiency and line structure can be easily 
predicted. In addition, it is possible to analyze how much 
productivity will increase when a line is expanded by add-
ing a process like Case 2 or when a process is improved like 
Case 3.

Contribution and evaluation

The following is the contribution effect of the proposed 
framework. It can be seen that an optimal alternative can be 
generated through the optimization process within a short 
time using only the initial assembly information. Although 

or an additional process is required. In this case, the first 
stage is performed only on the extended portion, and cell/
buffer optimization is performed by integrating the exist-
ing line information with this result. The optimal layout 
can be completed by reflecting the physical constraints by 
performing layout planning of the third stage on the com-
pleted extension line through the previous process as shown 
in the middle of Fig. 11. The last case is one in which an 
existing line must be reorganized for LOB and productivity 
improvement, or the line must be modified due to a process 
improvement. Such cases can be performed again from the 
first stage of line balancing with modified work information, 
such as process changes as shown in the bottom of Fig. 11.

Table 3 shows the analysis results of each optimal layout 
derived for these three use cases based on the information 

Fig. 9  Layout planning process
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framework proceeds sequentially and repeatedly in three 
steps: assembly line balancing, cell/buffer optimization, and 
layout planning. Using this sequence, it is possible easily 
and automatically to design the optimal factory layout with-
out entrusting it to experts. Moreover, it is also possible to 
improve the productivity because the framework derives the 
optimal design considering limited resources and physical 
constraints. In addition, it can be applied to manufacturing 
enterprises to support manpower for factory construction 
and design efforts, and it can be used to improve work effi-
ciency by spreading not only to major companies but also 
to medium-sized manufacturing companies that do not have 
professional manpower for layout design tasks. Through 
this, the makespan for decision-making among various 
departments required for factory construction/operation 
will be reduced and reusability will increase, as it is easy 
to modify/manage the layout alternatives continuously. In 
other words, the framework can be utilized as a decision-
support system.

This paper also demonstrates the effectiveness of the 
framework by showing an example of a simple line design 
for actual product assembly using the proposed framework. It 
provides several layout alternatives to users by sequentially 
proceeding with each of the two stages of physical design. 

it is not directly comparable to designing by experts, and 
given that the time can vary depending on the computing 
environment, this alternative can in general significantly 
reduce the time and effort required design an assem-
bly line. It can also ensure sufficient production and effi-
ciency through optimization. Hence, it can thus help with 
decision-making activities at actual manufacturing sites. In 
cases where it is difficult to apply the results directly due 
to various constraints, it is possible actually to apply them 
through additional modifications by experts depending on 
the situation.

Quantitative evaluation results for this are shown in 
Table 4. Because there is no method that can be compared 
directly, we simply compare the method of consignment 
to layout experts commonly used in the manufacturing 
company. This result is based on real data obtained in the 
company.

Conclusion

This paper proposes an integrated intelligent layout design 
framework that automatically derives an optimal layout 
according to the requirements of the layout. The proposed 

Fig. 10  Various planning results according to layout changes
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However, in this case, the result may differ from those when 
optimizing by considering the second and third stages at the 
same time. Therefore, as future work, it is planned to study 
a new method that optimizes both steps at the same time 
to overcome this limitation. Also, it is planned to increase 
the performance of each stage by reflecting actual factors in 
the field more succinctly. For example, for layout planning 
in the third stage, algorithms that consider complex situa-
tions such as adjacency and logistics flows will be studied. 
In addition, the framework will be expanded to make it uni-
versally applicable to various manufacturing types.
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