
Journal of Intelligent Manufacturing
https://doi.org/10.1007/s10845-023-02197-y

Predictive reinforcement learning: map-less navigation method for
mobile robot

Dmitrii Dobriborsci1 · Roman Zashchitin1 ·Mikhail Kakanov1 ·Wolfgang Aumer1 · Pavel Osinenko2

Received: 24 March 2023 / Accepted: 10 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The application of reinforcement learning in mobile robotics faces the challenges of real-world physical environments, in
contrast to playground setups like video games. In a mobile robot motion control, it is not always possible to perform episodes
of pre-training in large amounts due to time, resource limitations or other concerns. Controlmethods that rely on a prior explicit
map may be impractical or even impossible to use for new dynamic environments. In this paper, we present a method of local
navigation approach for driving a robot to a desired position without relying on an explicit map of the environment. Only the
laser scan measurements were used to determine the obstacles. We focus in this work on online methods of reinforcement
learning which do not require running the robot in full episodes until success or failure. However, the price for such an
online capability is that some model knowledge about the environment has to be utilized. Here, we propose an algorithm
called stacked Q-learning, which unifies aspects of standard reinforcement learning techniques with model-based predictive
agents. We compare this algorithm to a classical model predictive controller. The comparison focuses on the accumulated
cost of parking the robot avoiding obstacles. The results look promising as the stacked Q-learning beat its counterpart, model
predictive control, yet being of the same computational complexity. The suggested agent design of stacked Q-learning can
thus be taken as a foundation for a class of predictive reinforcement learning methods.

Keywords Reinforcement learning · Mobile robotics · Predictive control · Mapless navigation

Introduction

Themathematical apparatus underlying reinforcement learn-
ing (RL) allows autonomous learning of control policies.

B Dmitrii Dobriborsci
dmitrii.dobriborsci@th-deg.de

Roman Zashchitin
roman.zashchitin@th-deg.de

Mikhail Kakanov
mikhail.kakanov@gmail.com

Wolfgang Aumer
wolfgang.aumer@th-deg.de

Pavel Osinenko
p.osinenko@skoltech.ru

1 Technology Campus Cham, Deggendorf Institute of
Technology, Badstrasse 21, 93413 Cham, Bavaria, Germany

2 Center for Digital Engineering, Skolkovo Institute of
Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia
121205

One of the most distinguishable features of RL is the pro-
cess of learning by trial-and-error (Sutton & Barto, 2018).
However, despite recent developments and advances in RL
(Mnih et al., 2015; Silver et al., 2016; Yahya et al., 2017),
the main limitation of current RL approaches is associated
with data usage effectiveness. The required number of inter-
actions with the environment is quite large, which can be
impractical in real-world applications. For example, many
RL approaches, even for low-order systems and relatively
simple dynamics, require thousands of training iterations.
For this reason, in problems of control of technical systems
(in particular, robotics), the use of such approaches becomes
almost impossible, let alone more complex cases.

Over the past decade, RL methods have made remarkable
progress in several tasks and competitions such as Go, chess,
shogi, StarCraft II, and Rubik’s Cube (Akkaya et al., 2019;
Silver et al., 2016, 2018; Vinyals et al., 2019).While some of
these tasks are noweasily beatable byRLagents, recently, RL
has started moving towards technically-sound settings like
robot manipulation (Kumar et al., 2016; Borno et al., 2013;

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-023-02197-y&domain=pdf
http://orcid.org/0000-0002-1091-7459

Journal of Intelligent Manufacturing

Table 1 RL: model-based vs. model-free

Model-based Model-free

Descr An agent uses a system model An agent does not require a system model

Pros Stability guarantees could be obtained (García, 2015) Does not require to know a system model

Recognised by industry (Polydoros & Nalpantidis, 2017)

Cons An accurate model of the system should be known Has limited application in industry

The prediction error grows with the horizon (Xiao et al., 2019) Data collection is expensive (Sun et al., 2019)

Guaranteeing safety and

performance are complicated

Fig. 1 Robot with obstacles in the test environment

Tassa et al., 2012) and mobile robot navigation (Surmann
et al., 2020; Dobrevski & Skočaj, 2021; Guldenring et al.,
2020).

Here, we can note the similarity of the proposed approach
to model predictive control (MPC), which has already been
well studied and widely developed and implemented. The
use of predictive models in RL is already gaining popularity
in real-world applications. Thus, RL can be divided into two
large classes: model-free (Degris et al., 2012; Gullapalli et
al., 1994; Davari e tal., 2017) and model-based (Szita and
Szepesvári, 2010; Huang et al., 2020; Lambert et al., 2020).

Each approach has its own merits and demerits (see
Table 1).

In this paper, we study the effectiveness of online RL-
based autonomous navigation of a mobile robot (Fig. 1).

In this regard, the embedding of a priori known infor-
mation about the system model of the control object looks
promising. However, it is often difficult to identify the
dynamic model in itself and can lead to limited steady-state
errors due to inaccuracies. Nevertheless, a well-identified
model will allow the agent to learn online much faster, thus
minimizing or eliminating trial runs.

Related works The goal of the motion control is to
drive the robot to a desired position avoiding obstacles.
This problem can, of course, be solved using the classical
methods like simultaneous localization and mapping method
(SLAM). It solves this problem by prior environment map-
ping using a laser rangefinder. However, this approach is

time-consuming to build and update the environment map
and highly depends on the accuracy of the laser rangefinder
used to map and construct the local cost-map. Despite the
abundance of approaches to the navigation problem it is
still a challenge to rapidly generate appropriate navigation
behaviours for mobile robots without an obstacle map and
based on pure range sensor data or depth cameras.

RL-based map-less navigation There are several meth-
ods for achieving map-less navigation, and this section
focuses on laser range finder-based approaches, which are
closely related to the methods under study. While there are
also vision-based approaches (Mirowski et al., 2018; Kul-
hánek et al., 2021; Zhu et al., 2017), they are not within the
scope of this work.

The motion planners considered in this section are map-
free and unify the global planner and local planner. This
approach eliminates the need to create and maintain a prior
geometric map of the environment, which can have a signif-
icant impact on the final outcome of the motion planning.
Additionally, compared to supervised learning-based map-
less motion planning methods, RL-based methods can learn
and evolve directly from the interaction data between robots
and external environments, avoiding the need for the con-
struction of complex labeled expert data-sets.

One example of such an RL-based approach is the explo-
ration of deep RL methods for learning navigation problems
for wheeled mobile robots using intrinsic reward, as inves-
tigated in Zhelo et al. (2018). The approach was tested in
different scenarios without an explicit occupancy map of the
environment. Another example is the deep RL-based nav-
igation strategy proposed in Shi et al. (2020), which uses
an intrinsic curiosity module as a more general end-to-end
motion planner based on the A3C framework with sparse
Lidar data input. The proposed planner was successfully
deployed in a realistic mixed scene.

While these approaches have their advantages, they
require a pre-training procedure, which may not always be
feasible or practical. To address this issue, a hybridization
of RL methods with the optimal control theory’s well-
established apparatus, such as MPC, is studied in this paper.

123

Journal of Intelligent Manufacturing

This approach combines the benefits of RL-based learning
with the explicit computations of MPC, allowing for effi-
cient and effective map-less navigation without the need for
pre-training.

Fusion of RL and MPC Research into the hybridization
of reinforcement learning methods is attracting more and
more attention from scientists worldwide. There are attempts
to combine functional properties ofRL, such as accumulating
prior knowledge and the computational features ofMPC (see
e.g. Berkenkamp et al. (2017), Song and Scaramuzza (2007),
Napat et al. (2020), Hoeller et al. (2020)).

There are also some advances not only in theoretical
research. For example, applications of new online methods
in the context of complex engineering problems are studied
in Lenz et al. (2015), Drews et al. (2017). More details on
the prospects for hybridizing these two general approaches
and their benefits are outlined in several papers, e.g., here
Zanon and Gros (2021), Bhardwaj et al. (2020), Primbs et al.
(1999).

The primary focus of this work is to investigate the perfor-
mance of the recommended agents in experiments involving
a mobile robot. Previous research has already addressed
the issue of integrating safety and stability constraints, as
demonstrated in publications such as Osinenko et al. (2020),
Beckenbach et al. (2020, 2018), Osinenko et al. (2023).

Contribution This paper presents the results of exper-
imental studies of previously proposed model-based RL
algorithms for the mobile robot navigation problem with
obstacle avoidance. The peculiarity of the approach is that
there is no need to construct the environmentmap in advance,
which allows applying these approaches in an unknown
environment. Moreover, the approach under study does not
require prior training of the agent, which also removes the
energy-consuming pre-training and sim2real transfer prob-
lems. As a payment for such a feature, prior knowledge
of the models’ structure is required. The difference from
our previously published works is the implementing of an
obstacle recognition module based on laser rangefinder mea-
surements. Based on the sensory data constraint equations
were formulated and incorporated into the controller struc-
ture. At the same time, the computational complexity of the
proposed RL-based Stacked Q-learning (SQL) algorithm is
the same as that of the classicalMPC. This is explained by the
identity of the optimality property of SQL and conventional
dynamic programming. Thus, SQL is a legitimate Hamiltn–
Jacobi–Bellman optimal control method. Whereas in the
paper Osinenko and Dobriborsci (2021) exclusively simula-
tion studies on the effects of prediction horizon and sampling
were carried out. In the paper Dobriborsci and Osinenko
(2022), experimental studies without obstacle avoidance
were considered. Thus, this paper presents a generalization
of previously obtained results in the context of the map-
less navigation problem for mobile robots. Note that the

work confirms the previously obtained results, which are
summarized below. All necessary code and instructions for
reproducing the results are provided as anopen-source frame-
work (see Osinenko (2020)). This repository is a kind of
snapshot of the Rcognita Osinenko (2020) framework with
an additional ROS-preset [Robot Operating System (Quigley
et al., 2009)]. This framework Rcognita has wide versatility
and allows algorithms benchmarking for different models,
whether a wheeled robot, a walking robot, or any other
dynamical system.

The main results can be summarized as follows. Both
methods (MPC as a baseline, and proposed Stacked RL)
showed better performance at a longer prediction horizon,
which was expected. While SQL beat the baseline MPC in
terms of the cost. This shows potential of stacked approaches
as viable predictive RL modifications.

Preliminaries and background

Kinematic model of a nonholonomic mobile robot

Our study aims to validate our predictive RL-based motion
controller using a nonholonomic wheeled mobile robot
(WMR) Robotis© Turtlebot3 Burger through real-world and
simulation experiments.

At time t , the origin of the local coordinate frame (base)
of the robot is located at the point (x(t), y(t)) of the world
coordinate frame. The robot’s linear velocity v(t) along the
axes determines the direction of motion, while the angular
velocity ω(t) determines the rotation (refer to Fig. 2a). The
state vector x ∈ R

3 and the control input vector u ∈ R
2 are

defined as

x := [
x(t) y(t) θ(t)

]T
,u := [

v(t) ω(t)
]T

. (1)

The kinematic model of the WMR can be represented in
a state-space form as

ẋ = f (x,u) ←

⎧
⎪⎨

⎪⎩

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω,

(2)

where f (·) denotes a nonlinear function of states and control
inputs, x is the x-coordinate [m], y is the y-coordinate [m], θ
is the orientation of the robot [rad], v is the velocity [m/s],ω is
the angular velocity [rad/s]. Two advantages of aWMR robot
are its simplicity (typically the motor is attached directly
to the axle of each wheel) and high maneuverability (the
robot can spin in place by rotating the wheels in opposite
directions). Casters are often not appropriate for outdoor use,
however.

123

Journal of Intelligent Manufacturing

Fig. 2 Experimental system
overview

The robot’s states and control inputs may have specific
constraints. For instance, if the robot operates in a bounded
environment, its state vector should remainwithin the bound-
aries’ coordinates defined by xmin and xmax. Additionally,
the control inputs in real-world scenarios are constrained by
umin and umax, which are determined by the actuators’ capa-
bilities.

The task is to design such control law, which ensures the
fulfillment of the following condition

lim
t→∞ |e(t)| ≤ �, (3)

where e(t) = x(t)−xdes(t) is position error,� is admissible
accuracy.

In dynamic positioning, the main objective is to stabilize
the robot in a desired pose. Thiswork addresses this challenge
using reinforcement learning, which is a particular case of an
optimal control problem.

Notation For any z, denote {zi |k}Ni = {z1|k, . . . , zN |k} =
{zk, . . . , zk+N−1}, if the starting index k is emphasized; oth-
erwise, it is just {zi }N = {z1, . . . , zN }. If N in the above is
omitted, the sequence is considered infinite. The notation [N]
will mean the set {1, 2,…, N}.

Methodology

This section presents the algorithms used in the experimental
study. It begins with a general (digital) optimal control and
transitions to MPC followed by the stacked Q-learning.

In general, predictive control algorithms are designed to
improve the overall performance of the control system and
to improve quality indicators by using the future states of
the system. Evidently, higher prediction horizons lead to
higher computational complexity. At the same time, too short
horizon may lead to a failure to even stabilize the system.

Traditionally, MPC, which is discussed in the next section,
is considered as a standard predictive controller.

Model predictive control

One typical instance of an optimal control problem involves
a predictive digital controller that maintains constant control
actions throughout sampling intervals. The objective is to
minimize a cost function J in the following manner

min
κ

J (x0|κ) = min
κ

∑

i=1H

γ i−1ρ
(
x̂i |k, κ(xi |k)

)
,

s.t. D+x = f (x, uδ), x(0) = x0

xi |k := x((k + i − 1)δ), k ∈ N

uδ(t) ≡ ui |k = κ(xi |k), t ∈ [kδ, (k + i)δ] ,

x̂i+1|k = 	(δ, x̂i |k, ui |k) (4)

where x is the state, u is the action, ρ is the running cost
(also called reward, utility, etc.), κ is the control policy, H
is the horizon length, xk is the state at time-step k, γ is the
discounting factor, D+ is the a suitable differential operator,
δ > 0 is the digital controller sampling time, 	 describes
state prediction which can be , e. g.,a numerical integrator,
say, via Euler method:

	(δ, x̂i |k, ui |k) = x̂i |k + δ f (x̂i |k, ui |k). (5)

In terms of horizon, H depends on the context of the
problem and can be finite (H := N) or infinite (H := ∞),
whence care should be taken of prediction inaccuracy accu-
mulation (a more suitable system description could be pure
time-discrete where 	 produces future state exactly). When
H := ∞, J is also called “cost-to-go”. Based on the
described variants, two main optimal control formalisms are
commonly known, namely Euler–Lagrange and Hamilton–
Jacobi–Bellman (Primbs et al., 1999). The Euler–Lagrange

123

Journal of Intelligent Manufacturing

formalism is the foundation of MPC and describes the case
when H is finite. The resulting policy depends on the current
state. The Hamilton–Jacobi–Bellman, in contrast, is used to
describe globally optimal policies which only depend on the
initial state. In turn, an infinite horizon can be interpreted as
an open horizon—a situation in which the user is not sure
of the exact specification of the horizon. The optimal control
problemwith a finite horizon can be interpreted as an approx-
imation to the problem with an infinite horizon, whereas the
latter may well appear intractable. MPC, in one of its sim-
plest variants, is precisely (4) with a finite horizon. One of
the main features of it is that it has established convergence
analyses (Mayne, 2014). As for sub-optimality, increasing
the horizon reduces the mismatch between the factual cost-
to-go under MPC and the value function V = minκ J κ (the
optimized cost-to-go) (Grüne & Rantzer, 2008).

In contrast to MPC, RL has the HJB formalism as the
groundwork. It seeks to approximate the optimal cost-to-go
(or something related like Q-function or advantage func-
tion). While starting with different formalisms, integration
of predictive, “MPC-esque” elements into RL may actually
be viable.

Stacked Q-learning

A basic actor-critic, value-iteration, on policy QL reads:

uk := arg min
u

Q̂(xk, u;ϑk),

ϑk := arg min
ϑ

1
2

(
Q̂(xk, uk;ϑ)

−Q̂(xk−1, uk;ϑ−) − ρ(xk, uk)
)2

,

(6)

where ϑ is vector of the critic neural network weights to
be optimized, ϑ− is the vector of the weights from the
previous time step, Q̂(•, •;ϑ)—Q-function approximation
parameterized by ϑ . The latter approximation is effectively
the temporal difference (TD) in the value iteration form. It
may be generalized to a custom size experience replay. Let
ek(ϑ) = ϑϕ(xk−1, uk−1) − γϑ−ϕ(xk, uk) − ρ(xk−1, uk−1)

denote the temporal difference at time step k. Then, a more
general critic cost function may be formulated as

J ck (ϑ) = 1

2

k+M−1∑

i=k

e2i (ϑ), (7)

where M is the buffer size.
In stacked Q-learning (Osinenko et al., 2017; Beckenbach

et al., 2018), single Q-function approximation is substituted
with the sum of multiple Q-functions, which resulted in a
finite stack of Q-functions over a finite number of time steps
(see Alg. 1). One may seek to approximate not only the Q-
function for the current state, but also for a sequence of future
Q-functions. As a result, it is necessary to establish some

basic concepts for SQL. The generic Q-function under a pol-
icy κ reads, for a state xk :

Qκ(xk, uk) = ρ(xk, uk) + J κ(xk+1). (8)

The value function J ∗ and the Q-function are related as
follows:

J ∗(xk) := min
uk

Q(xk, uk) = ρ(xk, uk) + V (xk+1). (9)

A Q-function stack can be defined as Osinenko et al. (2016):

Q̄
(
xk, {ui |k}Ni

)
:=

N∑

i=1

Q(xi |k, ui |k). (10)

Under generic policies, the stack can be expressed as:

Q̄{κi |k }Ni (xk, {ui |k}Ni) =
N∑

i=1

ρ
(
xi | j , ui |k

)

+
N∑

i=1

∞∑

j=k+1

ρ
(
xi | j , κi (xi | j)

)
,

(11)

where i is a horizon index and j is an index for starting state
k update, {κi |1}Ni – stack of policies.

Compare it to a single Q-function case:

Qκ(xk, uk) = ρ (xk, uk) +
∞∑

j=k+1

ρ
(
x j , κ(x j)

)
. (12)

For a theoretical analysis of the SQL optimality, please refer
to Beckenbach et al. (2018).

Finally, a practical, neural network-based SQL actor
reads:

min
{ui |k }Ni

J aSQL

(
xk |{ui |k}Ni ;ϑk

)
=

N∑

i=1

Q̂(x̂i |k, ui |k;ϑk),

s.t. x̂i+1|k = 	(sδ, x̂i |k, ui |k),

(13)

In the final part of this section let us summarize the
main differences between the algorithms.StackedQ-learning
(SQL) is amodificationofMPCmethodbyhybridizing itwith
the core RL concept—Q-learning. The main idea is in eval-
uating the finite part of the infinite time horizon by stacking
Q-function approximations instead of stage cost. This can
be characterized as generalized predictive controller. This
option provides an opportunity to evaluate the influence of
the current action to not only N future steps but to all suc-
cessive steps, due to the Q-function properties.

For the reader’s convenience, these differences are sum-
marized in the Table 2. The following sections describes the
obstacle recognition module and experimental part of this
work.

123

Journal of Intelligent Manufacturing

Fig. 3 The overall scheme of
the algorithm

Table 2 Controller algorithms comparison

Controller MPC SQL

System dynamics xk+1 = f (xk , uk)

Optimal problem min
ak

k+N∑

i=k+1
γ i−1r(xi , ui) min

ak

k+N∑

i=k+1
Q(xi , ui)

Algorithm 1 A practical implementation of stacked Q-
learning
Input: System state x
while t < τ do

Critic update: ϑ∗
k := arg min

ϑk

J c = 1

2

Nc∑

k=1
e2k (ϑk) See eq. (7)

Actor update: {u∗
i |k}Ni = arg min

{ui |k }Ni
J aSQL

(
xk |{ui |k}Ni ; ϑ∗

k

) :=
N∑

i=1
Q̂(x̂i |k , ui |k; ϑ∗

k)

Apply u∗
1|k to the system

end while

Obstacle recognition

Themain purpose of this section is to implement safe obstacle
avoidance mechanism into the Rcognita framework. There-
fore, the algorithms of obstacle detection and avoidance
should be easily integrated into the functional sequence com-
posing pipeline and can be used out-of-box (Fig. 3).

The input data for the algorithm is the laser scan data
from robot’s LIDAR sensor received with some frequency.
This data contains information about the surrounding of the
robot. Then it undergoes the transformation consisting of the
following steps: preprocessing, segmentation,merging, split-
ting and classification. As a result of this procedure, the set
of circular and rectangular obstacles is obtained. This set is
further used for constructing functions having a special form
so that they could be passed to the conditional optimization
problem as constraints imposed on the state space. The opti-
mization problem consists in finding the minimum of the
target function (cost function) on the available part of space
in order to define the next action that would lead the robot
closer to the goal point whereas saving it from going into the
restricted area. The techniques to apply these constraints to
the state space can be various and will be discussed later.

Data processing

At this step, the stages of sensor readings processing are
performed, starting with obtaining data from LIDAR sensor.
These processes are performed according to the algorithms
taken fromDong et al. (2021) and Przybyła (2017), that have
been combined here, slightlymodified andwith hyperparam-
eters adjusted.

Lidar scans the entire space around robotwith a 360◦ view,
so the date comes in the form of a set of NR subsequent geo-
metric points depicted in polar coordinates and successively
equidistant in angular distance from each other. This set is
ordered so that the position of any point is defined by the
angle counted from the direction of the robot, equal to the
serial number, multiplied by a constant unit angle, which is
the angular distance between two adjacent points.

In order to describe the process of obstacle recognition,
let us introduce the following definition:

Definition 1 An obstacle is a set of n points in some
coordinate system that represents an object located in the
environment.

In this work, two types of obstacles will be considered:

1. linear obstacle—an object with a flat surface facing the
robot. It is characterized by two corner points.

2. circular obstacle—an object with a curved surface facing
the robot. It is characterized by a radius and a center of
circle approximating it.

A set of obstacles recognized in this work is defined as

O � L ∪ C,

where

• L is a set of linear obstacles.
• C is a set of circular obstacles.

As it was discussed above, this simple classification is
more multipurpose than using the convex hull of the point
set, which provides more freedom in the choice of inte-
gration mechanism of obstacle avoidance method into RL
algorithms.

123

Journal of Intelligent Manufacturing

The first step of the environment map construction is data
pre-processing and segmentation.

Here, the set of points becomes more compact and filtered
from extra data points. Lidar scanner has a bounded range of
distances therefore in case of obstacles at some angular dis-
tance being too far the corresponding point may be assigned
to infinity. Therefore, these points with incorrect values have
to be replaced with some quite large finite value while main-
taining the order of other points from lidar scanner.

Then, the set of points should be segmented into sepa-
rate blocks having strong connection acquired from practical
meaning. Two categories of segmentation process should be
introduced which is a complete segmentation and a partial
segmentation. An obstacle constructed from only one seg-
ment presents the process of complete segmentation. If an
obstacle is combined from several segments it is considered
to be partial segmentation (for example, wheels of the auto-
mobile). This option is more extensive so it will be applied
in the presented algorithm.

In order to describe a segmentation process, a distance
between two consecutive points i and i + 1 expressed in
polar coordinates should be introduced:

d(xi , xi+1) =
√
x2i + x2i+1 − 2xi · xi+1 · cos�φ, (14)

where

• xi and xi+1 present the ranges of points i and i + 1,
consequently,

• �φ is the default angle between twomeasurements deter-
mined by the equipment characteristics (equal to 1 deg in
this work)

Let us introduce W as the linear size of the robot used in the
experiments (W = 0.178 m). Then, the factor k representing
dynamic amplification is defined in the following form:

{
k = W ·Ri ·Ri+1

100(Ri+Ri+1)
, if Ri+Ri+1

2 > Td;
k = 0.15, if 0 <

Ri+Ri+1
2 ≤ Td;

where Td (set to 10 in thework) is a threshold of themeasured
distance.

In case of d being bigger than k · W , the point-cloud
instance is segmented into two smaller ones. The meaning
of the factor k is to consider the size of the robot when seg-
menting points to set the threshold for the distance between
individual segments. For instance, there is no necessity in
separating point cloud into two segments if the distance
between them is too narrow for robot to pass through. There-
fore, it is possible to simplify the map without distortion of
the results. The following principle defines the process of
unifying some segments into one after the segmentation is

complete. Since the robot in unable to pass through the gap
of size L: L < W , the merging of segments divided by this
gap would improve the algorithm and simplify the map. In
order to perform this process, these segments are artificially
unified by adding a compensating points between them (let
us name the segment corner points as p and q). Then the
polar coordinates for the range and angle for i-th compen-
sated point can be defined as follows:

ri := rp + i · rq − rp
N

(15)

θi := θp + i · θq − θp

N
(16)

where

• N—required number of points is defined by using the
average distance dmean of the consequent points in both
segments: N = L

dmean• rp, θp, rq , θq—ranges and angles of two corner points
p and q between which the artificial points are placed,
respectively

The process of segments splitting, followed by merging,
is performed according to the Algorithm 2.

After the described procedures a set of point clouds
describing obstacles is obtained the classification of obsta-
cles is performed. The types of obstacles utilized in this work
were described above. The choice of two simplest shapes—
line and circle—is stipulated by several factors. The first one
is resource economy accompanied by computational com-
plexity reduction. The shape of obstacles affect conditional
optimization complexity significantly. Another one is main-
taining the size of the available area since complicated shapes
would increase the restricted area and narrow the admissible
action space.

The process of obstacles classification is described in
Algorithm 2. If

Nmod = �0.8 · RavgN� > TN = 10

the line segment or segments is constructed and added to
the set L. If Nmod < TN , which means a relatively small
sized point cloud, it is considered to be a circular obstacle.
To obtain the radius of the circle extracted from a laser scan
point cloud block, the center of the circle as the midpoint of
line segment connecting the first and the last points of the
block is obtained and the distance between the center and the
farthest point in the block is defined as radius. The formed
circle-type obstacle is appended to the set O. Considering
that robot equipment is unable to detect obstacles located
too close to the sensors and the time required to change the
trajectory, accompanied by thewaiting time for odometry and

123

Journal of Intelligent Manufacturing

lidar readings a safe buffer was being added to every obstacle
by increasing the radius of circular objects and sizes of linear
objects in both dimensions. Therefore, the circular obstacles
expanded in size whereas linear obstacles transformed into
rectangles.

In Fig. 4 the realization of all the described operations
can be observed on the example. In this example, two linear
(rectangular) and two circular obstacles are located in the
environment in which robot operates. In the next section, we
continue with constraint functions design.

Considering that robot equipment is unable to detect
obstacles located too close to the sensors and the time
required to change the trajectory, accompanied by the wait-
ing time for odometry and lidar readings a safe buffer was
being added to every obstacle by increasing the radius of cir-
cular objects and sizes of linear objects in both dimensions.
Therefore, the circular obstacles expanded in size whereas
linear obstacles transformed into rectangles.

Algorithm 2 Segments splitting into subsets

Require: N—the number of points in a block B � {pi }, i ∈ [1, N];
Dm—themaximumvalue of the distances between each point and

the line fit by two endpoints, S - the distance between two endpoints;
dspli t—the threshold for splitting (a hyperparameter, set cus-

tomly);
dp—the distance proportion (a hyperparameter, set customly);
Ravg—the average range of point ranges in a laser scan point

cloud block;
Vresult , Vc—the vectors storing a laser scan point cloud block for

which �0.8 · RavgN� < Tn and �0.8 · RavgN� > Tn , correspondingly,
where Tn - a threshold;

Nc - the size of Vc, Nc0—the size of Vc[0];
Place B into Vc
while Nc = 0 do

if 0.8 · RavgNc0 > Tn then
Calculate Dm of Vc[0], Obtain pk and Rk corresponding to Dm
if Dm > dspli t + Rk · dp then

Split Vc[0] into B1 � {p1, p2, . . . , pk} , B2 �
{pk , pk+1, . . . , pNc0

}

if �0.8 · Ravg1k� > Tn then
Place B1 to Vc

else
Place B1 to Vresult

end if
if �0.8 · Ravg1 (n − k + 1)� > Tn then

Place B2 to Vc
else

Place B2 to Vresult
end if
Delete Vc[0]

else
Delete Vc[0]

end if
else

Delete Vc[0] in Vc and place Vc[0] to Vresult
end if

end while
Vresult

In Fig. 4 the realization of all the described operations
can be observed on the example. In this example, two linear
(rectangular) and two circular obstacles are located in the
environment in which robot operates. In the next section, we
continue with constraint functions design.

Constraint functions design

In order to perform constraint minimization of the cost func-
tion, the special form of the constraints function is required.
The required form of the conditions in the optimization prob-
lem is usually as follows: the function takes non-positive
values in the permitted area of state space and positive values
in the restricted area with zero value on borders of obstacles.

Due to the parsing algorithm, the obstacles are perceived
as a set of lines and circles. Let us consider these geometrical
shapes in the plane (x, y).

If the coordinates of the characteristic points of all the
obstacles are given it is possible to construct a general con-
straints function g(x) which takes negative values in the
permitted area, and, vice versa, takes non-negative values
in the area containing obstacles, i.e. in the restricted part of
the environment. In general we considered the convex case
here since the concave parts of the figure would complicate
the supposed trajectory of the robot andmay increase the risk
of robot’s collision with obstacles.

First, a simple example is provided to show the simple
idea behind the construction of the function. Suppose, we
are given a square with its sides parallel to the coordinate
axes, with corners in points (a, c), (b, c), (a, d), (b, d).

The permitted area can be defined as the following logical
disjunction (in set theory equivalent to the union):

(x ≤ a) | (x ≥ b) | (y ≤ c) | (y ≥ d).

Each inequality describes an area of space, combining
these areas gives all the allowed space. The disjunctionmeans
that, in order to be allowed point, it has to lie in at least one
of the described areas.

In order to pass the function as the optimization constraint,
it has to take real values and differ in sign in the permitted and
prohibited areas. Therefore, it must be transformed into the
following form (since the fulfillment of one of the inequalities
will give the required value of the minimum function-less
than 0):

min(x − a, b − x, y − c, d − y) ≤ 0

If there are several figures given, their common permitted
area is defined as intersection of the permitted areas. This is
similar to taking the maximum of the minimums, in order to

123

Journal of Intelligent Manufacturing

Fig. 4 Steps of lidar data
processing. First, the points are
merged into blocks, Output of
the algorithm is the array of
obstacles: lines and circles

provide meeting all conditions simultaneously:

max(min(·),min(·), . . .min(·)) ≤ 0.

In the case of polygons with sides that in general are not
parallel to the axes, the extrapolation consists of the following
sequence of steps:

1. for each of m j sides of each polygon j to find the equa-
tion for the straight line using 2 corners given (x1, y1)
and (x2, y2):

(y2 − y1)x + (x2y1 − x1y2) − (x2 − x1)y = 0

2. to define the allowed half-plane with respect to this line
(for example, by checking on which side of this line
another corner of the polygon is located) and to turn the
equation from the previous step into inequation (for side
with number i): gi j (x, y) ≤ 0

3. to gather all inequalities into one minimum function:

g j (x, y) = min(g1 j (x, y), . . . , gm j j (x, y)) ≤ 0

4. to unite the inequalities for all polygons with taking the
maximum:

g(x, y) = max(g1(x, y), . . . , gk(x, y)) ≤ 0

Fig. 5 The constraint function visualization—the negative values
(green points) in the permitted area, the positive values (red points)
in the forbidden area (Color figure online)

In this form, the function takes the positive values only in
the prohibited area (inside a buffer surrounding an obstacle).
It is the required form for the optimization method utilized in
the algorithm. An example of this function work in practice
can be observed in the Fig. 5.

123

Journal of Intelligent Manufacturing

Remark 1 We note that the presented graphs in the Figs. 4
and 5 are visualizations of the obstacle segmentation. The
output of this module are arrays of lines and circles in the
robot’s environment. Thus, the given data represents a kind of
“forbidden zones” incorporated into the controller structure.
At the same time, the controller does not require the map
to be explicitly stored and updated. This distinguishes the
considered approach from SLAM.

Different ways of setting obstacle avoidance

In the function describing actor-cost minimization, the input
is actions that will be taken under the given policy predicted
on N (number of actor steps) time steps into the future. How-
ever, constraints can be expressed only in the state space
due to the problem set. Therefore, the states are obtained
from actions given the policy being followed, and these states
are further evaluated for being in the forbidden region. This
approach requires accuracy since there is an ambiguous con-
nection between these spaces, and the algorithm’s parameters
must be selected thoroughly.

The question here is how to implement constraints into
actor cost function optimization so that it would be reliable
and effective. There are two main options possible:

1. integrating a penalty that is proportional to the prox-

imity to any of the obstacles (for example,
1

x
, where

x is the distance to an obstacle) into the cost function.
This approach is risky because the cost function becomes
non-continuous, and the high-cost gradients in this posi-
tion are unpredictable in directions. The gradient descent
starting at the acceptable cost value point may drop in
several possible directions, leading to local minima or
gradient trajectory oscillations without convergence. In
order to contrive this crisis, the cost function may be
modified to become continuous and differentiable at any
point. This option requires a significant change in the
target function. At the same time, the safety constraint
should always be satisfied because, under any state of
the system, the agent can not decide to pass through the
obstacle due to the more favorable cost value.

2. to apply constraint optimization of the cost function by
limiting the state and action spaces. This option does
not require changes in the structure of the cost function.
It is easier to implement since the classical optimiza-
tion problem is complemented with imposed constraints,
equations, or inequalities. This option is also more reli-
able than the previous one because it guarantees to avoid
the dangerous area of state space. However, one draw-
back is considered in “Optimization process” section.
Nevertheless, due to the universality of themethod and its

reliability, this method of obstacle avoidance is applied
in this work.

Optimization process

In order to provide a safe trajectory for the robot, it is nec-
essary to check for entry into the forbidden area not only the
state at the next moment but also several subsequent states
(the number of steps for which future planning takes place is
equal to N , the number of predicted steps for actor-network).
Therefore, a chain of states should be constructed based on
the current one. It is performed according to the following
rule:

xt+1 := xt + �t · x · f (xt , xt), (17)

where f (xt , ut) = A · xt is the transition function describing
dynamics of the system, leading to the state xt+1 from state
xt while taking action ut , �t is the time step size. For the
next time step the update rule becomes more expanded:

xt+2 : = xt+1 + �t · f (ut+1)

= xt + �t · x · A · ut + �t · s · A · ut+1. (18)

The optimization process should be applied for cost func-
tion optimization that would not perform straightforward
calculations. Instead, that would build the computational
graph of the function in order to minimize the number of
computations required.

The actor cost objective depends not on the state but on
the action performed. The constraints, however, are imposed
on the state space by construction. In order to resolve this
duality, the action sequence defined by the policy followed
is employed for finding the predicted state sequence. This
state sequence is further subjected to a check for entry into
the restricted area of state space. If none of the states from
this sequence are in this area, then the corresponding action
sequence is assumed to be admissible. The optimization is
performed on the space of all admissible action sequences.
This approach may only sometimes lead to the optimal
choice of action because of the absence ofmutual uniqueness
between actions and states. Therefore, hyper-parameters tun-
ing is required to provide favorable optimization conditions.

Experimental setup

The study’s aim is to evaluate RL-based algorithms for
mobile robot motion control. To test the software in a real
environment, the robot is utilized as a testing medium. MPC
and SQL are implemented using a custom Python package

123

Journal of Intelligent Manufacturing

Fig. 6 Experimental system
overview

Fig. 7 Accumulated cost per
each simulation for MPC and
SQL algorithms

Fig. 8 Contour and confidence
plots

developed explicitly for hybrid simulation of RL agents.1

This package was further developed to integrate with the
Robot Operating System (ROS), a widely-used tool for rapid
prototyping in robotics (Fig. 6).

1 https://github.com/pavel-osinenko/rcognita.

Robotis Turtlebot3

The TurtleBot3 Burger is a popular nonholonomic wheeled
mobile robot developed by Robotis. It is a compact and
affordable robot that can perform various tasks such as map-
ping, navigation, and object detection. The robot is equipped
with a powerful onboard computer, a 360-degreeLIDARsen-
sor for obstacle avoidance and mapping, and various other
sensors for tracking its position and orientation. Its compact

123

https://github.com/pavel-osinenko/rcognita

Journal of Intelligent Manufacturing

Fig. 9 Linear and angular
velocity for one of the tests

Fig. 10 Angle of yaw of the
robot according to one of the
tests

Fig. 11 Position error to one of
the tests

123

Journal of Intelligent Manufacturing

Fig. 12 Trajectories for
different target points

size enable it to move smoothly in tight spaces and navigate
around obstacles. It is often used for educational and research
purposes due to its ease of use and versatility.

Results and discussion

The running cost was considered in the following quadratic
form:

ρ = χ�Rχ, (19)

where χ = [x, u], R diagonal, positive-definite.
The critic structure was chosen quadratic as follows:

Q̂(x, u;ϑ) := ϑϕ�(x, u),

ϕ(x, u) := vec (�u ([x |u] ⊗ [x |u])) ,
(20)

where ϑ is the critic weights, ϕ is the critic activation func-
tion,�u is the operator of taking the upper triangular matrix,
vec is the vector-to-matrix transformation operation, [x |u] is
the stack of vectors x and u, ⊗ is the Kronecker product.

Prediction of the robot’s future states is carried out using
the model (2). For the verification of considered algorithms,

a number of experimental runs for different setup were car-
ried out. Experiments for four various starting positions were
done, see Fig. 2b.

Initially, position of the robot pw
b = [

x y θ
]
and goal

pw
g = [

xg yg θg
]
are given in the same frame (see Fig. 2a).

It was required to express the coordinates of the robot in
the target frame (Spong et al., 2020). At this step we use
the transformation matrix between the robot’s frame and the
target’s frame in the following form

T (θg) =

⎡

⎢⎢
⎣

cos θg − sin θg 0 xg
sin θg cos θg 0 yg
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ .

Therefore, frame transformation takes the form

pbg = T pw
b .

Experiments of the mobile robot parking problem with
obstacle avoidance were performed. For MPC and SQL
algorithms, 120 tests were performed on x = [−2, 2] and
y = [−2, 2] regions with five obstacles each. The hyperpa-
rameters of the algorithms were chosen as follows: δ = 0.1,

123

Journal of Intelligent Manufacturing

H = 4. When the plant reaches the set boundary relative
to the desired position ||x, y|| < �, � = 0.1, the test is
terminated.

Figure 7 shows the accumulated running costs for each
simulation. SQL results in a lower cost distribution com-
pared to MPC. This is more clearly presented in Fig. 8a,
which shows the average costs obtained by the algorithm
with confidence intervals. Note that the transition times of
SQL are significantly lower compared to MPC. To construct
a contour diagram for each passed target position, the ratio
of average accumulated costs at that point was calculated by
the ratio JMPC/SQL = JMPC

JSQL
. The result is shown in Fig. 8b.

As can be seen from the figure, MPC loses to SQL in the
preponderance of target positions.

For a clearer picture of the processes in the experiments,
Figs. 9, 10, 11 and 12 show samples of trajectories, con-
trol signals, yaw angles, and error rates. Figure9 shows the
control signals, representing the robot’s angular and linear
velocities. In the transient plots, it can be seen that SQL
method provides faster convergence compared to MPC. It
also provides a stable fulfillment of the control goal, while
MPC, allows high oscillations in the transient time diagram.
Such effects can also lead to undesirable consequences. The
norm for the linear coordinates of the robot’s position is
shown in Fig. 11. Here we can observe that MPC provides
convergence of the error to a comparable value as SQL (note
the longer time andoscillatory nature of the convergence), but
the robot orientation does not converge to the desired value.
These same effects can be seen in the plots of the resulting
trajectories Fig. 12. It is due to the short prediction horizon
setup. Increasing the prediction horizon lead to better MPC
performance. However, we note that as the prediction hori-
zon increases, the computational complexity also increases,
as noted, for example, in Osinenko and Dobriborsci (2021).

Finally, based on the data presented, we can conclude that
the SQL agent is superior to the MPC for a shorter control
horizon in the given task of parking a mobile robot with
obstacle avoidance.

Conclusion

This study demonstrates the promise of implementing RL-
based algorithms in robotics applications. The work extends
the previously obtained and simulation-validated results to
the level of experimental studies with added value. In par-
ticular, the effectiveness of constrained SQL is shown and
compared to the well-known MPC. The proposed solution
does not require a known map and path planning, which
may be promising for dynamic obstacles. Note that the pro-
posed approach works online (no pre-training is required),
significantly reducing the computational load and completely
removing the requirements for datasets’ availability. How-

ever, implementing the algorithm requires a mathematical
model of the control object. The proposedmethod performed
better regarding accumulated cost results than the baseline
while maintaining the same computational complexity.

Author contributions All authors contributed to the study conception
and design. Material preparation and analysis were performed by DD,
PO and WA. Data collection, simulation runs as well as experimental
research and analysis of the results were done by RZ and MK. The first
draft of the manuscript was written by DD and all authors commented
on previous versions of the manuscript. All authors read and approved
the final manuscript.

Funding This work was supported by the Deggendorf Institute of Tech-
nology, Germany.

Data availability All data including source code and instructions are
given in our public repository (Dmitrii Dobriborsci, 2023). Readers can
reproduce all results both simulations and real-world experiment.

Declarations

Conflict of interest The authors have no conflicts of interest to declare
that are relevant to the content of this article.

References

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B.,
Petron, A., Paino, A., Plappert, M., Powell, G., Ribas, R., et al.
(2019). Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113

Beckenbach,L.,Osinenko, P.,Gohrt, T.,&Streif, S. (2018).Constrained
and stabilizing stacked adaptive dynamic programming and a com-
parison with model predictive control. In 2018 European control
conference (ECC) (pp. 1349–1354). IEEE.

Beckenbach, L., Osinenko, P., & Streif, S. (2020). On closed-loop sta-
bility of model predictive controllers with learning costs. In 2020
European control conference (ECC) (pp. 184–189). IEEE

Berkenkamp, F., Turchetta, M., Schoellig, A. P., & Krause, A. (2017).
Safe model-based reinforcement learning with stability guaran-
tees. Advances in Neural Information Processing Systems, 30,
909–919.

Bhardwaj, M., Choudhury, S., & Boots, B. (2020). Blending MPC &
value function approximation for efficient reinforcement learning.
arXiv preprint arXiv:2012.05909

Borno, M., de Lasa, M., & Hertzmann, A. (2013). Trajectory opti-
mization for full-body movements with complex contacts. IEEE
Transactions on Visualization and Computer Graphics, 19, 1405–
14. https://doi.org/10.1109/TVCG.2012.325

Davari, M., Alipour, K., Hadi, A., & Tarvirdizadeh, B. (2017). Learning
a model-free robotic continuous state-action task through con-
tractive q-network. In 2017 Artificial intelligence and robotics
(IRANOPEN) (pp. 115–120). https://doi.org/10.1109/RIOS.2017.
7956453

Degris, T., Pilarski, P. M., & Sutton, R. S. (2012). Model-free rein-
forcement learning with continuous action in practice. In 2012
American control conference (ACC) (pp. 2177–2182). https://doi.
org/10.1109/ACC.2012.6315022

Dmitrii Dobriborsci, P. O. (2023). PredRL: Mapless navigation
for mobile robot. https://github.com/thd-research/PredRL-robot-
navigation

123

http://arxiv.org/abs/1910.07113
http://arxiv.org/abs/2012.05909
https://doi.org/10.1109/TVCG.2012.325
https://doi.org/10.1109/RIOS.2017.7956453
https://doi.org/10.1109/RIOS.2017.7956453
https://doi.org/10.1109/ACC.2012.6315022
https://doi.org/10.1109/ACC.2012.6315022
https://github.com/thd-research/PredRL-robot-navigation
https://github.com/thd-research/PredRL-robot-navigation

Journal of Intelligent Manufacturing

Dobrevski, M., & Skočaj, D. (2021). Deep reinforcement learning for
map-less goal-driven robot navigation. International Journal of
Advanced Robotic Systems, 18(1), 1729881421992621. https://
doi.org/10.1177/1729881421992621

Dobriborsci, D., & Osinenko, P. (2022). An experimental study of two
predictive reinforcement learning methods and comparison with
model-predictive control. IFACPapersOnline, 55(10), 1545–1550.

Dong, H., Weng, C.-Y., Guo, C., Yu, H., & Chen, I.-M. (2021). Real-
time avoidance strategy of dynamic obstacles via half model-free
detection and trackingwith 2d lidar formobile robots. IEEE/ASME
Transactions on Mechatronics, 26(4), 2215–2225. https://doi.org/
10.1109/TMECH.2020.3034982

Drews, P., Williams, G., Goldfain, B., Theodorou, E. A., & Rehg, J. M.
(2017). Aggressive deep driving: Combining convolutional neural
networks and model predictive control. In Levine, S., Vanhoucke,
V., & Goldberg, K. (Eds.), Proceedings of the 1st annual confer-
ence on robot learning. Proceedings of machine learning research
(Vol. 78, pp. 133–142). PMLR. http://proceedings.mlr.press/v78/
drews17a.html

García, J., & Fernández, F. (2015). A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning Research,
16(42), 1437–1480.

Grüne, L., & Rantzer, A. (2008). On the infinite horizon performance
of receding horizon controllers. IEEE Transactions on Automatic
Control, 53(9), 2100–2111.

Guldenring, R., Görner, M., Hendrich, N., Jacobsen, N. J., & Zhang,
J. (2020). Learning local planners for human-aware navigation in
indoor environments. In 2020 IEEE/RSJ International conference
on intelligent robots and systems (IROS) (pp. 6053–6060). https://
doi.org/10.1109/IROS45743.2020.9341783

Gullapalli, V., Franklin, J. A., &Benbrahim, H. (1994). Acquiring robot
skills via reinforcement learning. IEEEControl SystemsMagazine,
14(1), 13–24. https://doi.org/10.1109/37.257890

Hoeller, D., Farshidian, F., & Hutter, M. (2020). Deep value model pre-
dictive control. In Conference on robot learning (pp. 990–1004).

Huang, Y., Xie, K., Bharadhwaj, H., & Shkurti, F. (2020). Con-
tinual model-based reinforcement learning with hypernetworks.
arXiv:2009.11997

Kulhánek, J., Derner, E., & Babuška, R. (2021). Visual navigation
in real-world indoor environments using end-to-end deep rein-
forcement learning. IEEE Robotics and Automation Letters, 6(3),
4345–4352.

Kumar, V., Todorov, E., & Levine, S. (2016). Optimal control with
learned local models: application to dexterous manipulation. In
2016 IEEE International conference on robotics and automa-
tion (ICRA) (pp. 378–383). https://doi.org/10.1109/ICRA.2016.
7487156

Lambert, N. O., Wilcox, A., Zhang, H., Pister, K. S. J., & Calandra,
R. (2020). Learning accurate long-term dynamics for model-based
reinforcement learning. In 2021 60th IEEEConference on decision
and control (CDC) (pp. 2880–2887). IEEE.

Lenz, I., Knepper, R. A., & Saxena, A. (2015).Deepmpc: learning deep
latent features for model predictive control. In Robotics: Science
and systems.

Mayne, D. Q. (2014). Model predictive control: Recent developments
and future promise. Automatica, 50(12), 2967–2986.

Mirowski, P. W., Grimes, M. K., Malinowski, M., Hermann, K. M.,
Anderson, K., Teplyashin, D., Simonyan, K., Kavukcuoglu, K.,
Zisserman, A., & Hadsell, R. (2018). Learning to navigate in cities
without a map. In NeurIPS.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540), 529–533.

Napat, K., Valls, M. I., Hoeller, D., & Hutter, M. (2020). Practical
reinforcement learning for MPC: learning from sparse objectives

in under an hour on a real robot. In 2nd Annual conference on
learning for dynamics and control (L4DC 2020).

Osinenko, P. (2020). Rcognita: A framework for hybrid agent-
environment simulation. Retrieved from https://github.com/
AIDynamicAction/rcognita

Osinenko, P.,Beckenbach,L.,Göhrt, T.,&Streif, S. (2020).A reinforce-
ment learning method with closed-loop stability guarantee. 21th
IFAC World congress. Accepted manuscript arXiv:2006.14034

Osinenko, P., &Dobriborsci, D. (2021). Effects of sampling and predic-
tion horizon in reinforcement learning. IEEE Access, 9, 127611–
127618. https://doi.org/10.1109/ACCESS.2021.3112498

Osinenko, P., Dobriborsci, D., Yaremenko, G., & Malaniya, G. (2023).
A generalized stacked reinforcement learning method for sampled
systems. IEEETransactions onAutomatic Control. https://doi.org/
10.1109/TAC.2023.3250032

Osinenko, P., Göhrt, T., Devadze, G., & Streif, S. (2017). Stacked
adaptive dynamic programming with unknown system model.
IFAC-PapersOnLine, 50(1), 4150–4155. https://doi.org/10.1016/
j.ifacol.2017.08.803

Osinenko, P., Göhrt, T., Devadze, G., & Steif, S. (2016). Stacked
model-free adaptive dynamic programming using kalman-filter
estimation (submitted manuscript). In Proceedings of the 20th
IFAC World congress.

Polydoros, A. S., & Nalpantidis, L. (2017). Survey of model-based
reinforcement learning: Applications on robotics. Journal of Intel-
ligent and Robotic Systems: Theory and Applications, 86(2),
153–173. https://doi.org/10.1007/s10846-017-0468-y

Primbs, J. A., Nevistić, V., & Doyle, J. C. (1999). Nonlinear optimal
control: A control Lyapunov function and receding horizon per-
spective.Asian Journal of Control, 1(1), 14–24. https://doi.org/10.
1111/j.1934-6093.1999.tb00002.x

Przybyła, M. (2017). Detection and tracking of 2d geometric obsta-
cles from lrf data. In 2017 11th international workshop on robot
motion and control (RoMoCo) (pp. 135–141). https://doi.org/10.
1109/RoMoCo.2017.8003904

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J.,
Berger, E., Wheeler, R., & Ng, A. (2009). Ros: an open-source
robot operating system. In Proceedings of the IEEE international
conference on robotics and automation (ICRA) workshop on open
source robotics.

Shi, H., Shi, L., Xu, M., & Hwang, K.-S. (2020). End-to-end navigation
strategy with deep reinforcement learning for mobile robots. IEEE
Transactions on Industrial Informatics, 16(4), 2393–2402. https://
doi.org/10.1109/TII.2019.2936167

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,
V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,
N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Grae-
pel, T., &Hassabis, D. (2016). Mastering the game of go with deep
neural networks and tree search. Nature, 529(7587), 484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez,
A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T.,
Simonyan, K., & Hassabis, D. (2018). A general reinforcement
learning algorithm that masters Chess, Shogi, and go through self-
play. Science, 362(6419), 1140–1144.

Song, Y., & Scaramuzza, D. (2007). Learning high-level policies for
model predictive control. arXiv:2007.10284

Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2020). Robot model-
ing and control. Wiley.

Sun, W., Jiang, N., Krishnamurthy, A., Agarwal, A., & Langford,
J. (2019). Model-based RL in contextual decision processes:
PAC bounds and exponential improvements over model-free
approaches. In Conference on learning theory (pp. 2898–2933).
PMLR.

123

https://doi.org/10.1177/1729881421992621
https://doi.org/10.1177/1729881421992621
https://doi.org/10.1109/TMECH.2020.3034982
https://doi.org/10.1109/TMECH.2020.3034982
http://proceedings.mlr.press/v78/drews17a.html
http://proceedings.mlr.press/v78/drews17a.html
https://doi.org/10.1109/IROS45743.2020.9341783
https://doi.org/10.1109/IROS45743.2020.9341783
https://doi.org/10.1109/37.257890
http://arxiv.org/abs/2009.11997
https://doi.org/10.1109/ICRA.2016.7487156
https://doi.org/10.1109/ICRA.2016.7487156
https://github.com/AIDynamicAction/rcognita
https://github.com/AIDynamicAction/rcognita
http://arxiv.org/abs/2006.14034
https://doi.org/10.1109/ACCESS.2021.3112498
https://doi.org/10.1109/TAC.2023.3250032
https://doi.org/10.1109/TAC.2023.3250032
https://doi.org/10.1016/j.ifacol.2017.08.803
https://doi.org/10.1016/j.ifacol.2017.08.803
https://doi.org/10.1007/s10846-017-0468-y
https://doi.org/10.1111/j.1934-6093.1999.tb00002.x
https://doi.org/10.1111/j.1934-6093.1999.tb00002.x
https://doi.org/10.1109/RoMoCo.2017.8003904
https://doi.org/10.1109/RoMoCo.2017.8003904
https://doi.org/10.1109/TII.2019.2936167
https://doi.org/10.1109/TII.2019.2936167
http://arxiv.org/abs/2007.10284

Journal of Intelligent Manufacturing

Surmann, H., Jestel, C., Marchel, R., Musberg, F., Elhadj, H., &Ardani,
M. (2020). Deep reinforcement learning for real autonomous
mobile robot navigation in indoor environments.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An intro-
duction. A Bradford Book.

Szita, I., & Szepesvári, C. (2010). Model-based reinforcement learning
with nearly tight exploration complexity bounds. In ICML (pp.
1031–1038). https://icml.cc/Conferences/2010/papers/546.pdf

Tassa, Y., Erez, T., & Todorov, E. (2012). Synthesis and stabiliza-
tion of complex behaviors through online trajectory optimization.
In 2012 IEEE/RSJ International conference on intelligent robots
and systems (pp. 4906–4913). https://doi.org/10.1109/IROS.2012.
6386025

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik,
A., Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Oh,
J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai,
T., Agapiou, J. P., Jaderberg, M., et al. (2019). Grandmaster level
in StarCraft II using multi-agent reinforcement learning. Nature,
575(7782), 350–354.

Xiao, C., Wu, Y., Ma, C., Schuurmans, D., &Müller, M. (2019). Learn-
ing to combat compounding-error in model-based reinforcement
learning.

Yahya, A., Li, A., Kalakrishnan, M., Chebotar, Y., & Levine, S. (2017).
Collective robot reinforcement learning with distributed asyn-
chronous guided policy search. In 2017 IEEE/RSJ International
conference on intelligent robots and systems (IROS) (pp. 79–86).
IEEE.

Zanon, M., &Gros, S. (2021). Safe reinforcement learning using robust
MPC. IEEE Transactions on Automatic Control, 66(8), 3638–
3652. https://doi.org/10.1109/TAC.2020.3024161

Zhelo, O., Zhang, J., Tai, L., Liu, M., & Burgard, W. (2018) Curiosity-
driven exploration formapless navigationwith deep reinforcement
learning. https://doi.org/10.48550/ARXIV.1804.00456

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L.,
& Farhadi, A. (2017). Target-driven visual navigation in indoor
scenes using deep reinforcement learning. In IEEE International
conference on robotics and automation.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://icml.cc/Conferences/2010/papers/546.pdf
https://doi.org/10.1109/IROS.2012.6386025
https://doi.org/10.1109/IROS.2012.6386025
https://doi.org/10.1109/TAC.2020.3024161
https://doi.org/10.48550/ARXIV.1804.00456

	Predictive reinforcement learning: map-less navigation method for mobile robot
	Abstract
	Introduction
	Preliminaries and background
	Kinematic model of a nonholonomic mobile robot

	Methodology
	Model predictive control
	Stacked Q-learning

	Obstacle recognition
	Data processing
	Constraint functions design
	Different ways of setting obstacle avoidance
	Optimization process

	Experimental setup
	Robotis Turtlebot3

	Results and discussion
	Conclusion
	References

