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Abstract
The wire arc additive manufacturing (WAAM) process is gaining popularity in industrial production due to its ability to
manufacture large, customized, and complex shapes. However, because of the lack of quality assurance standards in this field,
non-destructive testing (NDT)methods are required to evaluate the quality of the produced parts. Radiography testing is a good
candidate for that purpose, but the surface roughness of the product being tested can lead to difficulties in the interpretation
of the obtained image, which could result in unseen defects. To overcome this challenge, we propose, in this study, a novel
approach for improving defect detectability using 3D laser scanning and an appropriate mathematical formulation. We first
tested this approach on a weld bead and then verified it on different healthy and defectiveWAAMparts. In all cases, the created
defects were successfully detected. Besides, the effect of surface roughness was significantly reduced. A special attention
should, however, be paid to the scattering noise in the radiographic image.

Keywords Wire arc additive manufacturing, · Quality assurance · Radiographic testing · 3D laser scanning

Introduction

Wire arc additive manufacturing (WAAM) allows the manu-
facturingof complex-shapedparts that are difficult to produce
using conventionalmanufacturingprocesses (i.e.,machining,
forging, casting, etc.) (Cunningham et al., 2018; Derekar,
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2018; Williams et al., 2016). It can also simplify assem-
blies by reducing the number of required parts. This results
in material savings and thus, part-lightening, which is very
important for industries such as aerospace and automotive
(Omiyale et al., 2022). However, as with any manufacturing
process, the presence of internal defects can be problematic.
It is therefore necessary to assess the quality of these parts.
Non-destructive testing (NDT) and monitoring techniques
can be used to reach this aim (Chen et al., 2021).

Monitoring the welding parameters (for example, current
and voltage) is easy to implement and can help in identifying
manufacturing deviations, particularly the shift in weld pool
position, as proposed by Li et al. (2022). Nevertheless, there
remains a need for further investigation to ascertain the poten-
tial correlation, if any, between variations in these parameters
and prevalent defects in WAAM such as cracks, porosities,
and lack of fusion (Chen et al., 2021). Concerning surface
defects, several approaches have been proposed, including
the utilization of a laser profilometer (Huang et al., 2022) and
a high dynamic range (HDR) camera (Lee et al., 2021). Shin
et al. (2023) have successfully integrated the data collected
from this latter with the welding parameters to effectively
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detect geometric irregularities. In addressing similar defects,
both on the surface and subsurface levels, He et al. (2021)
have introduced a novel NDTmethod calledmagneto-optical
imaging. Recently, some researchers have focused on the use
of acoustical techniques, employing microphones positioned
near the manufacturing torch (Bevans et al., 2023; Ramalho
et al., 2022; Surovi & Soh, 2023). However, the presence of
a noisy environment poses challenges in discerning pertinent
defect-related information from the backgroundmanufactur-
ing activity.

Alternatively, different research studies have proven the
efficiency of ultrasound and radiography testing for the
detection of defects in WAAM (Chauveau, 2018; Honar-
var & Varvani-Farahani, 2020; Javadi et al., 2019; Lopez
et al., 2018; Zimermann et al., 2021). For example, Chabot
et al. (2020) applied phased array (PA) ultrasonic testing
to WAAM aluminum alloy parts. They have demonstrated
that this method enables the detection and characterization
of porosity defects. Nevertheless, the use of ultrasound NDT
techniques can be costly and time-consuming since addi-
tional machining of the WAAM part surface is required.
This is because ultrasound sensors are not adapted to irreg-
ular surfaces (Ma et al., 2020). Radiographic testing can be
performed without milling the surface of the WAAM part.
However, there is another problem here, also related to the
surface condition of these parts. Explicitly, the surface rough-
ness of the WAAM part will generate a variation in the grey
level in the radiographic image that could hinder the detection
of defects. To the best knowledge of the authors, this issue
has never been addressed in the literature. Hence, we pro-
pose, in this paper, an approach to overcome the said issue,
and so facilitating the interpretation of radiographic testing
images and enhancing defect detectability. This approach
includes but not limited to 3D laser scanning measurements.
The combination of radiographic image and 3D laser pro-
filometry data should help to completely erase the effects of
the surface roughness. Therefore, only information about the
presence of defects will be highlighted.

The reminder of this paper is as follows: the next section is
devoted to background where principles of radiographic test-
ing and 3D laser scanning are briefly explained. This helps to
understand Sect. “Approach”, which concerns the proposed
approach. Sect. “Applications” presents some examples of
applications. Finally, Sect. 5 concludes the paper and sug-
gests future works.

Background

Radiographic testing

Radiographic testing (RT) is an NDT technique where a
radiation source emits high-energy photons, usually X-rays,

through a test specimen into a detector (Bossi et al., 2002).
An internal representation of the specimen, in the form of
a grey level image, is generated due to differences in thick-
ness, which impact the absorption rate of the X-ray flux.
Mathematically, the relation between the thickness and the
absorption rate can be approximated as follows:

I � I0e
−μτ , (1)

where I is the transmitted X-ray flux through the specimen,
I0, the incident X-ray flux, μ, the absorption coefficient, and
τ, the crossed thickness.

From Eq. (1), it is clear that for a relatively small vari-
ation of the thickness τ, the relationship between the grey
level in the radiographic image and the thickness can be
approximated by a linear function. This characteristic is the
cornerstone of the proposed approach.

3D laser scanning

3D laser scanning is an important technique used to char-
acterize the geometry of a given specimen. In this study,
two commercial syste ms were used. The first one, which
is shown in Fig. 1a, is provided by Micro-Epsilon Company.
This system is easy to use and allows rapid and accurate mea-
surements. However, it has limited degrees of freedom, and
thus, it cannot be used for the characterization of complex-
shape specimens. For this reason, an advanced measuring
system called Hexagon absolute arm (Fig. 1b) was used. This
second system is composed of a laser source and a camera.
In this case, the measurement is ensured using the triangu-
lation principle (Munaro et al., 2015) (i.e., the camera, the
laser source, and the measurement point form a triangle).
Consequently, knowing the distance and the angle between
the camera and the laser source, the distance to the scanned
point can be determined (Yaacoubi et al., 2019).

Approach

Overview and challenges

The general idea of the proposed approach to mitigate the
effects of the surface roughness in the radiographic image
is presented in Fig. 2. Let’s consider a specimen that con-
tains some defects. This specimen will be subjected first to
radiographic testing and then to 3D laser scanning tomeasure
its thickness at each point. Afterthat, these thicknesses will
be converted to gray level to obtain a virtual radiographic
image of the specimen. Ideally, by subtracting the original
radiographic image from the virtual radiographic image, the
surface roughness will be removed, and hence defects will
be further highlighted.
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Fig. 1 3D laser scanning: micro-epsilon laser tool (a), and Hexagon absolute arm (b)

Fig. 2 Schematic illustration of the proposed approach

Nevertheless, it is not easy, in reality, to obtain this result
because of many challenges. First, the approach relies on
the hypothesis that there is a linear relationship between the
X-ray density level and the thickness. This hypothesis is,
however, only true for a small variation of thickness. Second,
because of the divergence of theX-ray beam, the crossed path
by the X-ray flux is different from the thickness measured
via a 3D laser scanner. Third, X-ray flux is not uniform,
which means that the same thickness would be represented
by different density levels. Finally, the scattering phenomena
are unpredictable. The second and third challenges can be
faced, as will be seen later on, but the scattering phenomena
are difficult to deal with.

Conversion from thickness to grey level

Finding the relationship between the thickness and the grey
level is the most important step of the proposed approach.
To do so, a step wedge, as shown in Fig. 3a, must be used.
Radiographic testing should be applied on this step wedge
using the same operational conditions as for the specimen
being tested (Fig. 3b). The obtained result helps to determine
the grey level that corresponds to each level of the stepwedge
(i.e., in terms of thickness). It should be noted here that using
the radiographic image of a step wedge is a common practice

to assess the depth of the detected defects in radiographic
testing (Lee&Kim, 2005;Misale et al., 2009;Wang&Evans,
2021). In the present work, a linear regression is performed,
as shown in Fig. 3(c). This function (also said model) can be
written as:

Grey level � ατ + β, (2)

where α and β are the regression coefficients.
It is important to note that the choice of the step wedge

(i.e., minimum and maximum thickness) should depend on
the range of variation of the specimen thickness since the
established linear model can provide a good estimate within
the range of the data used to train the model, but it may not
predict accurately outside that range.

To evaluate the goodness of fit of the found linear regres-
sion model, the determination coefficient R2 is generally
calculated (Cheng et al., 2014). It ranges from 0 to 1. The
closer to zero is R2, the more the data points spread far from
the regression line. On the contrary, the closer to 1 is R2, the
more the cloud of points fits the regression line. Mathemati-
cally, R2 is defined by the following equation:

R2 � 1 −
∑n

i�1

(
yi − ŷi

)2

∑n
i�1(yi − y)2

, (3)
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Fig. 3 Methodology to establish the relationship between the thickness and the grey level: step wedge (a), its radiography image (b), and linear
regression (c)

Fig. 4 Schematic illustration of
the thickness measurement
correction, dsd is the distance
separating the X-ray source from
the detector

where n is the number of measurements, yi is the actual value
of the measure i , ŷi is its estimated value and y is the mean
of the measured values y.

Thickness correction

Now, before using the linear regression model, found in the
previous section, to convert thickness values into gray lev-
els, the measured thickness by the 3D laser scanner must
be corrected. An illustration is shown in Fig. 4. Actually,
the thickness [BD] measured by 3D laser scanning does not
really correspond to the crossed path by the X-ray flux [BC].
It is worth noting that this step is very important to get precise
measurement. For example, in the case of pipeline testing, it
was shown that this phenomenon led to an overestimation of
the wall thickness (Tennakoon, 2005).

To address this issue, the angle θ is first calculated using
the following expression:

θ � tan−1
(

BE

dsd − BD

)

, (4)

where dsd is the distance between the X-ray source and the
detector. The distance [BE] can be calculated for each posi-
tion of the 3D laser scanner by knowing the resolution of
displacement (noted as �p).

Besides, the expression of the crossed path by the X-ray
flux is given by:

BC � BD

cos θ
, (5)

By substituting the expression of the angle θ in Eq. 5, the
value of the crossed path by the X-ray flux can be obtained.
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Fig. 5 Illustration of the Heel effect

X-ray flux correction

Another issue, related this time to the radiographic image, is
the non-uniformity of the X-ray flux, which is also known as
the anodeHeel effect (Salleh et al., 2014). Explicitly, the radi-
ation intensity of the X-ray source is higher near the cathode,
leading to a brighter image on that side (Kusk et al., 2021).
This phenomenon is illustrated in Fig. 5, which shows a vari-
ation in the X-ray beam intensity across the detector surface,
caused by the said effect.

To better assess this effect, a steel sheet with constant
thicknesswas subjected to radiographic testing. The obtained

radiographic image is presented in Fig. 6a. A row and col-
umn were extracted and shown in Fig. 6b and c, respectively.
This result shows that even though the thickness of the sheet
is constant (30 mm in this case), the grey level is variable;
a trend can be clearly remarked. However, the proposed
method relies on the hypothesis that there is a one-to-one cor-
respondence (i.e., bijective function) between the grey levels
in the radiographic image and the values of the thickness of
the specimen. For this reason, a correction task is required.

In the literature, different solutions were proposed to mit-
igate or cancel out this effect (Behiels et al., 2002; Do
Nascimento et al., 2008; Nazemi et al., 2019; Pawluczyk &
Yaffe, 2001).However, these solutions are generally based on
complex mathematical models, such as artificial neural net-
works or additional hardware. In our case, since the observed
trend can be interpolated by a polynomial function, to solve
this issue, each row ri � (rij)1≤j≤N, 1 ≤ i ≤ M of the X-ray
image is fitted using a quadratic polynomial function, which
can be mathematically expressed as:

P(x) �
2∑

k�0

akx
k � a0 + a1x + a2x

2, x ∈ R (6)

The coefficients ak, k � 0, 1, 2 can be determined bymin-
imizing an error function that measures the misfit between
the function P and the raw data (Thompson & Balch, 1988),
as follows:

â � min
ak

1

2

⎛

⎝
N∑

j�1

P
(
xj

) − r2ij

⎞

⎠, (7)

Fig. 6 Radiographic image of a steel sheet (a), examples of a row profile (b), and a column profile (c) underlying the anode heel effect
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Fig. 7 Examples of curve fitting
using a quadratic polynomial
function (a), and the
corresponding corrected profile
(b)

where â is the vector of the optimal coefficients.
Then, the obtained vector p (the discrete form of the poly-

nomial function P) is to be subtracted from ri. The last step
is adding the mean of ri to the subtraction result.

Hence, for a given original (i.e., raw) radiographic
image Ro � (roij)1≤i≤M, 1≤j≤N

, the corrected image Rc �
(rcij)1≤i≤M, 1≤j≤N

can be obtained by calculating, for each row,

the following formulae:

rci � roi − p +
1

N

N∑

j�1

roij, 1 ≤ i ≤ M (8)

An example of a result is presented in Fig. 7, which shows
the polynomial function P of the row profile given in Fig. 6b
(Fig. 7a) and its corresponding corrected profile using Eq. 8
(Fig. 7b). As it can be noticed that the grey level is almost
uniform except at the beginning and end of the data, where
some trends can be observed. These trends can be due to
the phenomena of scattering (diffraction), which occur at the
edges of the specimen. Explicitly, when theX-rays come near
the edges, they can be deflected from their original path due
to the irregularity of the surface. This results in the divergence
of X-rays in various directions, causing them to spread out
and hence the decrease in grayscale levels (Bossi et al., 2002).

The edges, in this case, were abrupt, while WAAM spec-
imens contain more smooth edges. Hence, the X-ray flux
encounters a more gradual change in density, leading to a rel-
atively lower amount of scattering compared to abrupt edges.
Therefore, the impact of scattering is less severe.

Implementation

The methodology to implement the proposed approach is
presented in Fig. 8. As it can be seen, the radiographic image
(Ro) and the 3D laser measurements data (Er) undergo, in
the beginning, separate processing. The thickness measure-
ments data are first corrected. Then, using the radiographic
image of a step wedge, the relationship between the thick-
ness and grey level is approximated using linear regression.
Based on this function, the corrected thickness data (Ec) are
converted into a virtual radiographic image (L). Concerning
the radiographic image, the Heel effect is first corrected to
mitigate the effect of the non-uniformity of the X-ray flux.
Then, a matching is performed between the real radiographic
image (Rc) and the virtual one (L), by visually determining
the common part between the two images. Afterthat, Rc is
resized, by applying a downsampling operation to match the
dimensions of L.

Once the two types of data are processed,Rc is subtracted
fromL. Here, depending on the effects of defects on the grey
level (i.e., an increase or a decrease), the subtraction opera-
tion can result in negative and positive values. Therefore, two
images can be derived from the obtained result, one keeping
only the positive values of subtraction (S+) and the other
keeping the negative values (S−). Mathematically, the result
can be written as follows:

Sκ �
{
sκ
i j � κ

(
li j − rci j

)
i f sκ

i j ∈ R
κ

sκ
i j � 0else

, (9)
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Fig. 8 Flowchart of the implementation of the proposed approach, dL and dRc are the dimensions of the virtual and original radiographic images,
respectively

where κ is the plus or the minus operator, Sκ � (sκ
i j )i , j∈N,

L � (li j )i , j∈N, and Rc � (rci j )i , j∈N.
As mentioned earlier, the resulting image S+ should high-

light defects generating an increase in the optical filmdensity,
such as the presence of porosities, lack of fusion or cracks.On
this result, these defects will appear in white, and the healthy
zones in black. While the resulting image S− should high-
light metallic inclusion type defects, for example tungsten
used in inert gas tungsten (TIG) welding.

Applications

Weld bead

In order to test the efficiency of the proposed approach, a
bead on a plate was considered. Firstly, a radiographic image
of the bead and a step wedge was obtained. It is presented in
Fig. 9a. Here, the image quality indicators (IQIs) were added
to assess the quality of the resulting image. These indicators,
which contain multiple wires of increasing diameter, are typ-
ically used in radiographic testing to evaluate the visibility
of essential details in the radiographic image, especially the
size and shape of the detectable discontinuities or defects
(Solomon et al., 2013).

The weld bead heights were measured using a 3D laser
system. The result is shown in Fig. 9b. The measured heights
were then converted into grey level using the linear regression
model shown in Fig. 9c. In this case, the value R2 was around
0.99, which means that there is a strong linear correlation
between the thickness and the grey level.

An example of a profile of Rc (green curve) and that of L
(blue curve) crossing the weld are given in Fig. 9d. It can be
noticed that the subtraction between the two profiles, shown
also in Fig. 9d (red curve), is almost zero at the beginning
because there is a perfect matching between the two curves.
Then, some clear differences can be observed. They represent
the hole drilled from the back wall of the plate along with
the IQIs, which were added when performing radiographic
testing. At the end of the two curves, a shift between them
can also be noticed. This might be due to the abrupt change in
the height of the weld seam after this position. The obtained
results are presented in Fig. 10, which shows from top to
bottom Rc, L, S+, and S−.

Visually, the grey level of the weld in L is very close
to that of Rc. Figure 10c is the resulting subtraction image
S+. This figure shows that the weld is almost completely
erased and highlights the differences between Rc and L. We
can clearly notice the IQIs that were added to the specimen.
However, the dark cercle inRc disappears in this result. This
is because the result of subtraction is negative in this case.
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Weld

Step wedge 

Image quality indicators 

a
b

c d

Fig. 9 Radiographic image of a weld bead (a), laser measurements (b), linear regression model (c), and result of the application of the proposed
approach on a single profile (d)

Thus, it will rather appear in the complementary image (i.e.,
resulting image S−) as it is shown in Fig. 10d. It can be
remarked, however, that in S−, the weld seam is still visible.
This is probably due to some errors, which include linear
regression, scattering noise, etc.

WAAMwalls

Manufacturing

Experimental configuration The considered WAAM speci-
mens in this study are two walls with the following dimen-
sions: 200 mm length, 100 mm width, and 20 mm height.
The used robotic manufacturing cell is shown in Fig. 11. It
is equipped with a KUKA KR30 robot, a KRC4 controller,
and a TPS4000 generator with Cold Metal Transfer (CMT)
technology (Selvi et al., 2018).

The used filler material is a C-Mn steel wire of type
ER100S-G/G 69 4 M21 Mn3Ni1CrMo. Its chemical com-
position is shown in Table 1. The sheet used as baseplate is
S355 steel with a thickness of 20mm. It allows dissipation of
the heat generated by the succession of deposits and ensures

a certain rigidity, which limits the deformations. Before each
deposit, this baseplate was grinded to remove the oxide layer
on the surface and then cleaned with acetone to remove all
traces of grease.

Optimization of the deposition parameters The optimal
manufacturing parameters are presented in Table 2. Some of
these parameters were selected according to the filler mate-
rial in order to obtain a stable arc and therefore, a regular
deposit. The parameters that can have a significant impact
on the geometry of the deposit are the wire feed rate and the
deposition rate.

The methodology used to select the optimal deposition
parameters is based on a trial-and-error approach. It is pre-
sented in Fig. 12. It consists in successively constructing
single beads and small walls to validate the manufacturing
parameters according to arc instabilities, lack of regularity,
or the presence of defects. More precisely, the objective at
the beginning is to weld a single beadwith different wire feed
and deposition rates to have different geometries (height and
width). To do so, three values of wire feed rate were studied:
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Fig. 10 Result of the application of the proposed approach on a weld bead: Rc(a), L (b), S+ (c), and S− (d)
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Fume extractor

CMT generator

a b

WAAM part

Fig. 11 WAAM robot (a), and zoom over the working table (b)
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Table 1 Chemical composition of the filler material

Si C Mn Cr Ni Mo Cu V P S Ti Zr Al

0,6 0.08 1,6 0,3 1,4 0,25 0,15 0,08 0,01 0,01 0,002 0,002 0,005

Table 2 Manufacturing parameters

Synergy law C1640

Stick-out 15 mm

Gaz flow Ar + 20% CO2/18 L/min

Temperature between layers 150 °C

Wire feed rate (m/min) 7.5

deposition rate (cm/min) 40

5, 7.5 and 10 m/min. The deposition rate values vary from
20 to 160 cm/min.

The characterization of each weld bead is done using a
3D laser scanner to determine its geometrical characteristics
(i.e., width and height of the bead). It is important to know
here the relationship between the geometry of the weld bead
and the deposition parameters to optimize the choice of these
parameters.

Once the deposition parameters have been selected
according to the geometry and regularity of a signal bead,
they were tested for the manufacturing of small walls. The
deposition strategy chosen to make the walls is a round trip
in the longitudinal direction. It is composed of three passes

per layer. This strategy, which is shown in Fig. 13, is alter-
nated in each layer to improve the geometric regularity of
the wall. Actually, the striking that causes an abundance of
material balances the extinguishing, which produces a lack
of material, and vice versa.

At this stage, the validation of the deposition parameters
takes into account the presence of internal defects and the
evolution of the geometry during manufacturing. Therefore,
each layer is first characterized using a 3D laser scanner after
its deposition. This allows to study the evolution of the top
layer shape during the manufacturing process. Then, the wall
is checked over multiple sections using macrographic anal-
ysis. The deposition parameters are considered as optimal if
no defects are found on the different extracted sections.

Indeed, this approach for selecting optimal manufacturing
parameters is time-consuming and costly. Nevertheless, with
regard to the current state of the art, there is no other effi-
cient method, which can be used for this purpose. Actually,
this approach is still being used even in welding to estab-
lish the welding procedure specification (WPS). Different
researchers have proposed to apply machine learning tech-
niques to address this issue (Juang & Tarng, 2002; Xu et al.,
2015; Zhang et al., 1996). The problem is that these tech-
niques were performed in laboratory conditions and so they

Fig. 12 Methodology to find the
optimal manufacturing
parameters
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parameters 

Single bead 
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Characteriza�on

Good?
No

Yes

Wall 
manufacturing 

Characteriza�on  

Good?
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Op�mal manufacturing 
parameters

No

Be
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Fig. 13 Illustration of the
manufacturing strategy

Striking

Ex�nguishing

1/3

2/3

Zones of porosity

a b

Fig. 14 Manufacturing a wall having defects: experimental setup (a), and porosities locations (b)

are difficult to embed in a production line as they require the
construction of a database with complete characteristics of
thewelds (i.e., welding parameters, geometrical andmechan-
ical properties of the weld).

Defects creation The defects were obtained by altering the
gas protection during deposition. To do so, the fume extractor
was placed close to the deposition area as shown in Fig. 14(a).
In this case, the air flow strongly disturbs the gas protection
and results in arc instability and hence the occurrence of
porosities.

These defects were created in two zones of the wall: at
1/3 and 2/3 of its height as shown in Fig. 14b. In the first
zone (located at 1/3), the fume extractor was only activated
during the deposition of the central bead of the layer and
during deposition of two consecutive layers. Thus, the beads
located on the edges do not have any disturbance of the gas
protection. Concerning the second zone (located at 2/3), the
fume extractor was activated during the deposition of the
whole layer and during the deposition of two consecutive
layers.

Testing

Defect-free wall A defect-free wall, shown in Fig. 15a, was
obtained using the found optimal manufacturing parameters.
As it can be noticed, the top-right cornerwasmachined to add
a step wedge. Radiographic testing was performed over this
specimen using the parameters shown in Table 3. Then, the
obtained radiographic film was digitized with a resolution of
50 μm. The result is shown in Fig. 15b. 3D laser measure-
ments were also performed on this specimen. The result is
presented in Fig. 15c.

Wall with intentional defects The proposed approach has
been also applied on a second wall that contains intentional
defects namely, porosities. The manufactured wall is shown
in Fig. 16a. The radiographic parameters were kept the same
as for the healthy wall except the use of a D3 detector with a
time exposure of 13 min. The obtained X-ray film was then
digitized, and the result is given in Fig. 16b. After that, the 3D
laser scanning was performed in order to measure the surface
profile of the specimen. The result is presented in Fig. 16c.
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Fig. 15 Defect-free wall: Photography (a), its radiographic image (b), and its 3D laser scanning image (c)

Table 3 Parameters of
radiographic testing Current Voltage Source-detector

Distance
Exposure
time

Pre-filter Filter Detector

4.5 mA 200 kV 700 mm 7 min 1.5 mm Cu 0.2 mm
Pb

Agfa D4

Fig. 16 Second manufactured wall: Photography (a), its radiographic image (b), and its 3D laser scanning image (c)

It is important to note here that to enable perfect matching
between radiographic image and 3D measurement image, a
small rod was added to the surface of the specimen on two
different diametrically opposed positions.

To avoid machining the part of the specimen contain-
ing the step wedge as in the case of the defect-free wall,
radiographic testing of step wedge was performed sepa-
rately. However, using the same operational parameters, the
radiographic result was not satisfactory. Actually, the signal

saturation masks the separation between the step wedge lev-
els. It was found that the main parameter that improves the
result is the exposure time. Figure 17 shows the obtained
results for three different exposure time.

Application of the proposed approach

Defect-free wall The real radiography (Rc) and the virtual
one (L) of the defect-free wall are given in Fig. 18a and
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Fig. 17 Influence of the exposure time on the result of radiographic
testing of a step wedge: 10 min (a), 11 min (b), and 13 min (b)

b, respectively. The image Rc seems to be blurry compar-
atively to L. One possible reason for this difference is the
phenomenon of scattering in radiographic testing. Besides,
the two drilled holes in the specimen, clearly shown inRc, are
not properly presented inL. Actually, the one on the top-right
is not shown and the one on the bottom-left is represented by
white spot which indicates that measuring errors happened
at this position.

A profile from the images Rc and L along with the result
of subtraction are shown in Fig. 18c. This result shows that, at
this position where the profiles were taken, a nearly perfect
match is noticed between the two profiles except near the
edges. The green curve shows the result of subtraction, which
is very close to zero.

The subtraction results between Rc and L are presented
in Fig. 19. Figure 19a represents the resulting image S+. As

expected, the grey level is almost uniform for thewhole spec-
imen except the machined corner where the step wedge was
added and somewhite randomspots that are due tomeasuring
errors when performing 3D laser scanning. As a reminder,
this specimen was manufactured using optimal manufactur-
ing parameters. It is supposed thus to be free of defects.

The resulting image S− is presented in Fig. 19b. Unlike
S+, this result presents some features that are probably due to
an overestimation of the relationship between the thickness
of the specimen and the grey level.

Wall with intentional defects Concerning the second wall,
the Rc image is shown in Fig. 20a. After converting the
measured thicknesses using 3D laser scanner into grey level
values, the resulting image L is shown in Fig. 20b. Clear dif-
ferences between the images can be noticed especially for
the second position of defects (i.e., location 2/3 shown in
Fig. 14b). However, as in the previous example, it can be
noticed that Rc is blurry than L. Besides, the grey level of L
is relatively brighter than that of Rc. This issue is probably
due to the data of the step wedge used in the linear regression
as the exposure time was not the same for the specimen.

Figure 20c shows a profile extracted fromRc andL cross-
ing the two positions of defects. The blue profile is obtained
from real radiography and the red one from the virtual radio-
graphy. In the beginning, the two profiles seem to be perfectly
matched that’swhy the result of subtraction (i.e., green curve)
is close to zero. At the first position of defect, a change of
behaviors between the two curves can be noticed. At the end,
an overestimation of the values of thickness is observed. This
results in subtraction errors.

The results of subtraction are shown in Fig. 21. In the
resulting image S+, the positions of defects are clearly high-
lighted. This is because the surface roughness is significantly

Fig. 18 Defect-free wall: Rc (a), L (b) and profiles obtained from Rc and L along with the result of subtraction (c)
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Fig. 19 Results after application
of the proposed approach on a
defect-free wall: S+ (a), and S−
(b)

Fig. 20 Wall with intentional defects: Rc (a), L (b), and profiles obtained from Rc and L along with the result of subtraction (c)

mitigated. However, in the resultS−, the representation of the
surface roughness remains visible except for the first posi-
tion of defects where these patterns are barely visible. In the
second position of defects, some porosities can be noticed in
black color.

In order to clearly quantify the added value of proposed
processing approach, two curves representing the sum of the
rows of Rc and that of S+ were first obtained. These curves,
presented inFig. 22, show that the presenceof defects induces
large variation of the amplitude in the case of the processed
data, especially for the second defect zone.

Then, a statistical measure called detectability index (DI)
was derived, which can be written as follows:

DI � σ(defective zone)

σ (healhty zone)
, (10)

where σ is the standard deviation.

The healthy zone was fixed at the first 150 values, the
same window (i.e., 150 values) was taken for the defective
zones. The results are depicted in Table 4. They show that
the standard variation of the amplitudes of the first defective
zone for processed data is almost four times bigger than that
of the healthy zone while for the original, this value is almost
the same, which means that statistically, it is difficult to dis-
criminate between the healthy and defect zones in this case.
Concerning the second defective zone, the standard deviation
of the amplitudes for the processed data is almost 27 times
compared to the healthy zone while it is only 2 times for the
original data.

Validation

To evaluate the effectiveness of the proposed approach, a
comparison with other NDT methods namely phased array
ultrasonic testing and computed tomography was performed.
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Fig. 21 Results after application of the proposed approach on the second manufactured wall: S+ (a), and S− (b)

Fig. 22 Comparison between the
result of defect detection using
original data and processed data.
These curves were obtained by
summing the rows of Rc and that
of S+

Table 4 Results of the detectability index of the two identified zones of
defect

Processed data Original data

DI (defect zone 1) 3.61 1.03

DI (defect zone 2) 27.55 2.00

Phased array ultrasonic testing Phased array (PA) ultra-
sonic testing is a very popular NDT technique used to inspect
and evaluate the integrity of materials and structures. It
employs multiple ultrasonic elements arranged in a phased
array probe, allowing for the generation of ultrasonic beams
that can be focused and steered electronically. The received

signals are used to generate a visual representation of the
internal structure of the material.

In order to enable the application of this technique in our
case (i.e., avoid the constraint of surface irregularities), the
scanning was performed from the substrate side as shown in
Fig. 23a. The characteristics of the used PA probe are given
in Table 5.

The result is shown in Fig. 23b. As it can be seen, the two
lines of the intentionally created defects are clearly shown.
It is worth noting here that for the ease of interpretation of
this result, the interface and backwall echoes were removed.
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Fig. 23 Result of defect detection using phased array ultrasonic tech-
nique applied on the second manufactured wall

Computed tomography X-ray computed tomography was
applied on the same wall. Details about the working prin-
ciples of this technique and its application to additive man-
ufacturing parts are discussed in (Khosravani & Reinicke,
2020).

In the present work, a specific acquisition procedure was
used. Actually, the projections obtained at certain angular
positions during the 360° rotation leading to high crossed
thickness were not taken into account for the reconstruction.
To enable a clear look on the inside of the specimen, cross-
section areas at different positionswere extracted. The results
are presented in Fig. 24. These results confirm the positions
where the defects were intended to be created and show the
distribution of the porosities at these positions.

Table 5 Characteristics of the
used PA probe Manufacturer Type Frequency

(MHz)
Number of
elements

Inter-element
distance (mm)

Height
(mm)

IMASONIC Linear
arrays

5 64 0.1 10

De
fe

ct
 zo

ne
 2

u
w

v

u

v

w

v

De
fe

ct
 zo

ne
 1

Fig. 24 Tomography results obtained from the wall with intentional defects
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Conclusions and perspectives

This paper proposed a novel approach to improve defect
detectability and interpretation of radiographic testing results
onWAAMparts. The approach involvesmeasuring the thick-
ness of the part using a 3D laser scanner and converting these
values into grey level image. Then, subtracting the digitized
real radiographic image of the specimen from the obtained
image.

One of the significant advantages of this proposed
approach is that it eliminates the need for grinding or milling
to perform radiographic testing. While the results obtained
were promising, some improvements are still required tomit-
igate the effects of the scattered photons. Besides, special
attention has to be paid to the range of thickness provided by
the step wedge to construct the linear regression model. This
range should include the range of thickness of the WAAM
parts. Otherwise, the constructed model could give inaccu-
rate estimate of the gray level for a given thickness.

Future work will focus on optimizing the operational
parameters in radiographic testing by increasing the source
energy tomitigate the effect of scattered photons. In addition,
digital radiography will be applied since the digital detectors
exhibit a linear response as a function of the exposure, which
should result in a more reliable relationship between the
thickness and the observed gray level. Furthermore, image
processing techniques based on feature recognition will be
employed to ensure automatic matching between the original
and the virtual radiographic images.
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