Journal of Intelligent Manufacturing
https://doi.org/10.1007/s10845-024-02327-0

®

Check for
updates

Simulation-based metaheuristic optimization algorithm for material
handling

Carolina Saavedra Sueldo™2@® - lvo Perez Colo"2@® - Mariano De Paula’2® - Sebastian A. Villar'-2
Gerardo G. Acosta'?

Received: 1 September 2023 / Accepted: 9 January 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Modern technologies and the emergent Industry 4.0 paradigm have empowered the emergence of flexible production systems
suitable to cope with custom product demands, typical in this era of competitive marketplaces. However, production flexibility
claims periodic changes in the setup of production facilities. The level of flexibility of a production process increases as the
reconfiguration capacity of its facilities increases. Nevertheless, doing that efficiently requires accurate coordination between
productive resources, task planning, and decision-making systems aiming to maximize value for the client, minimizing non-
added-value production tasks, and continuous process improvement. In a manufacturing system, material handling within
manufacturing facilities is one of the major non-value-added tasks strongly affected by changes in plant floor layouts and
demands for producing customized products. This work proposes a metaheuristic simulation-based optimization methodology
to address the material handling problem in dynamic environments. Our proposed approach integrates optimization, discrete
event simulation, and artificial intelligence methods. Our proposed optimization algorithm is mainly based on the ideas
of the novel population-based optimization algorithm called Q-learning embedded Sine Cosine Algorithm, inspired by the
Sine Cosine Algorithm. Unlike those, our proposed approach can deal with discrete optimization problems. It includes in
its formulation a reinforcement learning embedded algorithm for the self-learning of the parameters of the metaheuristic
optimization algorithm, and discrete event simulation is used for simulating the shop floor operations. The performance of
the proposed approach is evaluated through an exhaustive analysis of simple to complex cases. In addition, a comparison is
made with other comparable optimization methodologies.
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Introduction

I. P. Colo, M. De Paula, S. A. Villar and G. G. Acosta have contributed

equally to this work. Today’s manufacturing companies are facing a wide range

of obstacles and challenges. Production tends to be person-
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works and communicate in real-time horizontally with each
other and vertically with customers, users, and suppliers.

Computer systems monitor manufacturing processes, cre-
ating a virtual copy of the physical world and making
decentralized decisions (Motta et al., 2019). This concept,
called Digital Twin (DT), has recently generated much
interest in academia and industry (Staczek et al., 2021). Fur-
thermore, this has been accompanied by an increase in related
publications. There is excellent potential in operating digital
twins as agent-based systems that cooperate towards specific
goals, with emerging benefits for the overall system (Jones
et al., 2020).

14.0 also includes technologies such as Cyber-Physical
Systems, the Internet of Things, Big Data, Cloud Computing,
Cloud Manufacturing, Robotics, and Simulation. Therefore,
it considers a broad set of new technologies (software and
hardware) that operate in integrated systems (Benitez et al.,
2023) intending to achieve greater process flexibility. More-
over, even in these times, there is already talk of Industry
5.0 as a new paradigm, which includes concepts such as a
humanized vision of the industry, circular and sustainable
manufacturing, and future needs of society (Lu et al., 2023;
Barata and Kayser, 2023; Golovianko et al., 2023; Pizor and
Gola, 2023).

On the other hand, Lean Manufacturing is a management
philosophy of a company or organization and a long-term
strategy (Womack et al., 2007). It was developed in the
1950s in Japan at the Toyota Company and can be summed
up with the phrase “do more with less”. In other words, it
implies making more efficient use of available resources.
Time and material waste are identified and eliminated to
maintain quality and reduce manufacturing costs (Alkhoraif
et al., 2019). The fundamental part of this philosophy is to
focus on the company’s activities that add real value. This
concept includes several engineering and management tools
and methods, some of which are: 5 S, Justin Time (JIT), Total
Productive Maintenance (TPM), Continuous Improvement
(Kaizen), Total Quality Management (TQM), Zero Defects,
Kanban, Standardization of Tasks, Value Stream Mapping
(VSM), among others (Shah and Patel, 2018; Akkari and
Valamede, 2020).

The Lean methodology identifies eight wastes of an
organization that must be minimized to achieve efficiency
and effectiveness in production systems, seven of which
were raised by Taiichi Ohno (Ohno, 1988). These wastes
are overproduction, waiting, unnecessary movements, trans-
portation, inventory, defects, overprocessing, and unused
talent. The minimization of these factors directly impacts
production costs and the company’s competitiveness. And
identifying these wastes is always the first step.

The ideas of Lean Manufacturing and 14.0 have been inte-
grated into a new organizational paradigm called “Lean 4.0”
(Langlotz et al., 2021). Methods from one paradigm can be
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supplemented by technology from another, and vice versa.
While these paradigms, Lean Manufacturing and 14.0, may
seem quite different, Lean 4.0 offers promising opportuni-
ties for the future of organizations if they can combine them
synergistically to improve efficiency (Marinelli et al., 2021).

Returning to Lean wastes, transportation may be defined
as a necessary operation that adds no value to a manufac-
turing process. Concerning the plant floor, material handling
(MH) is vital in a manufacturing facility, but it frequently
adds unnecessary time and expense (Adeodu et al., 2023;
Yamazaki et al., 2017). The inefficient transportation of raw
materials or products in the process directly influences the
business’s productivity and profitability. It also impacts other
Lean wastes, such as waiting in manufacturing and finished
and in-process inventories.

This situation is related to two fundamental problems that
have been treated for years in operations optimization: the
traveling salesman problem (TSP) and the capacitated vehi-
cle routing problem (CVRP). These problems are considered
NP-hard combinatorial problems. In the TSP, given a list
of nodes and the distance between them, one must find the
shortest possible path to visit each node and return to the
original one (Wang and Tang, 2021). Formally, an instance
of a TSP can be defined in a graph as a set of nodes and
edges. Each node has its characteristics, and a possible solu-
tion to the problem involves defining a path, that is, a specific
sequence of nodes that satisfies the problem’s constraints. On
the other hand, in the specific case of a CVRP, there is another
node called the warehouse, and the original nodes represent
clients, each with a particular demand. Each route starts from
the depot and visits a subset of clients sequentially (Yaoxin et
al., 2022). It is a directed graph. And the goal is to minimize
the distance of the tour. This situation is the case with the
MH problem on the plant floor, where, given an initial point,
different workstations are visited to supply it.

However, in flexible production systems, the shop floor
could be modified. Consequently, using graphs-based opti-
mization methods to address lean minimization problems
could be cumbersome since they must be refactorized every
time there is a change in the configuration of the productive
system. Instead, using discrete-event simulation-based meth-
ods or, even more, digital twin-based strategies gives a more
realistic description of the system.

In this context, this study makes a proposal that com-
bines discrete event simulation (DES), optimization, and
artificial intelligence (AI) for the MH problem on the plant
floor that has been little explored in the literature for flexible
workshop floors in manufacturing plants. Our proposed opti-
mization algorithm is mainly based on the ideas of the novel
population-based optimization algorithm called Q-learning
embedded Sine Cosine Algorithm (QLESCA) (Hamad et al.,
2022), inspired by the Sine Cosine Algorithm (SCA) (Mir-
jalili, 2016) and its discrete version recently presented in
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the work of Gupta et al. (2022). In addition, to improve the
convergence performance of our proposal, we embed a rein-
forcement learning algorithm into the formulation. In this
way, our proposal can learn a behavioral law of the explo-
ration/exploitation parameter that significantly influences the
algorithm’s performance.

Notably, during the literature review, a non-significant
amount of previous works in SCA applications have been
identified for discrete optimization problems and even less so
for the MH problem in flexible production systems. In sum-
mary, this work’s main contributions address minimizing a
non-value-added task, mainly focusing on the MH problem
where multiple resources are considered, vehicle routing and
resource synchronization are posed, and a methodology for
solving the proposed formulation is developed.

The paper is structured as follows: in section ‘“Related
work”, the related work; in section “Methodological back-
ground”, the methodological background; in section “Meta-
heuristic DSCA using RL-optimized parameterization laws
for MH optimization”, the proposal developed and applied to
the case study; in section “Results and discussions”, the cor-
responding results; and finally, in section “Conclusion and
future work”, the conclusions and future work.

Related work

The concept of Lean 4.0 has emerged strongly in several
investigations lately, combining the Lean philosophy with
the new paradigm of 14.0 and treating them as complemen-
tary elements. Several works can be found where concepts
regarding this combination of factors are reviewed or raised,
or possible methodologies for their application are speci-
fied (Dillinger et al., 2021, 2022; Kolla et al., 2019). Some
researchers suggest that a combination of Lean, simulation,
and optimization may be crucial in the future to improve
organizations’ efficiency. This combination can improve
the traditional decision-making process, accelerate system
improvements and re-configurations, and support organiza-
tional learning (Uriarte et al., 2018). However, there are few
concrete articles of application in various case studies.

In Cifone et al. (2021), two current forms are proposed
for this integration. The first perspective suggests Lean as a
foundation for I14.0 implementation, arguing that controlled
and optimized processes can be a prerequisite for any digiti-
zation process. In contrast, the second perspective shows 4.0
as a necessary complement to Lean, based on the great per-
sonalization of the demand that the current situation implies,
where 14.0 represents a means that Lean can exploit to adapt
to new trends in the world. In this work, we demonstrated this
last trend using 14.0 tools for optimizing the MH problem and
eliminating Lean waste in a conjunction of both paradigms.

On the other hand, the intersection of advanced technolo-
gies and industrial applications implies the development of
DT technology and strategies for human—machine collabo-
ration to make more efficient operational environments. In
this sense, for the MH task, integrating Autonomous Mobile
Robots and robot manipulators (Ghodsian et al., 2022) in the
shopfloor could bring new ways for managing the material
along the processes of transformation and their manipula-
tion in the warehouses. In the recent work of Staczek et
al. (2021), DT technology was used to assess the correct-
ness of the design assumptions adopted for the early phase
of implementing an autonomous mobile vehicle in a com-
pany’s production hall. However, the work mainly focuses
on efficiently developing the DT. A step forward is dis-
cussed in Kiyokawa et al. (2023), where a review analyzes the
prevalent approaches focusing on understanding the current
difficulty and complexity definitions and outstanding human-
robot collaboration assembly system issues. Similarly, this
new trend of human—machine integration is addressed in Lu
et al. (2023), where a DT-based framework is presented for
coordinating teams of humans and robots, focusing on DT
technology as a central communication hub to enable col-
laboration between these entities. All these advances should
allow us to have more precise and real-time information about
the operating environment, which means that the case of MH,
whether carried out solely by robots or in collaboration with
humans, requires efficient optimization algorithms to solve
such problems.

Concerning the TSP and the CVREP, it can find several
methodologies for solving these problems, such as evolution-
ary algorithms (Akhand et al., 2015; Zhang and Yang, 2022;
Skinderowicz, 2022), various optimization methods (Diindar
et al., 2022; Singh et al., 2022), reinforcement learning (RL)
(Nazari et al., 2018; Ottoni et al., 2022), and neural networks
(Hu et al., 2020; Luo et al., 2022). Within the wide range of
optimization, a simple meta-heuristic algorithm called SCA
(Mirjalili, 2016) emerged a few years ago, showing excellent
results in various types of problems. Currently, it is being
used in a plethora of applications and can be found in multi-
ple research in several fields. For example, in Karmouni et al.
(2022), it is used to control and improve monitoring perfor-
mance in a photovoltaic system; in Issa (2021), it contributes
to measuring pairs of biological sequences in the context of
COVID-19, in Kuo and Wang (2022) it is used in a classi-
fication problem with mixed data, in Lyu et al. (2021) it is
used for the prediction of the resistance to axial compression
of circular columns and in Daoui et al. (2021) it is used for
the copyright protection of images.

However, despite the potential of SCA, at least during our
literature review, we have not found relevant applications in
decision-making systems for the manufacturing process.

The original article shows that the SCA can be highly
effective in solving real problems with restricted and
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unknown search spaces and that it converges, avoiding
local optimum. In addition, it has a reasonable execution
time and a straightforward implementation (Benmessaoud et
al., 2021). Although this is true, several authors developed
improvements or variants of this algorithm that increased
its robustness or speed of convergence by adding certain
meta-heuristics or hybridizations, such as Abdel-Baset et al.
(2019); Li et al. (2018) and Al-qaness et al. (2018).

However, few articles have been found where problems
with solutions of a discrete nature are dealt with (Yang et al.,
2020), and no works have been developed where SCA can be
applied to manufacturing systems or MH problems. We have
rescued the article developed by Gupta et al. (2022), where
they implement the Discrete Sine Cosine Algorithm (DSCA)
and apply it to the programming of urban traffic lights as a
basis for our proposal.

On the other hand, to solve routing problems, many works
use graph theory for its resolution (Gouveia et al., 2019; Lei
et al., 2022; Duhamel et al., 2011). However, using DES and
digital models of manufacturing systems, we can not only
represent a static layout but also take advantage of the poten-
tial of simulators to study complete systems. This allows us
to have production statistics, stock, and failures, among oth-
ers, and get a more realistic representation of the production
process for the problem formulation.

In this work, we demonstrate that successful results are
obtained without expert knowledge when using the proposed
optimization method together with process simulation. This
makes it easier for established industries to implement Lean
4.0 ideas, and this concept has been little addressed in the lit-
erature for flexible shop floor applications in manufacturing
plants.

Methodological background
Discrete event simulation

In the current context, the decision-makers of productive
companies are increasingly facing complex situations where
they must maximize both production, economic, and sus-
tainability objectives that often conflict with each other. The
simulation of systems for the development of virtual mod-
els constitutes an essential tool to support decision-making
so that companies can evaluate their operational policies to
maximize the use of resources and quickly adapt to environ-
mental changes.

Among the simulation methodologies available, DES is
mainly used in manufacturing systems to evaluate, test, and
improve the performance of processes at low cost, with-
out intervening in them or their actual operation (Furian et
al., 2015). DES is the process of encoding the behavior of
a complex system as an ordered sequence of well-defined
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events. These events occur at particular times and mark a
state change in the system (Kiran, 2019). Because no changes
occur between events, discrete event models can directly sim-
ulate the occurrence time of the next event, and long time
intervals can be significantly reduced.

14.0 has even given way to the concept of digital twins,
given the decisive irruption of the industrial Internet of things
together with cyber-physical systems, where physical sys-
tems are connected with their simulated virtual twins in
real-time. This makes monitoring and controlling them effi-
ciently possible (Saavedra Sueldo et al., 2022). According
to Semeraro et al. (2021), digital twins are “a set of adaptive
models that emulate the behavior of a physical systemin a vir-
tual system, obtaining data in real-time to update throughout
its life cycle. They replicate the physical system to predict
failures and opportunities for change, prescribe actions in
real-time to optimize or mitigate unexpected events, and
observe and evaluate the operating profile of the system”.

Briefly, discrete event simulation offers the opportunity
to test multiple solutions within a short time efficiently. It
enables the analysis of various scenarios until the optimal
one is discovered. In the context of MH problems, discrete
event simulation using a manufacturing plant simulator pro-
vides the advantage of working with dynamic environments.
It allows for considering perturbations and changes that are
challenging to model using traditional methods commonly
used in routing problems, such as graphs with vertices and
arcs to represent the shop floor. Moreover, DES facilitates
comprehensive data collection on industrial systems and dif-
ferent Lean wastes, in addition to evaluating factors like
distances, routes, and statistical information across areas
like maintenance, production, and quality management. This
holistic approach ensures a precise assessment of the impacts
of implemented actions on the entire production system (Ben
Moussa et al., 2019).

Optimization

Optimization is finding the optimal values of the parameters
or variables involved in a problem and maximizing or min-
imizing the final result. Thus, in an optimization problem
formulation, we aim to maximize or minimize an objective
function f(x) subject to certain constraints. The objective
function can be linear or non-linear. Values that can be con-
trolled and influence the system are called decision variables
(Winston, 2004).

There are several approaches to solving different opti-
mization problems (Thirunavukkarasu et al., 2023; Gambella
et al.,, 2021). We can locate stochastic algorithms among
the many methods for tackling this sort of issue. These
techniques treat optimization problems as black boxes. This
means that the derivation of mathematical models is unnec-
essary because such optimization paradigms simply modify
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the system’s inputs and monitor its outputs to maximize or
minimize them. Another significant advantage of viewing
problems as black boxes is their high adaptability, which
means that stochastic algorithms adapt to problems in var-
ious domains. In addition, black-box optimization methods
are designed to deal with complex systems with complex
behavior to be accurately modeled without making excessive
simplifications and assumptions that may affect the represen-
tation of the system. However, these methods can converge
slowly or get stuck in local minima. On the other hand, meta-
heuristics are fundamental for solving complex optimization
problems because they can produce acceptable results in a
reasonable amount of time, making them suitable replace-
ments for accurate algorithms (Karimi-Mamaghan et al.,
2022).

The stochastic and metaheuristic optimization algorithm
used in this article is based on the one developed by Mirjalili
(2016) called SCA. This algorithm is simple and effective,
and it was proposed to optimize real problems with unknown
search spaces. It is a population-based optimization algo-
rithm; that is, it starts with several random initial candidate
solutions that are updated when compared with the best avail-
able solution. These solutions are close to or far from the
best solution based on a mathematical model based on sine
and cosine functions. In addition, there are four parameters
integrated into the algorithm r1, r2, r3 and r4 that allow man-
aging the exploration and exploitation of the search space or
feasible zone. The fundamental equation is the following:

r4 < 0.5
rqe > 0.5

X' = {Xl’ + ri *ksin(rp) * [r3 P! — X!, "

X!+ 1y xcos(rp) * [r3 Pl — X1,

where X! is the position of the current solution at iteration
and dimension i and P/ is the position of the best solution
found so far at this moment. The formulaof rj isr; = a—t %,
where a is a constant, ¢ the current iteration and 7 the max-
imum number of iterations of the algorithm. r, is a random
number that varies between 0 and 277, r3 is a random number
that varies between 0 and 2, and r4 is a random number rang-
ing between 0 and 1. The SCA pseudocode is shown below
in Algorithm 1.

Algorithm 1 Sine Cosine Algorithm

Set 7 = maximum number of iterations
Initialize a set of search agents or solutions (X)
Evaluate each agent by the objective function
Update the best solution obtained so far (P = X*)
Whiler < T :
Update ry, 2, r3 and r4
Update search agents positions using Eq. (1)
Evaluate each agent by the objective function
Return the best solution obtained so far as the global solution

The MH problem in a productive system involves find-
ing the sequence of stations that make up a punctual route
that minimizes the distance traveled. In this sense, the opti-
mization problem requires dealing with discrete variables.
Therefore, it is impossible to use the SCA directly since it is
an algorithm for continuous variables. It is decided to adopt
a variant called DSCA developed by Gupta et al. (2022). The
fundamental equation of the SCA is discretized as follows
for the DSCA:

Xt =Xl & (Cl ® (X X)) @)
¢ _ | lri*xsinG2)|, r3>0.5
Ci = { |1 % cos(rp)|, 13 <0.5 &)

where the parameter r| = % is linearly ascending between
0 and 1, r is a random number ranging between 0 and 2,
and r3 is a random number ranging between O and 1.

As in the original SCA, X! is the position of the current
solution, where X/, is the best solution obtained so far. The
parameter Cf is used to decide the required change amount in
the current candidate’s position vector to obtain a new state.
Thatis, in X Z oX l’ the difference of positions of the vectors is
calculated: how many components in the solution vector X;
are different from the best solution found X ;. After the mul-
tiplication in Eq. 2, the final value is rounded to update the
solution, changing the number of characteristics or compo-
nents obtained. As can be seen by comparing Eq. (1) and (2),
in the discrete algorithm, there is one less parameter to con-
sider (71, 2, r3) concerning SCA. The DSCA pseudocode is
shown in Algorithm 2.

Algorithm 2 Discrete Sine Cosine Algorithm

Set 7' = maximum number of iterations
Initialize a set of search agents or solutions(X)
Evaluate each agent by the objective function
Update the best solution obtained so far (X )
Whiler < T :
Calculate for each agent the difference in characteristics of the
vectors: X!, © X!
Update 1, r, and r3; and calculate C}
Update search agents positions using Eq. (2)
Evaluate each agent by the objective function
Return the best solution obtained so far as the global solution

The performance of the DSCA is highly dependent on
the r; parameters. In this sense, we propose a version with
an embedded RL algorithm for the parameters self-tuning
policy learning.

Reinforcement learning

Within the different types of existing Al techniques, we can
highlight RL as being fundamental to the developments of
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recent years. This Al technique involves the interaction of
an intelligent agent with its environment, where it learns
based on trial and error. Learning from interaction is a fun-
damental idea underlying almost all theories of learning and
intelligence. RL is learning what to do, that is, how to assign
situations to actions to maximize a numerical reward signal
(Sutton and Barto, 1998).

Formally, the RL problem is described as a Markov deci-
sion problem (MDP), which requires the definition of a state
vector of the system, the set of possible actions to be taken
in each system state, and a reward function that rewards the
effects of the actions taken. In this way, the agent generates
its knowledge base and adapts its action policy 7 according
to the defined reward function. A policy describes the agent’s
behavior. In broad terms, it is a mapping from perceived sys-
tem states to actions to be conducted in those states.

MDPs are a classic formalization of sequential decision-
making, where actions influence immediate rewards and
subsequent situations or states. In more detail, the agent and
the environment interact in a series of discrete time steps
t = 0,1,2,3.... At each time step ¢, the agent receives
some representation of the state of the system s, and chooses
an action a; based on that representation. One step forward,
due to the taken action, the system evolves to a new state
S:+1, and the agent gets a numerical reward r,, .

One of the RL’s problems is the compensation between
exploration and exploitation. An RL agent should choose
actions aiming to maximize the obtained rewards. However,
to discover such actions, the agent must try some actions
that it has never tried before. Thus, the agent must exploit
what it has already experienced to gain a reward, but it must
also explore to make better decisions for future action. Nei-
ther exploration nor exploitation can be entirely carried out;
the agent must try a variety of acts and gradually improve
its behavior. Therefore, it is necessary to consider which
hyperparameters are used in the chosen algorithm and how
to balance this scenario (Sutton and Barto, 1998).

The Q-learning algorithm is one of the best-known RL
tabular algorithms. It was developed by Watkins in 1989,
and it is an incremental method that works by successively
improving the quality of particular actions in particular states
(Watkins and Dayan, 1992). The standard Q-learning was
developed to deal with finite and discrete state and action
spaces, S and A. The actualization values of the state-action
value function are shown in Eq. (4):

O(S:, Ar) < Q(Sr, Ap) 4
+o[Ri1 +y mj:lx O(St+1,a) — O(S:, Ap)]

where Q is the state-action value function, which can be
stored in a tabular way, s; € S is the system state at time 7,
a; € Aisthe action taken at time 7, « is the learning rate, and
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y is the discount factor. Regardless of which policy is used,
the learned action-value function Q directly approximates
the optimal action-value function Q*. Once Q* is known
through interactions, then the optimal policy 7*(s) can be
obtained directly through:

a¥(s) = max Q(S, a) 5)

It is proven that Q-learning converges to optimal action
values with probability one as long as all actions are sam-
pled repeatedly in all states and action values are represented
discretely (Watkins, 1989). As we will develop in the follow-
ing section, in our proposal, we embed an RL formulation
for optimal setting up the parameter | of the optimization
algorithm.

Metaheuristic DSCA using RL-optimized
parameterization laws for MH optimization

As we mentioned earlier, our proposed approach focuses on
the utilization of simulation, optimization, and RL techniques
to address MH challenges within a manufacturing facility.
Following, the performance of the proposed approach will be
tested in a case study, encompassing scenarios ranging from
less to more complex. This evaluation aims to assess the
proposal’s effectiveness across various realistic situations,
providing insights into its practical applicability and adapt-
ability. Finally, we will test the algorithm’s effectiveness in
reducing waste in the system.

Reinforced discrete sine cosine algorithm

MH optimization in production systems refers to efficiently
moving raw materials, work-in-progress (WIP), and finished
goods within a production facility during manufacturing.
The MH problem commonly requires decisions that involve
choosing a specific action from a finite set of options or
choices, where the variables involved can only take on dis-
crete values.

As we stated in section “Optimization”, the DSCA could
be used to solve the MH problem. Although SCA has been
utilized in several previous works, DSCA is a novel method
that has received little attention and has yet to be used to
address MH problems. The pseudocode shown above in
Algorithm 2 outlines the main steps of the DSCA. However,
as we will see in section“Results and discussions”, the stan-
dard DSCA underperforms our proposed algorithm to solve
the MH problem. This is mainly due to its convergence being
affected by the established values of the parameters r; in Eq.
3).

In order to improve the DSCA performance, we have
been inspired by another algorithm, based on SCA, called
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QLESCA, recently proposed by Hamad et al. (2022).
QLESCA includes a Q-learning formulation for the SCA
parameters selection. The algorithm Q-learning helps each
QLESCA agent to move adaptively in the search space
according to its performance, where the reward (or penalty)
is given based on the agent’s achievement. Each agent has
a Q — table, where the parameters r| and r3 are obtained
based on the chosen state and action. Algorithm 3 out-
lines the QLESCA original pseudocode. Although QLESCA
improves the performance of SCA, it was developed to deal
with optimization problems in continuous domains, and the
MH optimization problem requires discrete solutions. So,
taking Algorithms 2 and 3 into account, we develop the pro-
posed Reinforced Discrete Sine Cosine Algorithm, referred
as R*DSCA outlined in the pseudocode shown in Algo-
rithm 4.

Algorithm 3 Q-learning embedded Sine Cosine Algorithm

Set 7' = maximum number of iterations
Initialize a set of search agents (X) and the corresponding Q-tables
Evaluate each agent by the objective function and save the solutions
Update the best solution obtained so far (P = X*)
Whiler < T :
For each agent:
Calculate the current state S; of each agent
Choose an action A; and act
Update ry, r;, r3 and ry
Update search agents positions using Eq. (1)
Update the best solution of each agent:
If the solution is better: Reward = 1
Else Reward = -1
Update Q-tables using Eq. (4)
Return the best solution obtained so far as the global solution

An important novelty of our proposed R* DSC A is that we
have developed a mechanism for finding an optimal way to
learn to increase the r| parameter. The coefficient 1 is known
as a transition control parameter, and its main function is to
strike a balance between diversity and convergence during
the search procedure (Gupta et al., 2022). The value of this
parameter should preferably be increased across iterations to
provide a transition from exploration to exploitation of the
search space. As we see below, including a learning mecha-
nism for rq selection substantially improves the algorithm’s
performance. In this way, the transition control parameter r{
could be updated following some behavior law. However, the
possibility of learning a behavior law introduces an additional
degree of freedom to the algorithm that can be taken advan-
tage of to improve its performance. That is, instead of fixing
a function that describes that behavior in advance, we can
learn to build a monotonic increasing function from a finite
set R of more elementary functionsr; j € R, j=1,...N
using the Q-learning algorithm. So, in order to implement
a tabular version of the Q—learning algorithm in a simple

Algorithm 4 R*DSCA

Set 7 = maximum number of iterations

Initialize a set X' of search agents and the corresponding Q; tables
for each agent X; € X

Evaluate f(X;)V X; € X and save the evaluations results, f;, such
that fi = f(X;)) e F,i=1,2,...,|X|

Update the best solution obtained so far, such that X; = g{neagg {fi €

F}
Whiler < T :
For each X! € X
Ifp<e:
Randomly set search agent position X! and evaluate f(X!)
Else:
Obtain the current state s, as the nearest s* € S to §; computed
by Eq. (6)
With 5 obtain r| = 7" (s;) = max Q(S,r) (Eq. (5)
Update r, and r3 randomly
Compute C! as in Eq. (3)
Update search agent position X! using Eq. (2)
Evaluate f (X))
Calculate the reward comparing f(X}) whit the best agent
solution
Update Q; using Eq. (4)
Return the best solution obtained so far as the global solution X4

way, we must have a set of finite states. Still, to convert the
r1 selection problem into a purely discrete finite MDP, defin-
ing a strategy to deal with discrete states remains. Therefore,
we must define the states of the MDP. We define the space
of states S in the domain [0, 1], such that each s; is an inter-
val contained in §, such that s; C S with s; = 1, .., m and
the states sy, ... s, are congruent intervals into the domain
of S. Additionally, we define the current relative distance Bf
between the solutions found and the optimal solution as:

XL e X!
3; — % (6)
where the numerator indicates the number of feature differ-
ences between the solution found and the optimal solution,
and the denominator indicates the length of these solution
vectors. So, the current state s; will be that s* € S clos-
est to the current value (Sf . That is, for each agent at each
instant, 8; will be calculated, and the corresponding state
will be found. In this way, using this strategy, we obtain a
finite-state machine to describe the MDP, and consequently,
the Q-learning algorithm could be used to obtain the optimal
function for r| according to the current state s;, following the
state-action value function given in Eq. (4).

Returning to the step-by-step explanation of Algorithm 4,
we see that it starts from a random solution. Then, each agent
is evaluated by means of the objective function, and the pro-
posed solution is saved. Then, the best solution is obtained.
Continuing with the central part, which is the population
evolution, as we can see, sometimes, with a probability ¢, a
random solution is taken (line 7, 8) and is evaluated through
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simulation, following on the other hand with the evolution of
the algorithm.

It can be seen in lines 10-17 the Q—Ilearning section,
where for each agent is obtained the current state and the
action execution, as explained above. Once the value of r|
is calculated, r» and r3 are randomly updated. Using Eq. (2)
and (3), the agent’s positions are updated, and their function’s
evaluation results are saved. The exact elements are kept to
update the agent’s position, and the order of the different fea-
tures is updated randomly to generate a new solution. For the
Q—learning reward, we compare the best solutions obtained
for each agent with the current agent solution, and then the Q
— tables are updated. Finally, the best solution for the popula-
tion is returned. For a better comprehension of the developed
algorithm, Fig. 1 shows a flowchart of it.

Case study
Problem definition

In the present work, the problem presented in Gola and
Ktosowski (2019) is adapted as a case study. In particular,
the benchmark problem has a high complexity where an MH
problem is stated for a manufacturing plant, and itis solved by
optimizing the routes of automated guided vehicles (AGV).
The presented problem has a manufacturing system compris-
ing 20 workstations and an autonomous vehicle.

The transport system of the case study has two fundamen-
tal tasks at certain times: delivery of parts to the workstations
and collection of parts from the workstations. There is only
one point of departure and arrival for the vehicle: the dis-
patch station. Once the vehicle has departed from this point,
the route remains fixed, and there are no further changes.

Several aspects of the original problem are maintained in
this work. For example, the plant layout and the stations’
working times. Also, the load sizes for each station. And the
initial stocks are equal to the load at each station. These data
can be consulted in Table 1. The dispatch station is located
at point (0, 0).

The final objective of the study is to minimize the distance
traveled by the vehicle on each route that must be developed.
Before this, it is decided by predetermined fixed rules to
which stations the vehicle should travel. It is also determined
whether the transport should carry or remove materials from
these stations. This will depend on the state of the stations,
that is to say, the time remaining until the stock runs out and
the amount of final stock in each.

R*DSCA Setup
For this particular problem presented in the previous sub-

section it will be defined here the main characteristics of
our proposal. As mentioned, Q-learning finds the best val-
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Table 1 Case study data (Gola and Ktosowski, 2019)

Workstation Initial Stock (u) Time machining a load (s)
1 50 4000
2 60 4200
3 20 4000
4 20 4800
5 10 4000
6 40 4000
7 40 4000
8 30 3900
9 20 4000
10 10 4000
11 20 4000
12 50 5000
13 30 3750
14 10 4000
15 20 4000
16 30 6600
17 10 4000
18 50 4000
19 25 3500
20 25 3500

Table 2 States for R*DSC A setup

S, 1 2 3 4 5

S; Values  [0;0.2] (0.2;04] (0.4;0.6] (0.6;0.8] (0.8;1]

ues of r ; for each iteration. Four increasing functions were
chosen for the parameter r, ;. Three of them were worked
in the interval (0, 1) and the rest in the interval (0, 0.5). The
formulas are shown below, and Fig. 2 shows the graphs corre-
sponding to an interval of 30 iterations. Therefore, the actions
A, of the algorithm will be the different functions r; ; whit
j=1...4

L 7

=7 7
t

- 8

T, T (8)

ry=1—e )
t2

I"14 = ﬁ (10)

Regarding the necessary space of states S in the domain
[0, 1] to apply the RL, five states were defined based on the
current relative distance 55 (Eq. (6)), such that s; C S with
sz = 1, ..., 5.The states can be seen in Table 2. Therefore, in
our proposal, each O — table has five states and four actions.
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Regarding the reward, what is detailed in Algorithm 3 was
maintained; that is, if the solution found by the agent is better
than the one obtained so far, the reward is 1; otherwise, it is
-1.

Finally, ¢ was set at 0.20. And, when applying Q-learning,
the internal parameters o and y were set to values of 0.1 and
0.9, respectively. These values are the most commonly used
empirically in the literature. In addition, the agent was trained
following an e-greedy exploration strategy, with a decay of €
with the course of the episodes from € = 1 to a minimum value
€ =0.01, to improve the exploration-exploitation strategy.

Computational environment setup

For the modeling of the system and environment for the exe-
cution of the algorithms, it was decided to use the software
Tecnomatix Plant Simulation (TPS) from Siemens. This soft-
ware allows us to easily and quickly model and visualize
productive systems. It is an object-oriented software that can
customize and adapt these objects by adding specific pro-
gramming. Figure3 shows the model built in TPS for the
problem in question. As can be seen, the routes are fixed,
and the stations have a single place for loading and another
for unloading.

The proposed optimization algorithm R*DSCA was
developed in Python language. In addition, the computa-
tional implementation uses the software architecture SimulAl
(Perez Colo et al., 2020) previously developed in the group
(Saavedra Sueldo et al., 2022, 2021). This architecture was
developed by our team earlier and allowed us to interconnect
different entities and exchange information between them.
SimulAl is a library that facilitates the use of Al techniques
to optimize variables derived from the Simulation of Flexi-
ble Manufacturing Systems. The objective is to improve the
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decision-making process in organizations, making it more
efficient and safe. In this case, we mainly use SimulAl to
encapsulate the TPS simulations with our computational
algorithmic formulation.

The Python code comprises a general simulation of the
plant and similar simulations that are opened and closed by
running a specific path in the optimization algorithm to test a
point solution. The overall simulation for the first phase of the
problem (deciding where to go) is continuously monitored,
and the algorithms are used to find the best possible route
sequence.

The complexity of the developed model is O(T * |X]),
with 7 the number of iterations and | X| the number of ini-
tial solutions. The algorithmic developments of this work,
as well as the details of the case study, are available in the
digital repository https://github.com/carosaav/Simul Al/tree/
master/RDSCA%?20algorithm

Results and discussions

Initially, in section “R*DSCA assessment” to show the per-
formance of our proposed R* D SC A optimization algorithm,
we consider four sub-problems (or scenarios) with different
complexity levels based on the problem presented in section
“Problem definition”. We start addressing the least complex
sub-problems, then another with intermediate complexity,
and finally, a more complex sub-problem than the other two
are addressed. When dealing with tractable problems with a
few workstations, we can find the global optimal solutions
by simulating all possible solutions. In this way, we take
advantage of having the plant simulator, which allows us to
simulate all possible solutions and accurately identify the
optimal one. Thus, the solution that gives the best objective
function value will be the optimal one. Then, this optimal
solution will be used to compare the solution found using
our proposal.

Once we demonstrate the performance of our proposal,
in section “R*DSC A assessment for waste reduction”, we
address the whole problem presented in section “Problem
definition” and illustrate the applicability of our proposed
algorithm for a large case considering waste reduction.
However, finding the optimal global solution using inten-
sive computational simulations is impracticable when faced
with complex scenarios with several workstations since
extremely large (or prohibitively) computational processing
times will be required. As we have previously stated, the
main problem has 20 workstations. Therefore, this gives rise
to 2.432902e+18 (20!) possible routes (feasible solutions).


https://github.com/carosaav/SimulAI/tree/master/RDSCA%20algorithm
https://github.com/carosaav/SimulAI/tree/master/RDSCA%20algorithm
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Fig.3 Simulation model of the case study

R*DSCA assessment

As detailed above, we consider four sub-problems explained
below to assess the performance of R*DSCA. Following,
in section. “Results for R* DSCA”, we show the results
obtained when R*DSC A is used to solve these cases. Then,
in section “Performance comparison”, we compare perfor-
mance against another comparable methodology, the DSCA,
for the same cases.

Results for R*DSCA

Sub-problem A

To begin with, the initial sub-problem is simple, made up
of only five stations out of the 20 that make up the complete
original system. In this case, only workstations #1, #4, #06,
#15, and #16 are considered, and Fig. 4 shows the configu-
ration of the resulting system. To analyze the performance
of the proposed algorithm, we designed four testing experi-
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ments for this sub-problem. The results of each experiment
are summarized in Table 3.

In order to determine how the initialization affects the
solution found by the algorithm, we have run experiments
with a fixed initial population and with a random one (men-
tioned in the 2nd column of Table 3). In both cases, the initial
population includes six initial feasible solutions. In addition,
to determine how the number of iterations affects the solu-
tion found by the algorithm, we have run experiments with
different numbers of iterations, 7', given in the 3rd column
of Table 3. As previously explained, for this problem, the
optimal theoretical solution, denoted as Oy, is found by sim-
ulation of all feasible solutions. It is given in the 4th column
of Table 3.

For each experiment, due to the stochastic nature of the
proposed R*DSC A, the value D, shown in the 5th column
of Table 3, corresponds to the average of the results (Dy,)
obtained for m = 10 repetitions of such an experiment. It is
computed as in Eq. (11). The optimal solution, D*, found by
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Table3 R*DSC A experiments on sub-problem A

Experiment  Initialization T Oy D D*

1 fixed 30 3743m 386.6m 3743 m
2 fixed 50 3743m 380.6m 3743 m
3 random 30 3743m  3850m 3743 m
4 random 50 3743m  3759m 3743 m

the algorithm is given in the last column of Table 3, and it is
obtained as in Eq. (12).

m
_ " D,
D,:Q; t=1...T an
m
Df =max{D;} ; j=1...m (12)
J
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It can be verified that, for this simplified sub-problem, the
algorithm always finds the optimal solution and that most of
the tests are close to this solution since the average solution
of each one is very close to the optimal one.

Sub-problem B

In this case, we address a variant with the same complex-
ity as in the previous case, i.e., we take into account only five
workstations too, but now we take into account the worksta-
tions #2, #7, #9, #14, and #19. Therefore, the resulting shop
floor setup is as in Fig.5. In the same way, as in the previ-
ous case, we repeat the same experiments, and the obtained
results are given in Table 4. Once again, the successful per-
formance of the algorithm can be seen in all the tests since
Algorithm 4 consistently achieves the optimal solution, that
is, D* = Oys. Also, another issue that can be observed is that
the initialization of the algorithm does not affect its perfor-
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Table4 R*DSC A experiments on sub-problem B

Experiment  Initialization T Oy D D*

1 fixed 30 382.0m 3867m 382.1m
2 fixed 50  382.1m 3822m 382.1m
3 random 30 382.Im 384.0m 382.1m
4 random 50 382.1m 3822m 382.1m

mance. Therefore, we will consider only random initiations
for the following experiments to avoid bias.

This is to highlight that in the case of a flexible production
system, the periodic reconfiguration of production facilities
is a frequent issue since the facilities must be reconfigured
to meet different production requirements.

For both sub-problem A and sub-problem B, the proposed
optimization algorithm successfully reached the optimal
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solution of the problem. This demonstrates that, in addition to
arriving at the optimal solution for MH, our proposal is appro-
priate for use in these types of reconfigurable production
systems. Next, to demonstrate the successful performance of
our proposal, we will present other considerably more com-
plex cases.

Sub-problem C

This sub-problem is more complex than the previous ones,
and it is composed of seven workstations, which are #2, #5,
#7, #9, #11, #14, and #19, and the resulting shop floor setup
is shown in Fig. 6.

This sub-problem is larger than the previous ones because
the space of feasible solutions increases. Consequently, giv-
ing the algorithm a greater possibility of exploration is
logical. Therefore, we include three additional experiments
by increasing the maximum number of iterations, 7 .
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Table5 R*DSC A experiments on sub-problem C

Table 8 Experiment deviations

Experiment T Oy D D* Experiment DSCA deviation R*DSC A deviation
1 30 504.1 m 5342 m 504.1 m Al 2.175% 3.295%
2 50 504.1 m 525.5m 504.1 m A2 2.766% 1.695%
3 100 504.1 m 517.2m 504.1 m A3 3.730% 2.860%
4 200 504.1 m 515.0m 504.1 m A4 3.295% 0.435%
5 500 504.1 m 509.4 m 504.1 m Bl 2.156% 1.182%
B2 1.176% 0.001%
B3 3.525% 0.491%
Table6 R*DSC A experiments on sub-problem D B4 1.664% 0.004%
Experiment T D D* Cl 8.178% 5.962%
C2 5.737% 4.243%
1 50 724.1 m 677.2 m c3 7 018% 2 600%
2 100 684.0 m 653.1 m ca 2 862% 2 161%
3 150 671.2m 611.3m s 0.785% | 047%
4 200 658.0 m 598.9 m
5 500 613.5m 566.4 m

Table 5 summarizes the results obtained. As can be seen,
the algorithm always finds the optimal solution, D* = O,
even when it runs with low iterations. As in the previous
cases, in the 4th column of Table 5, it can be seen that as
T increases, the algorithm’s performance improves since the
mean of the found optimal solutions decreases.

Sub-problem D

To finish with the performance analysis of the algorithm,
we are going to consider a complex problem in which we
have ten workstations: #1, #2, #4, #8, #9, #11, #12, #14,
#15, and #19 and the production system setup results as in
Fig. 7. Unlike the previous cases, we do not have the theoret-
ical optimal solution Oy. Thus, we analyze the algorithm’s
performance as the number of iterations 7" increases.

Table 6 shows the obtained experimental results. It is
observed that the greater the number of iterations 7, the
smaller the average distances obtained. Therefore, the opti-
mal solutions found D* are also better.

As we have hinted, the proposed simulation-based meta-
heuristic algorithm, R* DSC A, contributes to determining
MH policies for flexible production systems, where the
reconfiguration of the facilities can be carried out frequently
to meet different production requirements.

Performance comparison

Following, we continue with a performance comparison of
our proposal against another comparable methodology to
address sub-problems A to D. Specifically, we use the origi-
nal DSCA. For the DSCA application (Guptaet al., 2022), the
difference in features of the vectors implies the discrepancy
in the sequence of the routes tested. In addition, with a cer-
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tain probability (p = 0.20), the choice of random solutions
is added to increase the exploration of feasible solutions.

In the same way, as in the previous case, all the tests
were repeated ten times with six initial solutions for each
experiment. Summarizing, below in Table 7 are the results
of the experiments with the DSCA for these four different
sub-problems. It is verified that in almost all cases, DSCA
finds the optimal solution, but the R*DSC A achieves bet-
ter average results, demonstrating better performance than
DSCA.

Finally, to carry out this performance comparison, we have
only considered those experiments for which we have the
optimal solution Oy. So, for each experiment carried out for
each sub-problem, in Table 8, we computed the deviation
between the obtained D by DSCA and R*DSCA, respec-
tively, and the optimal solution Oy;.

Analyzing the results presented in Table 7 and Table 8§,
it can be inferred that the performance of our proposed
R*DSCA is higher than DSCA, reaching fewer deviations
in 11 of the 13 first cases with known optimal solutions.

In the case of sub-problem D, for the comparison, we
build some graphs that show the convergence curves for both
algorithms (Fig. 8) used to find an optimal solution for this
stated problem. By having a random start to the algorithm,
there are different starter points, but a convergence at smaller
distances can be observed in R*DSC A in all the figures.

R*DSCA assessment for waste reduction

Summarizing up to this point, we have tested the algorithms
on different sub-problems with different configurations and
verified their effectiveness. We have demonstrated that the
DSCA with RL parameterizing laws has the best perfor-
mance. Now, another testing stage begins, where experiments
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Fig.6 Simulation model of sub-problem C

are run for the complete system of 20 stations (Fig. 3). There-
fore, this problem is even more complex than the previous
ones and has too many feasible solutions. In addition, we
verify that the developed proposal not only optimizes the
distances but also helps to reduce other Lean wastes.

For this stage, several rules based on different transport
route sequences that organizations may use in their daily
operations are tested against the performance of R*DSCA.
The objective will be to verify if the R* DSC A optimization
of MH impacts the Lean waste of the system, specifically
transportation, waiting, and inventories, which we will check
in the simulator.

The first three cases have no built-in optimization sys-
tem, so the transport is directed in a given order to fulfill
the required route following a rule. In case 1, the order of
the sequence or scheduling rule is random. This would be
the case for an organization that does not provide any plan-
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ning for the transport of materials due to a lack of knowledge
or resources. In case 2, the vehicle is directed in ascending
numerical order to the stations, following the layout. In case
3, transport maintains the priorities given by the initial part
of the system. This part is mentioned and explained in sec-
tion “Case study”, the scenario with more logic for handling
materials because it considers the state of the stations and
their buffers. Finally, case 4 is the application of our pro-
posal R*DSCA with T=100. The limit for the number of
workstations to be covered by the transport on the same trip
remains ten.

Ten repetitions of cases 1 and 4, which contain random-
ness, are carried out. Cases 2 and 3 are fixed for a given initial
situation. It is verified in the TPS software that the distances
traveled by the vehicle, the time that the stations must wait
for parts, and the remaining stock at the end of the simu-
lations are lower with the developed algorithm. Therefore,
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it is possible to reduce three significant wastes in any pro-
duction system, significantly impacting costs and business
productivity.

Tables 9 and 10 show the best results obtained for each
case. The production period tested in the first table is 2 h for
each test, while in the second table, it is 8 h. In all cases, we
start from the same initial situation to be able to compare.
The last column of these tables shows the waiting time of the
system station that most had to wait from the twenty stations.

Tables 11 and 12 show the Lean waste reduction per-
centages when comparing the first three cases against our
proposal R* DSCA. In a few tests and with a small number
of algorithm iterations (T = 100), minimizing such waste is
significant in both cases.

Finally, to conclude this section and with the experiments
carried out, the general 8-hour production period simulation
was tested with the four rules but no longer with restrictions
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Table 9 Results for 2-hour production period with T = 100

Totaldistancetraveled Total final Maximum  waiting
stock time at station
Rule 1 3709.0lm 681 u 11.85%
Rule 2 3453.09m 703 u 11.93%
Rule 3 3670.53m 681 u 11.36%
R*DSCA 2923.67Tm 660 u 9.46%

on the number of stations that can cover the transport in a
single tour. In this scenario, the application of R*DSCA is
performed with T=200. The results are shown in Tables 13
and 14. Once again, the algorithm’s high performance and
waste reduction results are confirmed, mainly in the waiting
time of stations.
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Table7 DSCA experiments on

the four sub-problems Sub-problem  Experiment  Initialization  No. of stations T Oy D D*
A 1 fixed 5 30 3743m  3824m 3743 m
A 2 fixed 5 50 3743m 384.6m 3743 m
A 3 random 5 30 3743m 3883m 3743 m
A 4 random 5 50 3743m 386.6m 3743 m
B 1 fixed 5 30 382.1m  3904m  382.1m
B 2 fixed 5 50 382.1m  386.6m  382.1m
B 3 random 5 30 382.1m  395.6m  382.1m
B 4 random 5 50 382.1m  388.5m  382.1m
C 1 random 7 30 5041m 5454m 5173 m
C 2 random 7 50 5041m 533.1m 504.1m
C 3 random 7 100 504.1m 5395m 504.1m
C 4 random 7 200 504.1m 518.6m  504.1 m
C 5 random 7 500 504.1m 508.1m  504.1 m
D 1 random 10 50 - 744 7Tm 6784 m
D 2 random 10 100 - 708.6 m 6592 m
D 3 random 10 150 - 691.3m  659.7m
D 4 random 10 200 - 669.3m 631.4m
D 5 random 10 500 - 623.3m  571.5m

Table 10 Results for 8-hour production period with T = 100

Table 13 Results for 8-hour production period with T = 200

Total distance traveled Total final Maximum  waiting Total distance traveled Total final Maximum waiting
stock time at station stock time at station
Rule 1 18422.83 m 1064 u 16.39% Rule 1 18728.23 m 808 u 29.33%
Rule 2 15907.94 m 831u 15.45% Rule 2 16248.55 m 726 u 17.88%
Rule 3 18160.87 m 1072 u 10.45% Rule 3 19397.50 m 1014 u 29.05%
R*DSCA 15902.96 m 725u 8.50% R*DSCA 15782.52 m 705u 11.74%

Table 11 Waste reduction for 2-hour production period with T = 100

Transportation Stock Waiting
Rule 1 vs. R*DSCA 21.17% 3.08% 20.17%
Rule 2 vs. R*DSCA 15.33% 6.12% 20.67%
Rule 3 vs. R*DSCA 20.35% 3.08% 16.70%

Table 12 Waste reduction for 8-hour production period with T = 100

Transportation Stock Waiting
Rule 1 vs. R*DSCA 13.68% 31.86% 48.15%
Rule 2 vs. R*DSCA 0.03% 12.76% 45.00%
Rule 3 vs. R*"DSCA 12.43% 32.37% 18.63%

Advantages of the developed R*DSCA

It is worth highlighting some central aspects of our proposal.
One of the main contributions of this work is the develop-
ment of an optimization algorithm to deal with optimization

Table 14 Waste reduction for 8-hour production period with T = 200

Transportation Stock Waiting
Rule 1 vs. R*DSCA 15.73% 12.75% 59.97%
Rule 2 vs. R*DSCA 2.87% 2.89% 34.34%
Rule 3 vs. R*"DSCA 18.64% 30.47% 59.59%

problems involving discrete decision variables since many
plant floor problems can be formulated as discrete decision-
making problems.

In summary, our proposal stated a discrete formulation
of the Sine Cosine Algorithm with an RL-embedded algo-
rithm that allows for self-learning of the behavior law for
the exploration/exploitation parameters. Including reinforce-
ment learning to update a parameter provides more excellent
performance to the algorithm while generating a greater
degree of autonomy and independence from the intervention
of a human expert. However, this could even be considered to
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extend the idea to address the determination of other param- On the other hand, a central contribution of our work is
eters not considered in this study. using a discrete envent simulator like Tecnomatix since sev-

eral previous works use graph theory for this type of problem,
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providing less information. In addition, using a plant simula-
tor would allow not only measurements of the roads but also
other conditions, such as, to name a few, energy consump-
tion, equipment failures, and others. In this way, involving
the interconnection with a plant simulator paves the way to
interact with a digital twin of the system in the future. In this
sense, for example, we can more easily monitor system vari-
ables like waste in our case. In addition to having greater use
in the industry and much development, these technologies
allow migrating over time to a digital twin of the entire orga-
nization. This is a central issue for the future of Industry 4.0,
including new industrial metaverses (Alimam et al., 2023).

Finally, there is a stretch relationship between lean man-
ufacturing and material handling optimization algorithms.
Lean principles provide the global philosophy for minimiz-
ing waste and continuous improvement. At the same time,
optimization algorithms offer the tools and methodologies
to implement and enhance these principles in the context of
material handling and production processes. Together, they
contribute to creating more efficient, flexible, and responsive
manufacturing systems. The presented result demonstrated a
high performance and waste reduction for the stated material
handling problem.

Conclusion and future work

This work proposes a metaheuristic simulation-based opti-
mization methodology to address the MH problem in
dynamic environments. Our proposed approach integrates
optimization, discrete event simulation, and artificial intelli-
gence methods. A complex benchmark problem was
addressed to assess the performance of our proposal deeply.
In addition, based on that MH problem, more manageable
sub-problems were stated to test and compare our pro-
posal against other methodologies rigorously, and successful
results were obtained.

Furthermore, using a plant simulator like Tecnomatix
allowed us to study the complete production system and
monitor Lean waste linked to MH. It was determined that our
proposal contributes to reducing three wastes: transportation,
inventory, and station waiting.

Another contribution of our work worth noting is our
implementation since it uses a discrete-event plant simula-
tor with the SimulAI architecture. This fact opens a course of
action for future work since it allows, with a negligible effort,
interchanging information between a decision-support sys-
tem and a digital twin of a production system. This would
enable us to deal with diverse environments, face even more
dynamic problems, and address behavioral disturbances.

On the other hand, new trends in production sectors
claim for developments supporting flexible production sys-
tems driven by customized product demand. The Lean 4.0

paradigm can significantly contribute to this requirement
by promoting combining the concept of harnessing waste
reduction with 4.0 technologies. Our proposal was conceived
mainly to contribute to this issue since it was precisely raised
to address the MH problem for flexible manufacturing sys-
tems. As previously emphasized throughout the manuscript,
MH is one of the tasks that cause the most significant ineffi-
ciency in a production process. The time invested in moving
materials within a shop floor is a task with no added value in
the final product.

Also, as subsequent future work, it would be interesting
to assess the performance of our proposal for other kinds of
optimization problems related to the Lean 4.0 philosophy,
like minimizing the environmental impacts of manufactur-
ing activities in flexible plants. In addition, the developed
proposal could be used in other engineering optimization
problems, mainly those that can be formulated as optimal
control problems with partial information on the environ-
mental conditions.

Furthermore, another issue for future work is the configu-
ration of the algorithm’s hyperparameters, both those of SCA
and those related to the Reinforcement Learning setup. Tech-
niques such as Bayesian Optimization are possible new paths
for this topic.

Data Availability Data will be made available on request.
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