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Abstract
Quality control through defect minimization has been the central theme in plastic injection molding research. This study
contributes to this course through the introduction of an alternative predictive modelling strategy for injection molding
defects. Through multi-stage design of experiments, Computer Aided Engineering simulations, and intelligent algorithms,
the study developed a warpage and shrinkage defects predictive model based on processing parameters. In the factorial
design of experiment stage, the mains effect sizes, interaction effect sizes, and ANOVA were used for process parameter
screening. Next, a Taguchi L25 design was used for the generation of predictive model training data. Fuzzy logic models were
then developed to predict warpage and shrinkage defects based on given process parameters and the predictive capability of
triangular and Gaussian membership functions was investigated. A pattern search algorithmwas utilized to tune the developed
predictive models. The resulting predictive model had root mean square error (RMSE) of 0.04, standard error of regression
(S) of 9.6, and coefficient of determination (R2) of 98.7% for shrinkage prediction. The respective model metrics for warpage
prediction were 0.005, 1.2, and 96.3%. The triangular membership function model had lower RMSE indicating a higher
predictive accuracy whereas the Gaussian membership function model had lower S indicating a higher model reliability.
Tuning of the predictive models using a pattern search algorithm reduced the RMSE and S and increased the models’ R2. The
approach can be adopted by plastic processing industries to predict and control such (and related) defects for quality products
and maximum productivity.
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Introduction

Plastic injection molding (PIM) is one of the most widely
used plastic manufacturing methods due to its ability to
form complex and geometrically accurate parts on a large
scale. It has since been of great interest globally with several
researches carried out in attempts to optimize and improve
the performance of the production process, technology, and
equipment involved. Owing to vast areas of application for
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plastic injectionmolded products, quality control has become
an essential aspect of the plastic injection molding process
(Chen & Turng, 2005). Shrinkage and warpage defects are
among themajor defects in plastic injectionmolded products
which largely affect the performance, aesthetic appearance,
and assembly of the plastic part components (Zhao et al.,
2022). Major strategies for the reduction of shrinkage and
warpage defects in plastic injection molded parts involve
the selection of polymer material with suitable properties
(Huszar et al., 2015), part geometry design (Fischer, 2013),
injection mold design (Fu & Ma, 2016) and optimization of
process parameters (Mohan et al., 2017). Of these methods,
material selection, part geometry design, and mold design
are normally determined at the initial design stages and may
not be subject to changes. However, process parameters such
as temperatures and pressures are normally dynamic in most

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-024-02331-4&domain=pdf
http://orcid.org/0000-0001-6116-5587


Journal of Intelligent Manufacturing

molding environments and may be subjected to changes as a
result of influences from environmental conditions (Fischer,
2013).

Despite greater efforts tominimize shrinkage andwarpage
in plastic injection molded products through optimization
of process parameters, the defects still exist as a result of
interference of the molding process with several related and
independent process parameters (Zhao et al., 2022). The
complexity and non-linearity between the process variables
and quality indices have resulted in the use of advanced
data-driven models for process modeling and optimization
(Rosato & Rosato, 2012). Artificial intelligence has emerged
as a powerful tool and revolutionized quality control in the
plastic injection molding process in terms of defect pre-
diction. Case based reasoning is one of the many artificial
intelligence technologies utilized for injection molding pro-
cess parameter setting and has been adopted by many studies
owing to its high retrieval accuracy and sensitivity (Khosra-
vani & Nasiri, 2020; Yu et al., 2022). Moreover, Silva et al.
(2023) introduced a real-time data collection and process
classification methodology based on a zero-defect manu-
facturing platform. Through predictive modelling based on
Artificial Neural Networks, the authors managed to both
monitor the injection molding process deviations and pre-
dict molded part defects. This resulted to an improvement
in the injection molding machine overall equipment effec-
tiveness, a reduction in machine downtime, and a reduction
in non-conforming parts thereby contributing to sustainable
production through zero-defect manufacturing. Based on the
positive results and insights obtained by Silva et al. (2023),
data-based defect predictive modelling is a good way to
accelerate the use of artificial intelligence for injectionmold-
ing process improvement and hence is the main context of
this study.Modelling and optimization of the injection mold-
ing process through the use of artificial intelligent algorithms
is thus a theme of current studies and provides a yardstick
for quality control.

Through the integration of design of experiments (DOE),
Computer Aided Engineering (CAE) numerical simulations,
and intelligent algorithms, warpage and shrinkage defects in
injection molded parts have been predicted and controlled.
CAE modelling has revolutionized manufacturing processes
as it has enableddesigners and engineers to simulate, analyze,
and optimize various aspects of the product manufacturing
process. It has become an indispensable part of modern man-
ufacturing and has driven advancements in major fields such
as plastic processing (Zhou, 2013), machining (López De
Lacalle et al., 2005), and welding (Ai et al., 2023a, 2023b;
Ai et al., 2023a, 2023b). The utilization ofCAEmodelling for
manufacturing process improvement has been recommended
by several studies such as Lopez De Lacalle et al. (2005)
amongother earlier visionaryworks. In theirwork, they intro-
duced the concept of the use of virtual machining simulation

utility during amilling program preparation stage for an opti-
mumcutting force and a collision-free tool-path. Remarkable
results obtained from the study with respect to significant
reduction in defective machined parts and 20% reduction in
machining time positions CAE as the center of manufactur-
ing thereby inspiring subsequent studies such as this study on
the applications of various aspects of computer aided engi-
neering to manufacturing. Numerical simulations through
CAE have thus become popular, especially for simulating the
occurrence of defects such as shrinkage and warpage which
have proven difficult tomeasure and quantify experimentally.

Yin et al. (2011) developed a back propagation neural
network model for predicting and optimizing warpage in
an injection molded part. The study utilized CAE analysis
data to train the neural network model. Song et al. (2020)
presented a warpage and shrinkage predictive modelling
strategy usingCAE, neural networks, and genetic algorithms.
The authors compared the predictive capabilities of Neural
Networks, backpropagation genetic algorithms, and support
vector algorithms thereby establishing that support vector-
based model predictive capability was high with higher
accuracy. Chen et al., (2023a, 2023b) carried out optimiza-
tion and predictive modelling of warpage using statistical
analysis. The study obtainedwarpage data throughCAE sim-
ulations and developed a warpage predictive model using
linear regression. A study by Li et al. (2019) developed three
predictive models based on the response surface model to
map relationships between various design parameters and
three quality indices such as warpage, volumetric shrink-
age, and residual stress. Ahmed et al. (2022) proposed a
warpage prediction method using ensemble machine learn-
ing and compared the predictive capabilities of random forest
and gradient-boosted predictive models. The study estab-
lished that the random forest algorithm performed better than
gradient gradient-boosted model for warpage prediction.
Similarly, Abdul et al. (2019) and Altan (2010) developed
shrinkage predictivemodels using a hybrid Taguchi andArti-
ficialNeuralNetworks. The studies used experimental data to
train the predictive models. Chen et al. (2020) developed an
experimental on-line dimensional variation detection system
based on multilinear regression and artificial neural network
models and established that neural networks performed bet-
ter than multilinear regression in defect detection. Using
Taguchi DOE and CAE, Kumar et al. (2020) developed a
warpage and shrinkage defects prediction model based on
linear regression and utilized a particle swarm algorithm
to optimize the developed predictive model. Wang et al.
(2015) carried out warpage optimization using a Kriging
model which was used to formulate a functional relation-
ship between the maximum warpage objective and selected
process parameters. Moreover, Gao and Wang (2008) used
the Kriging model to optimize process parameters to reduce
warpage in plastic injection molded product and the result
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from the study showed a significant reduction in warpage
with the utilization of the Kriging model algorithm. There-
fore, of the majorly used intelligent models in predictive
modelling of warpage and shrinkage defects, the use of arti-
ficial neural networks stands out both in process parameter
optimization and quality prediction while other models such
as genetic algorithms, Kriging model, particle swarm, and
other hybrid models are majorly used for optimization.

Although significant strides have been made in literature
about warpage and shrinkage defects predictive modelling,
most studies have utilized a single-stage DOE for obtaining
the model training data. Other studies that carried out pro-
cess parameter screening concentrated on the parameters’
mains effects only during the screening stage (Tsai & Luo,
2017). However, with the non-linear feature of the PIM pro-
cess coupled with complex process parameter interactions,
there is a need to explore multi-stage DOEs to enhance a
thorough parameter space exploration during the screening
stage and establish both the mains effect and critical interac-
tions betweenprocess parameters and their effects towarpage
and shrinkage defects. This way the most influential param-
eters could be identified and used for model development.
Studies report that parameter screening without considera-
tion of interactions for some complex systems may result
in chances of wrong statistical inference, missing out on
important parameters, and biased predictive estimates (Phoa
et al., 2009). The first contribution of this study is that, con-
trary to the previous studies, this study considers parameter
interaction effect sizes alongside the mains effects during
the process parameter screening stage. That is, the selection
of significant process parameters to be used for predictive
model development has been guided by significant mains
effects aswell as interaction effects to enhance a robustmodel
that incorporates the complex relationships among process
parameters. Previous related defects predictive modelling
studies have been based on single-stage designs of exper-
iments with unclear parameter screening methods. Other
studies that considered multi stage design of experiments
carried out parameter screening based on mains effect only.
Therefore, this study has shown that consideration of interac-
tion effect sizes, which have not been considered in previous
related studies, adds to the robustness and accuracy of pre-
dictive models.

In addition, various expert systems have been developed
to aid in the prediction and control of warpage and shrink-
age defects in the PIM process (Zhao et al., 2022). However,
there is limited information in the literature regarding the
application of fuzzy inference systems coupled with intel-
ligent optimization algorithms in the prediction and control
of these defects. The application of fuzzy inference systems
to warpage and shrinkage predictive modelling could pro-
vide knowledge of the causal relationships among process
parameters and the defects through the fuzzy rule interface.

This could provide more insight into the system and serve as
a decision-support tool for effective monitoring and control.
Moreover, previous studies have successfully explored appli-
cations of fuzzy logic models in the plastic injection molding
process for purposes such as quality evaluation and process
parameter optimization (Moayyedian et al., 2018) and barrel
temperature control (Hu&Wu, 2022). Therefore, the second
contribution of this study is that it introduces a warpage and
shrinkage defects predictive modelling strategy using fuzzy
logic integratedwith a pattern search optimization algorithm.
The utilization of fuzzy logic in defects predictive modelling
has not been widely explored despite its strengths such as the
incorporation of expertise in rule base generation and provi-
sion of transparent prediction. The study introduces the use
of a pattern search algorithm to guide the machine learning
process through tuning and has shown that the incorporation
of conventional algorithms to predictive modelling enhances
model performance. To the best of our knowledge, limited
warpage and shrinkage predictive modelling studies have
considered parameter interaction effect sizes during parame-
ter screening and investigated the applicability of tuned fuzzy
logic models for the defects prediction.

A two-stage DOE was used which involved a detailed
mains and interaction effects analysis in the parameter
screening stage and the incorporation of multiple parame-
ter levels in the second DOE stage to enhance a more robust
predictive model design. The results of this study provide an
alternativewarpage and shrinkage predictivemodelling strat-
egy and form a wider contribution toward effective defects
control in the plastic injection molding process.

Method

This study used a combination of the design of experiment,
CAE simulations, and intelligent algorithms for warpage and
shrinkage defect modelling. In this research, the numerical
data used for predictive model training and validation were
obtained usingMoldex3D®R22CAEsoftware and the fuzzy
predictive model developed and tuned using MATLAB®
Fuzzy Logic Designer Toolbox. The three main phases of the
study included finite element model development for CAE
simulations, design of experiments and numerical simula-
tions for data collection and predictive model development.
Figure 1 illustrates themethodology used for the study. Upon
the development of a two-cavity injectionmold as a finite ele-
ment model, the model was verified through a comparison
of numerical density computations with analytical computa-
tions at the same process parameters. Numerically obtained
datawas validated through comparison ofmains effect trends
with experimental mains effect trends reported in the litera-
ture.
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Fig. 1 Study design
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Table 1 Polymer material properties

Family name HDPE

Grade name HDPE 2001 PBK44

Producer Total chemicals

Processing Temperatures 190–250 °C

Solid density 0.954 g/cm3

Yield strength 24 MPa

Flexural modulus 1.0GPa

Poisson’s ration 0.4

Finite element modelling

Finite element model development

In this study, a two-cavity injection mold for making a
standard-size packaging bottle cap was developed as a finite
element model used for injection molding process modelling
through numerical simulations. A bottle cap was selected for
this study due to its complex shape of regions with vary-
ing wall thickness, ribs and provisions for undercuts. The
largest product diameterwas 30mm, longest height of 12mm
with a maximum thickness of 2.03 mm and a minimum
thickness being 0.03 mm. The selected cap product material
for this study was a commercially available grade of high-
density polyethylene produced by Total Chemicals under the
commercial nameHDPE 2001 PBK44. This material is com-
monly used for making plastic packaging products and some
of its major properties are highlighted in Table 1 based on
Moldex3D Material Library.

Injectionmoldmodelling entailed the definition and sizing
of the core and cavity plates, feed system and cooling system.
Feed system design involved the specification of features
such as gates, runners and sprue which achieves the objective

of conveyance of the polymer melt from a molding machine
nozzle to the cavities. This study adopted a 5-layer boundary
layer mesh configuration as used by Zhang et al. (2019) who
established a good qualitative consistency between simula-
tion and experimental results. Figure 2 shows the part 5-layer
boundary layer mesh configuration used for the part. The
configuration shows a tetra layer sandwiched between two
5-layer boundary layers.

Surface mesh was generated for the part while solid mesh
was generated for the part, feed system, cooling system and
mold base. Different forms of surface mesh node seeding
and solid mesh were applied to the part, feed system, cool-
ing system and mold base depending on the criticality and
contribution of the section for the analysis. Figure 3 shows
the finite element model of the injection mold components.
Node seeding and specification of the surface mesh size were
modified around themold base, part edges and for sections of
the part with critical features such as the lower regions with
thinner wall sections. Tetrahedral mesh elements with four
computational nodes were used in the tetrahedral layer while
prismatic elements with six computational nodes were used
in the boundary layers. For curve meshing, hexahedral-type
mesh with five inner layers and five outer layers was used for
the feed system and cooling system. Tetrahedral mesh ele-
ment type was used for the mold base solid mesh due to their
flexibility and efficiency in capturing heat transfer which is
the sole contribution of the mold base in analyses.

To determine the best mesh size for the analysis, a mesh
convergence test was carried out to determine the extent of
the effects of variation in mesh sizes to warpage (Yang et al.,
2022). Warp simulations were carried out while refining the
mesh properties from a default size of 2 mm to 0.2 mm.
Figure 4 shows the results of the systematic mesh refinement
process indicating the maximum total displacement obtained
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Fig. 2 Sectional view of the part
showing a 5-layer boundary layer
mesh configuration

Fig. 3 Finite Element Model of
the mold
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Fig. 4 Systematic mesh refinement results showing the variation of
warpage with mesh size

at the various mesh element sizes. The figure shows signifi-
cant changes in part warpage with a reduction of mesh size
from 2 mm to 0.4 mm. Beyond 0.4 mm, a further reduction
in mesh size would just increase the simulation time with-
out significantly affecting the warpage result. A mesh size
of 0.4 mm was thus used for the rest of the part, 0.2 mm

for lower regions of the part with thinner cross sections at a
boundary layer offset ratio of 1.

Governing equations

Numerical analysis was based on the flow of the polymer
as governed by Eqs. 1, 2 and 3 derived from the principles
of conservation of mass, energy and momentum respectively
(Kennedy & Zheng, 2013).

Dρ
Dt � −ρ∇ · u# (1)

ρ ∂v
∂t � ρg − ∇ p + ∇ · ηD − ρv · ∇v# (2)

ρCp
(

∂T
∂t + v · ∇T

) � βT
(

∂P
∂t + v · ∇P

)
+ ηγ̇ 2 + k∇2T #

(3)

where ρ is the density, t is the time, u is the speed vector,
v is the specific volume, g is the gravitational acceleration,
P is the hydrostatic pressure, Cp is the specific heat, T is
the temperature,β is the heat expansion coefficient, k is the
thermal conductivity and γ̇ is the shear rate. Viscosity of the
polymermeltwasmodelled usingmodified cross exponential
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viscosity model given by Eqs. 4 and 5 (Lin et al., 2022).

η(γ̇ , T , P) � η0(T , P)

1+
(

η0 γ̇

τ∗
)1−n # (4)

η0(T , P) � Bexp
(
Tb
T + DP

)
# (5)

where η0 is the zero shear viscosity, γ̇ is the effective shear
rate, τ ∗ is the reference shear stress, n is the power law index,
P is the pressure T is the temperature and the other material
constants given by B, D and Tb. The position of the polymer
melt front during the molding process was determined based
on a volume fraction function governed by the transport Eq. 6
(Yang et al., 2004).

∂ f
∂t + ∇ · (u f ) � 0# (6)

where;

f � 0 at the air phase, f � 1 at the polymer melt phase

0 < f < 1 at melt f ront location

Pressure Volume Temperature (PVT) behavior of the
material during end of fill and packing phase was modelled
using modified Tait Eq. 7 (Chang et al., 1996).

V (P , T ) � V0(T )
[
1 − C · ln

(
1 + P

B(T )

)]
+ Vt (P , T )#

(7)

where;

V0(T ) �
{
b1L + b2LT , T > Tt , meltstate
b1s + b2sT , T ≤ Tt , solidstate

B(T ) �
{
b3Lexp

(−b4LT
)
, T > Tt , meltstate

b3sexp
(−b4sT

)
, T ≤ Tt , solidstate

Vt (P , T ) �
{

0, T > Tt , meltstate
b7exp

(
b8T − b9P

)
, T ≤ Tt , solidstate

T � T − b5, T t � b5 + b6P

b1L � b1s f or amorphous polymers

b1L > b1s f or crystalline polymers

C � 0.0894

Standard three-dimensional residual stress models given
by Eqs. 8 and 9 were used to model shrinkage and warpage

(Kennedy & Zheng, 2013).

σ � C
(
ε − ε0 − α�T

)
# (8)

ε � 1
2

(
∂ui
∂x j

+
∂u j
∂xi

)
# (9)

where σ is the stress tensor, C is the stiffness tensor, ε is the
strain tensor, u is the displacement tensor and α is the CLET
tensor.

Boundary and initial conditions were described by
Eqs. 10, 11, 12, 13, 14 and 15 (Huszar et al., 2015).

−→u � 0; T � Tw; ∂P
∂n � 0atz � ±h(at the cavi t y wall )#

(10)

∂
−→u
∂z � ∂T

∂z � 0atz � 0(at the centerline )# (11)

P � 0(at the f low f ront)# (12)

Pinlet � P(x , y, z, t); Tinlet � Tmelt (at the inlet)# (13)

T ime f ill � 0.13s# (14)

Teject � 112.35◦C ; Tair � 25◦C(at ejection)# (15)

where u is the inlet velocity, Tw is mold temperature, P is
pressure and t is time.

The model was based on assumptions such as the melt
flow considered an extended laminar flow of incompressible
fluid, inertial force ignored due to high viscosity, heat con-
vection in the thickness direction ignored, heat conduction in
the direction of melt flow lower than heat convection hence
ignored and physical properties such as density and viscosity
at any point in the fluid assumed to vary smoothly over space
and time (Kennedy & Zheng, 2013). In this study, a numer-
ical solver based on 3D Finite Element approximation was
utilized due to its suitability to solve complex geometries or
irregular shapes (Zhou, 2013), such as the one used in this
study.

Finite Element model verification

To determine howwell the calculationswere implemented on
the finite element model, the study verified the characteriza-
tion of the pressure–volume-temperature (PVT) relationship
which is important in the calculation of the material com-
pressibility during the packing phase and final warpage and
shrinkage phase upon ejection. This was achieved through
a comparison of the numerical values of density obtained
from a simulation run against those calculated from the ana-
lytical equations at the same conditions. Analytical solutions
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Fig. 5 Section of the FE Model
showing the positions of the
probes at various nodes used to
record the pressures,
temperatures and densities in
each node at EOF

of density were computed using modified Tait Eq. 7 which
governs the change in specific volume of the polymer melt
during the packing stage.

Ten probes were placed on various nodes of the part as
shown in Fig. 5, a single warpage simulation run was made
and parameters such as pressure, temperature and density
were obtained from each node at the End of Fill (EOF).
The densities obtained from each node at EOF represented
numerically computed densities. Using pressure and temper-
ature values obtained from each node, corresponding values
of analytical densities were computed based onmodified Tait
Eq. 7 and the results were compared. For use with the mod-
ified Tait equation, material constants specific to Total 2001
PBK 44 HDPE material were obtained from the Moldex3D
Warpage result log.

Figure 6 shows the comparative analytical and numerical
density plots. Of the ten probes, the largest deviation between
the analytical and numerical densitywas 0.0046 g/cm3 which
was deemed sufficient. These deviations were attributed to
slight differences in underlying considerations during com-
putations where analytical computations assumed steady-
state conditions whereas numerical simulation took into
account the transient behavior of the polymer material prop-
erties. The model therefore accurately predicted the changes
in specific volume and hence the density of the polymer
melt as a result of the changes in temperatures and pressures
throughout the molding cycle. A match in the plots indicated
an effective model characterization of the PVT relationship
and suitability for PIM process modelling.

Design of experiments

Factorial experiment design

The selection of initial process parameters was made by
examining related shrinkage and warpage defect optimiza-
tion studies and associated significant process parameters
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Fig. 6 Comparative density verification plots

Table 2 Selected factorial design process parameters and levels

Process parameters Levels

Min Max

Melt temperature (°C) 200 235

Mold temperature (°C) 30 50

Maximum injection pressure (MPa) 200 300

Maximum packing pressure (MPa) 200 300

Cooling time (s) 8 15

Packing time (s) 3 5

reported in various studies (Chen et al., 2023a, 2023b; Song
et al., 2020). Six parameters including melt temperature,
mold temperature, injection pressure, packing pressure, cool-
ing time and packing time were found to be among the most
significant and hence considered. For parameter screening
through mains effects and lower order interaction effects,
a half fractional factorial design of resolution VI was used
(Packianather et al., 2013). Six parameters were used each at
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two levels specific to Total 2001 PBK 44 HDPE material as
illustrated in Table 2.

Numerical simulations were carried out at the given pro-
cess parameter combinations to obtain the values of warpage
and shrinkage responses. This was carried out through fill,
pack, cool, and warp analyses. Table 3 shows the results
obtained from numerical simulation. The maximum total
warpage was obtained as the maximum total displacement
given as a vector sum of the displacements along the x, y, and
z axes of the part. Shrinkage was obtained as the maximum
shrinkage of the part in the warpage phase of the analysis.
Maximumwarpage of 0.2373mm obtained gave a warp ratio
of 0.8%expressed as a percentage of themaximumpart diam-
eter and was above allowable warp ratio values of 0.2% to
0.5%.

Figure 7 shows the contour plots of the maximum values
of warpage and shrinkage defects obtained. As shown on the
plots, the regions of the part subjected to maximum warpage
are subjected to average shrinkage whereas those regions
subjected to maximum shrinkage have average warpage, an
indication of the difference in terms of effects of process
parameters to the two defects.

Numerical data validation

To determine whether the numerical results were an accu-
rate prediction of a physical injection molding process,
qualitative numerical data validation was done through a
comparison of the data trends against those obtained exper-
imentally and reported in the literature. Mains effect plots
were made to represent the effects of the individual pro-
cess parameters on the defects. Similarly, a mains effect plot
was made for the experimental data published by Mukras
et al. (2019). Similarity was obtained in the data trends
as illustrated in Fig. 8 for A-Melt Temperature, B-Mold
Temperature, C-Injection Pressure, D-Packing Pressure, E-
Cooling Time and F-Packing Time. A general increase in
melt temperature increased shrinkage whereas an increase in
injection pressure, packing pressure, packing time and cool-
ing time decreased shrinkage. Similar trends were reported
by Abasalizadeh et al. (2018) who also carried out the study
experimentally.

The simulation study yielded an increase in shrinkagewith
an increase in melt temperature which was the case in the
experimental studies. This was as a result of the increase in
molecular disintegration with an increase in melt tempera-
ture thereby increasing the rate of shrinkage. An increase
in injection pressure ensures more material delivery and
higher material compression inside the mold thereby lower-
ing chances of volumetric shrinkage. An increase in packing
time as well as packing pressure enhances an increase in
material compensation within the mold thereby reducing
shrinkage. An increase in cooling time ensures an increase

in stress relaxation time thereby reducing shrinkage (Abasal-
izadeh et al., 2018).

However, numerical data indicated a decrease in shrinkage
with an increase in mold temperature while the experimen-
tal study reports an increase in shrinkage with increasing
mold temperature. As reported by Mieth and Tromm (2016),
mold temperature has an effect on shrinkage effects which
could be either positive or negative. An increase inmold tem-
perature could enhance polymer melt fluidity and increase
flow into the cavity thereby reducing the chances of post-
mold shrinkage. Conversely, an increase inmold temperature
could also result in slower part cooling which would encour-
age a greater degree of crystallization thereby resulting to
increased shrinkage (Fischer, 2013).

Factorial analysis

By substituting the lower parameter levels with -1 and higher
levels with + 1 and through a difference of means, the mains
effect and interaction effect sizes were computed as the dif-
ference between average shrinkage and warpage responses
at high ( +) levels and low (−) levels of the effects.

Mains effect sizes are illustrated in Table 4. Packing pres-
sure has the largest decreasing effect on both warpage and
shrinkage defects. At high packing pressure, polymer chains
are oriented in an organized manner and this orientation fur-
ther reduces the internal stresses within the material and
helps it maintain its shape and dimension. Apart from pack-
ing pressure, an increase in melt temperature decreases the
warpage. Increasing the melt temperature ensures the mate-
rial remainsmolten for a longer time during the cooling phase
and thus undergoes a uniform solidificationwhichminimizes
the stresses that contribute to warpage. Similarly, a study
by Chen and Zhu (2019), obtained a significant decrease in
warpage at an increasing packing pressure and melt temper-
ature.

Most process parameterswere found to have a larger effect
on shrinkage as compared to warpage. To visualize the extent
of the effects of process parameters and their interactions
on shrinkage, a Pareto plot was constructed as illustrated
in Fig. 9. The largest interaction effect was a three-way
interaction between melt temperature, mold temperature and
injection pressurewhichwas larger than the individual effects
of the three parameters.

Also, many interactions with larger effects involved the
melt temperature despite packing pressure being the parame-
ter with the largest effect on shrinkage. This could be because
the melt temperature setting influences the material viscos-
ity, flow, and thermal behavior and therefore an interaction
between the other process parameters and melt temperature
would largely affect these properties and influence shrinkage.

Some of the major interaction effect sizes on shrinkage
computed are given in Table 5. The combined effect of
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Table 3 Numerical results showing warpage and shrinkage responses at various process parameter combinations

Run Melt Temp.
(°C)

Mold Temp.
(°C)

Max
Injection
pressure
(MPa)

Packing time
(s)

Max packing
pressure (MPa)

Cooling time
(s)

Warpage
(mm)

Shrinkage
(%)

1 200 30 300 3 200 15 0.2372 1.44

2 235 50 200 3 300 15 0.1595 0.99

3 200 50 300 5 200 15 0.2373 1.23

4 200 30 300 5 200 8 0.2360 1.45

5 200 50 200 3 300 8 0.1778 1.33

6 235 50 200 5 300 8 0.1566 0.96

7 200 50 200 5 300 15 0.1784 0.57

8 200 30 300 5 300 15 0.1784 0.58

9 235 50 200 3 200 8 0.2226 1.94

10 235 30 300 3 200 8 0.2300 2.03

11 200 30 200 5 300 8 0.1782 0.98

12 200 30 200 3 200 8 0.2361 1.82

13 200 30 300 3 300 8 0.1782 1.33

14 235 30 200 3 200 15 0.2238 1.58

15 200 50 300 3 300 15 0.1785 0.99

16 200 50 300 5 300 8 0.1778 0.98

17 200 50 300 3 200 8 0.2363 1.81

18 200 30 200 5 200 15 0.2372 1.23

19 200 50 200 3 200 15 0.2373 1.43

20 200 50 200 5 200 8 0.2363 1.44

21 235 30 200 3 300 8 0.1557 1.39

22 235 50 200 5 200 15 0.2238 1.52

23 235 50 300 3 300 8 0.1566 1.35

24 235 30 300 5 200 15 0.2237 1.28

25 235 50 300 5 200 8 0.2225 1.50

26 235 30 300 5 300 8 0.1556 0.99

27 235 30 200 5 200 8 0.2227 1.54

28 200 30 200 3 300 15 0.1784 1.00

29 235 50 300 3 200 15 0.2238 1.52

30 235 50 300 5 300 15 0.1595 0.56

31 235 30 200 5 300 15 0.1590 0.58

32 235 30 300 3 300 15 0.1591 1.02

increasing the melt temperature (A), mold temperature (B)
and injection pressure (C) reduces shrinkage by 0.076%. The
interaction between these factors could affect material flow
into a mold cavity. Higher melt temperature as well as mold
temperature enhances smooth material flow into the cavities.
A higher injection pressure then enhances the delivery of the
smoothly flowing molten material to all sections of the cav-
ity thus reducing the possibility of product shrinkage upon
cooling and ejection.

A similar relationship was obtained between melt tem-
perature and packing pressure (E) whose interaction equally

had a moderate contribution to shrinkage reduction. Individ-
ually, increasing melt temperature increases shrinkage while
increasing packing pressure reduces shrinkage. When the
two parameters are increased simultaneously, the shrinkage
reduces but the extent of reduction depends on the levels of
the parameters. At a melt temperature of 200 °C, an increase
in packing pressure from 200 to 300 MPa would decrease
shrinkage by0.63%while at amelt temperature of 235 °C, the
same amount of increase in packing pressure would decrease
shrinkage by 0.51%.
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Fig. 7 Contour plots showing the
maximum values of warpage and
shrinkage defects obtained

Fig. 8 Mains effect plots from
numerical simulation and
experiment showing the general
comparative effects of the
changes in process parameters to
shrinkage

Table 4 Computed Mains Effect
sizes Defect Melt

Temp
Mold Temp Injection

pressure
Pack time Pack

pressure
Cool time

Warpage
(mm)

− 0.017 1.5 ×
10–4

3.13 ×
10–6

− 4.94 × 10–5 − 0.062 0.001

Shrinkage
(%)

0.071 − 0.005 − 0.015 − 0.350 − 0.572 − 0.331
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Fig. 9 Pareto chart of the effects of process parameters on shrinkage

Table 5 Interaction effect sizes on shrinkage

Parameter
interaction

Effect on
shrinkage (%)

Parameter
interaction

Effect on
shrinkage
(%)

ABC − 0.076 BD 0.023

AE − 0.062 ADF 0.023

DE − 0.053 CF − 0.022

DF 0.047 ABD 0.022

EF − 0.045 ABF 0.022

A combined effect of packing time and packing pressure
on shrinkage was also imminent as a result of the contri-
bution of the packing phase to shrinkage. Figure 10 shows
a contour plot of packing pressure and time against shrink-
age. Aminimum shrinkage rate is obtained at higher packing
pressure and packing time levels. At a low level of packing
pressure, an increase in packing time decreases shrinkage by
0.3% whereas at a high level of packing pressure, the same
increase in packing time decreases shrinkage by 0.4%.

For warpage defect, the largest interaction effect occurred
between melt temperature and packing pressure. Higher val-
ues of warpage was obtained at lower values of packing
pressure and melt temperatures while the lower warpage
obtained at higher values of the two parameters as illustrated
in Fig. 11.At lower packing pressure, an increase inmelt tem-
perature has a very minimal effect on the warpage whereas,
at higher packing pressure, an increase in melt temperature
substantially lowers the warpage. Conversely, increasing the
packing pressure decreases warpage both at lower and higher
levels of melt temperature with the largest decrease at higher
melt temperature. Higher melt temperature lowers the mate-
rial viscosity and increases its fluidity thereby enhancing

easiermolecular orientation and reduction in internal stresses
at higher packing pressure. Therefore, when all the other
factors are held constant, warpage defect would be reduced
significantly by raising the packing pressure at higher melt
temperatures.

Process parameter screening

Selection of the most significant process parameters to be
used for predictive model development was done based on
the sizes of the mains effects and interaction effects results.
ANOVA was carried out at a significance level of α �
0.05 to verify the significance of computed effect sizes.
Table 6 shows the ANOVA results of the warpage. ANOVA
with main terms only yielded an R-squared of 99.67%,
adjusted R-squared of 99.60% and predicted R-squared of
99.47% whereas ANOVA with interaction terms yielded an
R-squared of 99.98%, adjusted R-squared of 99.96% and
predicted R-squared of 99.91%. The increase in adjusted R-
squared with the addition of interaction terms indicated that
they improved the model and the smaller difference between
R-squared and predictedR-squared impliedminimal chances
of model overfitting. For warpage defect, the most signifi-
cant parameterswere packing pressure,melt temperature and
cooling time while the most significant interactions involved
the three parameters.

Table 7 shows the ANOVA results of shrinkage. ANOVA
with main terms only yielded an R-squared of 96.27%,
adjusted R-squared of 95.38% and predicted R-squared of
93.89% whereas ANOVA with interaction terms yielded an
R-squared of 98.8%, adjusted R-squared of 97.94% and
predicted R-squared of 96.21%. A significant interaction
occurred between melt temperature and other less signif-
icant parameters such as mold temperature and injection
pressure. Interaction effect sizes on shrinkage between the
three parameters were found to be − 0.07, that between
melt temperature and injection pressure -0.02, between mold
temperature and injection pressure -0.01 and between melt
temperature and mold temperature found to be − 0.002.

From the computed interaction effect sizes, the largest
interaction effect occurred between melt temperature and
injection pressure while the smallest effect occurred between
melt temperature and mold temperature. Thus, considering
the largest interaction effect among the three parameters
occurred between melt temperature and injection pressure,
the two parameters were selected over mold temperature.

Therefore, for the second stage design of experiment and
predictive model development, five factors including melt
temperature, injection pressure, packing time, packing pres-
sure and cooling time were used as input variables.
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Fig. 10 Contour plot showing the
effect of packing pressure and
packing time on shrinkage

Fig. 11 Contour plot showing the
effect of packing pressure and
melt temperature on warpage

Taguchi experiment design

To enhance a more robust design and increase the predictive
ability of the fuzzy inference model, five levels were used
for each input parameter in the design of experiment stage.
Table 8 shows the parameters used in the design with their
levels of application.

Taguchi design was used for five input variables each at
five levels and yielded an L25 orthogonal array. With the
general objective of defect modelling being to minimize the
defects, a smaller the better signal to noise ratio was calcu-
lated based on Eq. 16 (Altan, 2010).

SN � −10log
[ 1
n

∑n
i�1 yi

2
]
# (16)

Table 9 shows the results of the numerical simulations. As
carried out in the first DOE stage, the numerical data trend
was validated against an experimental data trend obtained
from a study by Mukras et al.(2019). Similar to the first
DOE stage, a match in the trends was achieved. A general
increase in melt temperature increased shrinkage whereas
an increase in injection pressure, packing pressure, packing
time and cooling time decreased shrinkage.

An additional simulation was carried out at different input
levels that would be used for testing the performance and
validation of the developed predictive models. Ten sets of
input parameter combinations were randomly generated and
used to perform numerical simulations. The distribution of
the data was widened to accurately represent the problem
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Table 6 ANOVA for warpage
defect Source DF Seq SS Contribution Adj MS F-Value P-Value

Melt Temp 1 2.3E-03 6.95% 2.3E-03 8243.15 0.000

Mold Temp 1 1.9E-07 0.00% 1.9E-07 0.66 0.426

Inj. Press 1 7.8E-11 0.00% 7.8E-11 0.00 0.987

Pack Time 1 1.9E-08 0.00% 1.9E-08 0.07 0.794

Pack Press 1 3.1E-02 92.68% 3.1E-02 109,952.48 0.000

Cool Time 1 1.6E-05 0.05% 1.6E-05 58.33 0.000

Melt Temp*Pack Press 1 9.8E-05 0.30% 9.8E-05 351.74 0.000

Melt Temp*Cool Time 1 3.7E-06 0.01% 3.7E-06 13.20 0.002

Inj. Press.*Pack Press 1 1.4E-09 0.00% 1.4E-09 0.00 0.945

Pack Time*Cool Time 1 1.5E-10 0.00% 1.5E-10 0.00 0.982

Error 21 5.9E-06 0.02% 2.8E-07

Total 31 3.3E-02 100.00%

Table 7 ANOVA for shrinkage defect

Source DF Seq SS Contrib Adj MS F-value P-value

Melt Temp 1 4.0E-02 0.86% 4.0E-02 12.88 0.002

Mold Temp 1 2.2E-04 0.00% 2.2E-04 0.07 0.795

Inj. Press 1 1.7E-03 0.04% 1.7E-03 0.55 0.466

Pack Time 1 9.8E-01 20.87% 9.8E-01 313.40 0.000

Pack Press 1 2.6E+00 55.83% 2.6E+00 838.62 0.000

Cool Time 1 8.8E-01 18.67% 8.8E-01 280.45 0.000

Melt Temp*Mold Temp 1 2.9E-05 0.00% 2.9E-05 0.01 0.925

Melt Temp*Inj. Press 1 2.4E-03 0.05% 2.4E-03 0.77 0.392

Melt Temp*Pack Press 1 3.0E-02 0.65% 3.0E-02 9.76 0.006

Mold Temp*Inj. Press 1 1.5E-03 0.03% 1.5E-03 0.47 0.503

Pack Time*Pack Press 1 2.2E-02 0.47% 2.2E-02 7.09 0.016

Pack Press.*Cool Time 1 1.6E-02 0.34% 1.6E-02 5.10 0.037

Melt Temp*Mold Temp*Inj. Press 1 4.6E-02 0.99% 4.6E-02 14.81 0.001

Error 18 5.6E-02 1.20% 3.1E-03

Total 31 4.7E+00 100.00%

Table 8 Selected model predictive process parameters with their levels of application

Parameter Levels

Melt temperature (°C) 200 210 220 230 240

Max. injection Pressure setting (MPa) 100 150 200 250 300

Max. packing Pressure setting (MPa) 100 150 200 250 300

Packing time (s) 2 3 4 5 6

Cooling time (s) 5 8 10 12 15
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Table 9 Numerical simulation
results based on Taguchi L25
design

Run Melt
Temp

Injection
pressure

Pack
pressure

Pack
time

Cool
time

Shrinkage
(%)

Warpage
(mm)

S/N ratio
(dB)

1 200 100 100 2 5 2.76 0.283 − 5.853

2 200 150 150 3 8 2.33 0.266 − 4.393

3 200 200 200 4 10 1.38 0.237 0.086

4 200 250 250 5 12 1.18 0.209 1.439

5 200 300 300 6 15 0.36 0.178 10.934

6 210 100 150 4 12 1.95 0.264 − 2.869

7 210 150 200 5 15 1.25 0.231 0.926

8 210 200 250 6 5 1.51 0.202 − 0.646

9 210 250 300 2 8 1.45 0.170 − 0.276

10 210 300 100 3 10 2.21 0.279 − 3.946

11 220 100 200 6 8 1.48 0.229 − 0.498

12 220 150 250 2 10 1.62 0.200 − 1.246

13 220 200 300 3 12 1.13 0.167 1.855

14 220 250 100 4 15 1.92 0.280 − 2.747

15 220 300 150 5 5 2.39 0.255 − 4.607

16 230 100 250 3 15 1.25 0.198 0.964

17 230 150 300 4 5 1.47 0.157 − 0.385

18 230 200 100 5 8 2.56 0.280 − 5.206

19 230 250 150 6 10 1.70 0.253 − 1.694

20 230 300 200 2 12 2.16 0.226 − 3.726

21 240 100 300 5 10 0.84 0.157 4.376

22 240 150 100 6 12 2.20 0.278 − 3.907

23 240 200 150 2 15 2.00 0.252 − 3.079

24 240 250 200 3 5 2.37 0.221 − 4.522

25 240 300 250 4 8 1.49 0.191 − 0.524

Table 10 Model validation
dataset Run Melt

temperature
Injection
pressure

Packing
pressure

Packing
time

Cooling
time

Shrinkage
(%)

Warpage
(mm)

1 207 120 108 2 6 2.66 0.277

2 207 266 240 5 13 1.20 0.211

3 223 158 240 2 11 1.71 0.205

4 223 216 277 3 11 1.20 0.173

5 227 226 122 5 7 2.50 0.271

6 227 175 281 3 12 1.19 0.174

7 236 186 174 2 15 1.98 0.249

8 236 273 282 4 8 1.43 0.207

9 200 130 150 3 6 2.31 0.267

10 240 300 270 4 6 1.48 0.194
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space and prevent further problems that would arise due to
validation data set bias. Table 10 shows the results obtained
from the numerical simulations of the validation data set.

Predictive model development

Fuzzy expert models were developed to predict the values
of warpage and shrinkage defects at given process parameter
inputs. Two Mamdani Fuzzy Inference Systems (FIS) were
developed using MATLAB® Fuzzy Logic Designer and uti-
lizing triangular and Gaussian membership function types.
Triangular FIS was developed using triangular membership
function types while Gaussian FIS developed based onGaus-
sianmembership function types. Themain components of the
fuzzy logic predictive models developed were the fuzzifier,
linguistic rule base, inference engine and defuzzifier.

Fuzzification

Through fuzzification, crisp input variables of five param-
eters namely melt temperature, injection pressure, packing
pressure, packing time and cooling time were mapped onto
fuzzy variables by expression as membership functions. Five
membership functions were used for each of the five input
variables. Linguistic labels chosen for each of the inputmem-
bership functions were; Very Low (VL), Low (L), Medium
(M), High (H) and Very High (VH). After trying different
membership function types and their associated effects on
the defect responses, triangular and Gaussian membership
function types were deemed suitable and thus used in the
fuzzification of the input variables. The degrees of member-
ship in triangular and Gaussian membership functions were
expressed as given in Eqs. 17 and 18 respectively (Lanzaro
& Andrade, 2023).

f (x ; a, b, c) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x ≤ a
x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

0, c ≤ x

# (17)

f (x ; σ , μ) � e
−(x−μ)2

2σ2 # (18)

wherea, b and c are the lower boundary, peak value and upper
boundary of the membership class respectively and x is any
arbitrary value between the lower and upper class boundary
whose degree of membership is to be determined. For the
Gaussian membership function, σ is the standard deviation
of the membership class representing its width property, μ is
the mean value of the membership class corresponding to the
peak value while x is any arbitrary point whose membership
value is to be determined.

Parameters of the membership functions were defined
based on their levels given in Table 8. Figures 12 and 13
illustrates the triangular and Gaussian membership functions
plots for one of the inputs (melt temperature) respectively.

Rule base formulation

A set of 25 IF–THEN rules governing the mapping of inputs
into outputs were formulated through expert knowledge
based on the 25 runs of data obtained from Taguchi based
numerical simulations. The study assigned equal weights of
1 to each rule. The number of rules were maintained at 25
as repeated input combination trials revealed that the defined
rules were themost likely to be fired formost input parameter
combinations. Two of the rules are illustrated as follows;

IF (Melt Temperature is High) and (Injection Pressure
is Medium) and (Packing Pressure is Very Low) and
(Packing Time is High) and (Cooling Time is Low)
THEN(Shrinkage isVeryHigh), (Warpage isVeryVery
High)
IF (Melt Temperature is Very Low) and (Injection Pres-
sure is Very High) and (Packing Pressure is Very High)
and (Packing Time is Very High) and (Cooling Time
is Very High) THEN (Shrinkage is Very Very Low),
(Warpage is Very Low)

Defuzification

To convert fuzzy variables back to crisp values, a centroid
defuzification method was used. This method calculated the
center of area under the membership function and weighed
the effect of each input variable towards the calculation.
The study utilized ten membership functions for warpage
and shrinkage responses. Figure 14 shows the symmetrically
defined triangular membership function plots for shrinkage
response.

Figure 15 shows Gaussian membership function plots for
shrinkage responsewith 10membership function classes. All
the membership function classes are symmetrically placed,
have a standard deviation of 0.1134 while the mean of each
class is defined as the peak value of the given class.

Fuzzy inference system structure

Figure 16 illustrates a triangular membership function model
structure with five inputs and two outputs and designed with
triangular membership functions for input and output vari-
ables.

Parameter causality was easily identified from the rules
interface of the developed models as illustrated in Fig. 17.
It can be deduced from the interface that lower values of
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Fig. 12 Triangular membership
plot for melt temperature input
values

Fig. 13 Gaussian membership
plot of melt temperature input
values
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Fig. 14 Triangular membership
functions for shrinkage response

Fig. 15 Gaussian membership
functions for shrinkage response
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Fig. 16 Fuzzy Predictive Model
based on triangular membership
functions

Fig. 17 Fuzzy predictive model rule base graphical interface

melt temperature are associated with lower values of shrink-
age and higher values of warpage whereas lower values of
packing pressure are associated with higher shrinkages and
warpages.

Linguistic rule base representation from the FIS rule infer-
ence directly expresses the relationships among variables and
hence facilitates an easy interpretation of how the model
makes decisions. This transparency in prediction could form
a basis for on-line injection molding process optimization.

Figure 18 illustrates a 3D surface plot from the developed
FISs showing the relationship between packing pressure,
melt temperature and warpage output. The smallest value
of warpage was obtained at the highest values of melt tem-
perature and packing pressure while the largest values of
warpage were obtained at the lowest values of melt tem-
perature and packing pressure. This relationship was similar

Fig. 18 FIS 3D surface plot on effect of melt temperature and packing
pressure on warpage
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Fig. 19 FIS 2D surface plot on
effect of melt temperature and
packing pressure on warpage

to that obtained statistically during factorial analysis illus-
trated in Fig. 11. 2D plots at two levels of melt temperature
were made as illustrated in Fig. 19. At a melt temperature
of 200 °C, increasing the maximum packing pressure set-
ting from 100 to 300MPa decreased the warpage from 0.275
to 0.212 whereas, at a melt temperature of 240 °C, a simi-
lar increase in packing pressure decreased the warpage from
0.277 to 0.190. This illustrated that the developed FISmodels
captured the interaction effects between the process param-
eters.

Model tuning and validation

This study determined the parameters of the fuzzy model
membership functions through intuition and further car-
ried out tuning of the parameters using a pattern search
optimization technique (Tremante et al., 2019). As a local
optimization technique, the pattern search algorithm does
well formodelswith smaller parameter tuning ranges in com-
parison to global optimization algorithms which do well for
large parameter tuning ranges. Tuning of fuzzymodel param-
eters was carried out based on the data set of the simulation
results used for rule formulation. The tuning was based on a
default cost function obtained as the root mean square error
between the actual outputs and the initial fuzzy predicted
outputs.

The convergence criteria used for the tuning was the dis-
tance metric (RMSE) of data sets in Table 9 used for the
development of fuzzy inference systems. The objective func-
tion f (x) to be minimized was calculated for each FIS based
on the differences between the reference outputs obtained
from simulations and FIS-predicted outputs. For twenty-five
data sets and two outputs, f (x) was calculated using Eq. 19
(Ross, 2010).

f (x) �
√

1
25

∑25
i�1

(
(y1i , re f − y1i , pred )2 + (y2i , re f − y2i , pred )2

)
#

(19)

Fig. 20 Triangular FIS tuning convergence result showing a conver-
gence plot

where y1i , re f is the reference shrinkage output for the ith

data point, y1i , pred is the predicted shrinkage output for the
ith data point, y2i , re f is the reference warpage output for the
ith data point and y2i , pred is the predicted warpage output for
the ith data point.

With the objective function in place, the optimization algo-
rithm iteratively adjusts the various fuzzy inference system
parameters such as input membership function parame-
ters, output membership function parameters and rules until
the objective function converges to a minimum solution.
Figure 20 shows the tuning convergence plot for a fuzzy
inference system with a triangular membership function
type. Convergence was achieved after 150 iterations with the
objective function reducing from 0.0464 to 0.0257. Mesh
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sizes of up to 0.0078 were utilized indicating a finer explo-
ration of the search space.

The resulting tuned triangular FIS had adjusted rule
weights whereas the input and output membership function
parameterswere unchanged.Upon successful tuning, the per-
formances of the initially designed triangular FIS and tuned
FISwere tested against a validation data set given in Table 10.
Using the outputs from the validation data set as the reference
outputs, theRMSE for both the initial FIS and tuned FISwere
obtained. Figures 21 and 22 show the comparison of predic-
tion results and errors for shrinkage (Output 1) and warpage
(Output 2) responses. Reference curve represents the val-
idation set of results obtained from numerical simulation.
The tuned FIS has a slightly lower RMSE compared to the
initial FIS for both the shrinkage and warpage outputs. The
prediction errors were reduced from 0.036 to 0.03 for shrink-
age prediction and 0.0045 to 0.0044 for warpage prediction.
Through tuning, the search algorithm captured underlying
relationships in the data and modified given rule weightings
to better reflect the data patterns thereby reducing model pre-
diction errors and enhancing accuracy (Nikolić et al., 2020).
Such accuracies could also be obtained by machine learn-
ing through boosting ensemble (Bustillo et al., 2018). The
prediction error plots indicate that the shrinkage response
was over-predicted for most instances whereas the warpage
response was under-predicted for most instances.

Similarly, the Gaussian membership function-based FIS
inputs, rules and output membership functions were tuned
using a pattern search algorithm. A convergence was
achieved after 100 iterations with the objective function
reducing from 0.066 to 0.033. A mesh size of up to 0.5 was
used indicating a finer exploration of the search space.

Tuning of the Gaussian FIS adjusted various individ-
ual rule weightings but did not adjust the input and output
membership function parameters indicating an optimal spec-
ification of input and outputmembership function parameters
in the initial design. Figures 23 and 24 show the compari-
son of prediction results and errors obtained for the initial
and tuned Gaussian-based FIS. Reference curve represents
the values obtained from numerical simulation. By tuning,
the RMSE for shrinkage was reduced from 0.073 to 0.065
as shown in Fig. 23 while the RMSE for warpage slightly
increased from 0.005 to 0.006 as shown in Fig. 24 suggest-
ing that the optimization process had a differential impact on
the two responses.

In addition to the RMSE, a coefficient of determination
and standard error of regression were determined for the
four FISs to assess the abilities of the models to predict the
outcomes in a linear regression setting. The coefficient of
determination and standard error of regression were calcu-
lated at a 95% confidence level. As a result of the possible
non-linearity of the plastic injection molding process, this
study used standard error of regression metric to evaluate the

performance of the predictivemodel alongside the coefficient
of determination metric.

Table 11 shows the performance metrics of the four pre-
dictive models computed for each output variable prediction.
The tuned triangular FIS had the lowest RMSE for both the
outputs which indicated a good predictive capability. It also
had the lowest standard error of regression on warpage and
the highest coefficient of determination on warpage predic-
tion. A tuned Gaussian FIS had higher values of RMSE
but performed better in terms of model fitting as given by
standard error of regression and coefficient of determination
performancemetrics. The generally good performance of the
FIS models on the validation data set was an indication of
minimal chances of model overfitting to the training data set.

Therefore, for shrinkage and warpage defects predictive
modelling in plastic injection molding, a tuned FIS with tri-
angular membership functions would be recommended. This
model had RMSEs of 0.03 and 0.004, standard errors of
regression of 8.75 and 1.19 and coefficients of determination
of 98.9% and 96.5% for shrinkage and warpage prediction
respectively. These performance metrics such as coefficient
of determination (R2) compared well with those of other pre-
dictive models based on other strategies reported in literature
as summarized in Table 12.

Conclusions

The following conclusions were made from this study;

1. Consideration of process parameter interactions as well
as parameter mains effects in the parameter screening
stage enhances a more robust and accurate predictive
model development. Interactions account for the com-
bined effects of variables and thereby allowing the
model to capture how the individual effects of a cer-
tain parameter depend on the levels of application of
the other parameters. Consideration of parameter inter-
actions necessitated the inclusion of injection pressure
which would otherwise not have been selected had the
screening been based on the mains effect only.

2. Inwarpage and shrinkagemodelling, themost significant
process parameter influencing thedefects is packingpres-
sure setting while the most significant process parameter
interactions influencing the defects involve the melt tem-
perature. Packing pressure contributes to warpage defect
by 92% and to shrinkage defect by 55%.

3. Despite shrinkage being one of the causes of warpage
defect, the degree of effects of process parameters on
the two defects vary. A given change in process param-
eters could induce a decreasing effect on shrinkage
while increasing warpage and vice versa. An increase
in melt temperature reduced warpage but increased
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Fig. 21 Triangular FIS shrinkage
prediction errors

Fig. 22 Triangular FIS warpage
prediction errors
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Fig. 23 Gaussian FIS shrinkage
prediction errors

Fig. 24 Gaussian FIS warpage
prediction errors

123



Journal of Intelligent Manufacturing

Table 11 Performance metrics of
the developed FISs Membership function Performance metric

Root mean square error
(RMSE)

Standard error of
regression (S) (%)

Coefficient of
determination (R2)
(%)

Shrinkage Warpage Shrinkage Warpage Shrinkage Warpage

Triangular 0.037 0.005 9.63 1.24 98.71 96.25

Triangular tuned 0.030 0.004 8.75 1.19 98.93 96.48

Gaussian 0.073 0.005 8.04 1.29 98.94 95.52

Gaussian tuned 0.065 0.006 6.55 1.20 99.36 96.20

Table 12 Model performance metrics reported from similar studies

Study Model Response CoD
(R2)

Abdul et al.
(2019)

ANN Shrinkage 91%

Tsai and Luo
(2017)

ANN + GA Dimension
accuracy

96.75%

Chen et al. (2020) ANN Dimensional
variation

91%

Hidayah et al.
(2018)

GA + RSM Warpage 98.1%

Kumar et al.
(2020)

PSO +
Regression

Shrinkage
Warpage

94.1%
92.4%

Chen et al.,
(2023a, 2023b)

ANN + MLR Dimensional
stability

99.8%

Ahmed et al.
(2022)

Random
forest
algorithm

Warpage 96.75%

Gradient
boosted
regression

Warpage 90.63%

Proposed method
in this study

Triangular
FIS model

Shrinkage 98.93%

Gaussian FIS
model

Shrinkage 99.36%

Triangular
FIS model

Warpage 96.48%

Gaussian FIS
model

Warpage 96.20%

shrinkage. Similarly, changes inmold temperature, injec-
tion pressure and cooling time had opposing effects on
the two defects. Therefore, optimization and predictive
modelling of the two defects should be carried out con-
currently.

4. An integrated fuzzy logic rule base system with a pattern
search algorithm compares well with other models for
predictive modelling of shrinkage and warpage defects.
Tuning of all the developed models through pattern

search lowered the models’ standard error of regression
and RMSE and increased the coefficient of determi-
nation. For triangular FIS shrinkage prediction, tuning
lowered the model RMSE from 0.037 to 0.030, low-
ered the model standard error of regression from 9.63 to
8.75 and increased the model coefficient of determina-
tion from 98.71% to 98.93%. Tuning of expert-designed
fuzzy inference systems using intelligent algorithms
helps to improve the predictive ability of the models
resulting in enhanced performance.

5. Both triangular and Gaussian membership functions
accurately model shrinkage and warpage defects in the
plastic injection molding process. The triangular mem-
bership function model had lower values of RMSE
indicating ahigher predictive accuracywhereas theGaus-
sian membership function model had lower values of the
standard error of regression indicating higher model reli-
ability. For shrinkage prediction, triangular FIS had an
RMSE of 0.03 and a standard error of regression of 8.75
whereas Gaussian FIS had an RMSE of 0.06 and a stan-
dard error of regression of 6.25.
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