
Journal of Intelligent Manufacturing (2024) 35:2787–2810
https://doi.org/10.1007/s10845-023-02175-4

A novel interpretable predictive model based on ensemble learning
and differential evolution algorithm for surface roughness prediction
in abrasive water jet polishing

Shutong Xie1 · Zongbao He1 · Yee Man Loh2 · Yu Yang3 · Kunhong Liu4 · Chao Liu5 · Chi Fai Cheung2 · Nan Yu6 ·
Chunjin Wang2

Received: 18 February 2023 / Accepted: 26 June 2023 / Published online: 22 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
As an important indicator of the surface quality of workpieces, surface roughness has a great impact on production costs and
the quality performance of the finished components. Effective surface roughness prediction can not only increase productivity
but also reduce costs. However, the current methods for surface roughness prediction have some limitations. On the one
hand, the prediction accuracy of classical experimental and statistical-based surface roughness prediction methods is low.
On the other hand, the results of deep learning-based surface roughness prediction methods are uninterpretable due to their
black-box learning mechanism. Therefore, this paper presents an ensemble learning with a differential evolution algorithm,
applies it to the prediction of surface roughness of abrasive water jet polishing (AWJP), and conducts an interpretability
analysis to identify key factors contributing to the prediction accuracy of surface roughness. First, we proposed automatically
constructing features by an Evolution Forest algorithm to train the base regressionmodels. The differential evolution algorithm
with a simplified encoding mechanism was then used to search for the best weighted-ensemble to integrate the base regression
models for obtaining highly accurate prediction results. Extensive experiments have been conducted on AWJP to validate the
effectiveness of our proposed methods. The results show that the prediction accuracy of our proposed method is higher than
the existing machine learning algorithms. In addition, this is the first of its time for the contributions of machining parameters
(i.e., features) on surface roughness prediction by using interpretable analysis methods. The analysis results can provide a
reference basis for subsequent experiments and studies.

Keywords Surface roughness prediction · Polishing · Finishing · Interpretable machine learning · Ensemble learning ·
Ultra-precision machining

Introduction

The machining process to obtain the ideal surface quality
is usually a basic technical requirement of machining, the
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surface profile and roughness of the component are two
important indicators of the surface quality. Surface rough-
ness, as an important indicator widely used to measure the
surface properties of the workpiece, has an important impact
on the performance ofmechanical parts as well as production
cost. In polishing processing, reducing the surface roughness
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of the workpiece and improving its surface quality are the
main goals of all kinds of polishing processes. To reduce
the surface roughness of a mechanical part without chang-
ing the geometry, various polishing processes are often used,
and these operations can be time-consuming and expensive.
Therefore, in the field of polishing processing, more and
more researchers focus on surface roughness.Optimizing and
predicting surface roughness can effectively increase pro-
ductivity and reduce costs, which have important research
significance and application value for the machining pro-
cesses.

Numerous studies have shown that the surface rough-
ness produced during machining is influenced by several
machining parameters. Different machining methods, such
as turning, milling, and polishing, have different influences
on surface roughness. The process of surface roughness
reduction is influenced by the properties of the workpiece
and various uncontrollable factors, making it very difficult
to obtain an accurate prediction model directly (Lu, 2008).
Therefore, many researchers have worked on the optimiza-
tion of various machining parameters and their effects on
the prediction of surface roughness. Through the research, it
is found that the research methods on surface roughness of
polishing processing are divided into two main categories:
classical methods based on experimental and mathemati-
cal analysis and methods based on artificial intelligence
(AI). The classical methods include experimental analysis
(Huang et al., 2022), statistical analysis (Solheid et al., 2020)
and response surface methodology (RSM) (Nguyen et al.,
2020; Jian et al., 2022). In AI-based methods, a portion of
the research applied neural network algorithms for surface
roughness prediction. For example, Schneckenburger et al.
(2020) developed an artificial neural network (ANN) model
to predict the surface roughness and shape accuracy of the
glass after polishing, which was helpful to reduce the pol-
ishing iterations, thus reducing the production time. Besides,
swarm intelligence algorithms such as PSO (Wang et al.,
2020) and GA (Khalick Mohammad et al, 2017) are com-
mon techniques applied in this field. The tendency during
the latest years is the research of machine learning tech-
niques. As a result, the combination of machine learning
algorithms and swarm intelligence algorithms has become a
common method for optimizing machining parameters, and
this type of method can effectively reduce surface rough-
ness(Fan et al., 2022a; Khalick Mohammad et al., 2017).

The above analysis shows that, for classical methods,
simple mathematical models often could not achieve the
desired prediction accuracy. AlthoughAI-basedmethods can
improve the prediction accuracy of the model to a certain
extent, complex algorithms similar to neural networks often
require a large amount of data support for model training to
ensure the reliability of the prediction results. However, in

the actual machining process, only a small amount of exper-
imental data can be collected for each experiment due to
various conditions such as experimental environment, tech-
nology, and cost budget. Too few data samples can easily
lead to under-fitted neural network models, thus affecting
the accuracy and reliability of prediction results. In addition,
the black-box prediction model based on neural networks
can not explicitly explain the hidden correlation between the
control parameters and the predicted values, thus failing to
meet the needs of practical production.

Ensemble learning is a framework that accomplishes
learning tasks by building and combining multiple base
learners. The framework often achieves better generaliza-
tion performance than a single learner by combiningmultiple
weak learners with simple structures. Ensemble learning,
a widely used AI technique, provides new ideas for our
research. On one hand, weak learners with simple structures
require much fewer data than complex neural network algo-
rithms. On the other hand, the ensembled strong learner can
obtain higher prediction performance. In addition, given the
successful application of swarm intelligence algorithms for
machining parameter optimization, a small number of stud-
ies have been conducted to apply GA to the prediction of
surface roughness. For example, Wang et al. (2022a, b) pro-
posed a robust surface roughness prediction model (ELGA)
based on ensemble learning of GA, which can be used for
the prediction of the surface roughness of multi-jet polish-
ing (MJP) of 3D printed 316 L stainless steel. Inspired by
this, we propose to consider a combination of a swarm intel-
ligence algorithm and an ensemble learning algorithm for
surface roughness prediction in abrasive water jet polishing,
since it has a similar material removal mechanism to MJP
(Wang et al., 2017a, b). Given the successful applications
of the differential evolution (DE) algorithm in industry in
recent years (Yuan et al., 2021; Ibrahim & Tawhid, 2022),
we combine the DE algorithm, an emerging technique for
swarm intelligence, with an ensemble learning approach.
Like other swarm intelligence algorithms, DE is a stochastic
optimization algorithm that simulates biological evolution.
Compared with GA, DE retains the population-based global
search strategy and reduces the complexity of genetic opera-
tions byusing real number encoding, simple difference-based
variation operations, and one-to-one competitive survival
strategies.

A novel ensemble framework for polished surface rough-
ness prediction is designed in this paper. The method selects
six classical regression algorithms, Random Forest (RF),
Extreme Gradient Boosting (XGBoost), Least Absolute
Shrinkage and Selection Operator (LASSO), Support Vec-
tor Regression (SVR), Gradient BoostingRegression (GBR),
and Extra-TreeRegressor (ETR), as the basemodels and uses
DE to search for optimal weight assignment schemes for
different models. Notably, we design a simplified encoding
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mechanism for the individual design of DE for the character-
istics of polishing processing, which can further improve the
computational efficiency of the algorithm. The experimen-
tal results show that the ensemble framework can further
improve the prediction accuracy of the algorithm for the
low-dimensional small-sample experimental data used in this
study.Due to the small amount of experimental data, although
the underlying models are prone to underfitting, ensemble
learning canmaximize the advantages of eachmodel to com-
plement each other, so that the whole algorithm can achieve
high prediction accuracy even with small sample data. In
addition,we use genetic programming (GP) basedEvolution-
ary Forest (EF) algorithm for automatic feature construction
in the data pre-processing stage to further improve the pre-
diction performance and interpretability of the model.

The rest of this paper is organized as follows.
Section Research progress of surface roughness prediction
reviews the related researchon surface roughness in polishing
processes. Section ELDEA for surface roughness prediction
describes the ELDEA method based on ensemble learning
and DE for surface roughness prediction. Section Vali-
dation experiments gives a detailed experimental setup.
Section Results and discussion compares and analyzes the
performance of different prediction methods and provides
interpretability analyses of the data features. Section Con-
clusions and future work summarizes our work and proposes
future research directions.

Research progress of surface roughness
prediction

By investigating the research related to surface roughness,
we have grouped the related research to surface roughness
into two main categories: reducing surface roughness by
optimizing machining parameters and direct prediction of
surface roughness. These two approaches optimize surface
roughness indirectly and directly, respectively, and have in
common that both of them utilize the relationship between
machining parameters and surface roughness. Currently, a
large number of studies have focused on the optimization
and prediction of surface roughness for turning and milling,
and less research has been done on polished surface rough-
ness. As a result, this section reviews and analyzes the current
status of polished surface roughness research.

Reducing surface roughness by optimizing
machining parameters

Reviewing the previous studies, the methods for minimizing
surface roughness by optimizing machining parameters can
be divided into three main categories, namely, optimization
methods based on experimental and mathematical analysis,

optimization methods based on machine learning, and opti-
mization methods based on swarm intelligence.

Before machine learning was widely used in manufac-
turing, the traditional method of combining experimental
models and RSM applied to the study of surface rough-
ness was the dominant research direction at that time. Huai
et al. (2017) developed a roughness ratio prediction model
based onorthogonal experiments for the polishing processing
bladeslade of aviation engines. Chen et al. (2019) per-
formed a regression analysis based on the results of Central-
Composite designed polishing experiments and established
a prediction model for surface roughness and residual stress.
In addition, a comprehensive analytical approach was pro-
posed to optimize the process parameter intervals to obtain
the globally optimal parameter intervals for improving the
surface quality during the polishing of Ti-6Al-4 V blades.

With the development of swarm intelligence algorithms,
researchers have started to apply them to the optimization
of machining parameters. To achieve the optimum balance
between high material removal rate (MRR) and low surface
roughness, Chen et al. (2018) established a prediction model
for MRR based on linear regression analysis of experimental
data for the belt flapwheel polishing ofTC4aero-engine blisk
blades and then solved a single-objective constrained opti-
mization problem by using PSO. Fan et al. (2022b) proposed
a novel finishing parameter optimizationmethod considering
dimensional accuracy for magnetic compound fluid finishing
(MCFF), which makes use of a multi-objective PSO algo-
rithm to optimize the finishing parameters.

In recent years, machine learning technology has emerged
rapidly and has been successfully applied in the field of man-
ufacturing.Wei&Wu (2022) proposed a graphicalmodel and
a conditional variational autoencoder to extract the features
of surface topography in theCMPprocess.Moreover, process
variables and the extracted features of surface topography are
fed into an ensemble learning-based predictive model to pre-
dict the MRR. To achieve high quality polishing of an M300
mold steel curved surface, Tong et al. (2019) first obtained
the influence degree of various factors on polished surface
roughness and the combination of parameters to be optimized
by the signal-to-noise ratio method and then combined BP
andPSO(PSO-BP) to optimize the polishingparameters. The
results showed that themethod can effectively reduce surface
polishing roughness. Wang et al. (2012) developed a series-
parallel hybrid polishing machine tool based on the elastic
polishing theory, applied it to finishmould surface with using
bound abrasives and optimized its by using a combination of
GA and ANN to obtain the optimal process parameters.

It can be found that most of the surface roughness
optimization methods based on machine learning methods
choose to combine swarm intelligence methods to further
reduce the surface roughness ofworkpieces and improve their
surface quality. Zhong et al.(2021) reviewed studies related to
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surface roughness of wood and advanced engineering mate-
rials after machining and its prediction and found that ANN
trained using PSO and GA have better prediction perfor-
mance than traditional ANN. The results of this study further
demonstrated the advantages of combining swarm intelli-
gence algorithms with machine learning methods applied to
the prediction of surface roughness.

Surface roughness predictionmethod

In addition to the reduction of surface roughness by optimiz-
ingmachining parameters, a part of the studies tried to model
surface roughness prediction directly. Benardos et al. (2003)
classified themodeling techniques for surface roughness pre-
diction into three categories, namely, experimental models,
analytical models, and AI-based models. Among them, sur-
face roughness prediction models based on AI methods are
the main research direction in this field, and the AI-based
methods are divided into three branches, including swarm
intelligence algorithms, traditional machine learning algo-
rithms, and artificial neural networks. On this basis, we
analyzed and summarized the related research on polished
surface roughness prediction, and summarized the polished
surface roughness modeling techniques into two categories,
which are classical modelingmethods based on experimental
and mathematical analysis and modeling methods based on
AI techniques.

Aimed to reduce surface roughness and improve surface
quality of mold steel, Xie et al. (2022) optimized the robotic
polishing process parameters and obtained the optimal range
of each parameter according to a single factor experiment.
A surface roughness prediction model was established by
the central composite design experiments on the three pol-
ishing parameters. Xu et al. (2021) proposed a numerical
model for the prediction of surface roughness after laser pol-
ishing, which coupled heat transfer, fluid flow, and material
vaporization. The surface roughness prediction after laser
polishing was tried through the numerical model.

The design of surface roughness predictionmethods based
on classical methods requires a great deal of expertise on the
part of the researcher. Besides, these approaches often require
researchers to perform complex mathematical modeling of
the relationship between machining parameters and surface
roughness. Due to the data-driven black-box mechanism of
AI techniques, researchers can perform surface roughness
prediction and modeling tasks without much expertise. As
a result, more and more studies have started to use AI tech-
niques to solve surface roughness prediction problems and
found that AI-based surface roughness prediction models
have higher prediction accuracy compared to classical meth-
ods. Electrochemical mechanical polishing (ECMP) results
are influenced by many factors, predicting its surface quality
and the determination of its processing parameters difficult to

achieve. To address these issues, Xu et al. (2012) developed a
least squares support vector machine with radial basis func-
tion based on ECMP prediction model and investigated the
effect of polishing parameters on surface roughness through
orthogonal experiments.

In addition to using classicalmachine learning algorithms,
many researchers have explored the application of neural
networks in surface roughness prediction. Schneckenburger
et al. (2020) developed an ANN model for predicting the
glass-surface roughness and shape accuracy. The experimen-
tal results showed that the prediction of ANN reduces the
polishing iterations, thus reducing the production time. Deng
et al. (2021) investigated the effects of chemical mechanical
polishing (CMP) process parameters on the (MRR) and sur-
face roughness of single-crystal SiC after polishing and their
relationships based on the modified Preston equation and
established a prediction model for CMP process parameters,
MRRand post-polishing surface roughness based onBP neu-
ral networks. Qi et al. (2018) developed a prediction model
for surface roughness in belt polishing based on a BP neural
network with the maximum depth of cut of abrasive grains,
the rotation speed of belt and the feed rate as input param-
eters. The model requires only fewer experimental samples
to complete the prediction with higher accuracy, thus saving
the experiment cost and time.

Current challenges and reflections

In summary, for polishing processes, the current surface
roughness prediction methods based on classical methods
and artificial neural networks have their advantages, but also
have their limitations at the same time, as described in the
introduction section.

As a widely used artificial intelligence technique, ensem-
ble learning is widely used in the study of various regression
prediction problems, and this method has better performance
than traditional mathematical methods. Due to the simple
structure of the base model and the excellent performance
of the ensemble framework, ensemble learning can achieve
a generalization performance no less than that of neural
network models without the support of large amounts of
experimental data, and the commonly used interpretable
methods can provide interpretable analysis for the ensemble
learning model. In addition, given that the swarm intelli-
gence algorithm has been widely and successfully applied
to machining parameter optimization problems, we intend
to consider using a combination of the swarm intelligence
algorithm and ensemble learning for surface roughness pre-
diction modeling to achieve a more accurate prediction of
surface roughness.

It is found that a large number of surface roughness stud-
ies based on swarm intelligence algorithms use group swarm
intelligence algorithms such as GA or PSO, and few people
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have applied DE to the study of surface roughness. How-
ever, compared with other algorithms, DE retains the global
search capability while its simple variational operation based
on the difference principle makes the algorithm itself less
complex and more efficient. Therefore, this paper proposes
an ensemble learning model based on DE, which is used
for the prediction of surface roughness of polishing pro-
cesses. Compared with other methods, the proposed method
in this paper has some interpretability while ensuring pre-
diction accuracy. First, the ensemble model based on DE
weighs the fitting effect of each basic regression model to
realize the complementary advantages of the basic models,
which makes the ensemble model avoid underfitting when
training on small samples of low-dimensional processing
data, and thus improves the prediction accuracy. Secondly,
interpretability analysis methods can provide us with a more
comprehensive understanding of the data and model, and
provide more meaningful information to help us improve the
data and model, creating a positive feedback loop. Besides,
we designed a DE-based simplified encoding mechanism
specifically for the surface roughness prediction problem
of small sample polishing processing and applied it to the
individual design of the DE algorithm, which solved the
problems of low efficiency and poor accuracy of traditional
coding mechanisms. In addition, we used a GP-based EF
algorithm for feature reconstruction of experimental data to
further improve the prediction accuracy and interpretability
of the model. Finally, we performed interpretability analyses
of themodel and data at the level of features, and innovatively
identified the main processing parameters affecting surface
roughness based on the results of interpretability analysis,
which provided a theoretical reference basis for subsequent
experiments and research.

ELDEA for surface roughness prediction

In this paper, an ensemble surface roughness prediction
framework based on DE is presented. The method is appli-
cable in several practical machining cases under polishing,
and the effects of different machining parameters on surface
roughness for different workpiece materials are considered.
Figure 1 shows the framework of our ELDEA method. The
ELDEA consists of five parts: (1) data normalization, (2)
feature construction, (3) multi-algorithm regression, (4) DE-
based ensemble learning, and (5) interpretability analysis.

Data normalization

In machine learning, it is always necessary to adjust data
of different scales to the same common scale, or to trans-
form data of different distributions to a specific distribu-
tion, which is collectively called “nondimensionalization”.

In gradient and matrix-based algorithms, such as logistic
regression, support vector machines, and neural networks,
nondimensionalization can speed up the training; in distance-
based algorithms, such as K-nearest neighbor and K-Means
clustering, nondimensionalization can help improve model
accuracy by avoiding the impact of a particularly large abso-
lute value of a feature on the distance calculation. There are
various ways to implement dimensionless scaling, such as
standard scaler and Min-Max scaler. Since Min-Max nor-
malization is very sensitive to outliers,mostmachine learning
algorithms choose standard normalization for feature scaling.
Therefore, we employ standard normalization to pre-process
the experimental data as shown in Eq. (1), where μ is the
mean of all sample data and σ is their standard deviation.
After normalization, the data are in the standard normal dis-
tribution in which the mean is 0 and the standard deviation
is 1.

xnormali zation � x − μ

σ
(1)

Feature construction

Extracting robust features from raw data is one of the most
critical steps to train a highly accurate prediction model.
Researchers often spend a lot of time and effort on feature
engineering to obtain more important data information from
rawdata and trainmachine learningmodels for a highly accu-
rate prediction. Feature construction is a process that extracts
and embed characteristics, properties, attributes, and under-
lying patterns of data as features (Li et al., 2015), which is an
important step in feature engineering and directly determine
the quality of the analysis results in data mining.

Constructing high-quality features are extremely chal-
lenging due to a lack of relevant domain knowledge. To
overcome this difficulty, some automatic feature construc-
tion methods based on evolutionary algorithms have been
proposed (Virgolin et al., 2018; Tran et al., 2019). Inspired
by these methods, we propose to employ an EF algorithm
(Zhang et al, 2021) to construct features automatically for
training the base regression models. By searching the most
effective feature space to represent the data, our approach
not only optimizes the feature quality but also improves the
generalization ability of the regression model. The workflow
of the EF algorithm is shown in Fig. 2. First, the algo-
rithm initializes to form a population consisting of multi-tree
GP individuals, i.e., each individual in the population is a
set of GP trees. In each individual Φ i, the EF algorithm
then constructs a decision tree by using the original fea-
tures of the artifact (e.g., ϕ1, ϕ2, ϕ3, …) to obtain an initial
set of features for each individual. Lastly, new features are
obtained though the evolution. These new features can not
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Fig. 1 Framework of ELDEA

only increase the feature diversity and avoid model under-
fitting but also improve the prediction accuracy. During the
evolutionary process, the EF algorithm uses crossover, muta-
tion, and selection operators to update individuals in the
population, as shown in Fig. 2. Taking the crossover oper-

ation as an example, for individual Φ1 and individual Φ2,
we select a certain tree in each of the two individuals and
swap the values of two nodes X2 and X3 in the tree, thus two
new GP trees can be generated, corresponding to two new
individual Φ1

’ and individual Φ2
’.
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Fig. 2 An illustration of the workflow of EF algorithm

To make the algorithm has better generalization ability
on the regression tasks, the EF algorithm uses 5-fold cross-
validation to estimate the generalization losswhen evaluating
each individual’s fitness value. First, the raw dataset gen-
erated by the AWJP experiments will be standardized and
randomly divided into two subsets: the training set and the
test set in the proportion of 3:1. And then, the training set
is divided into 5 equal-sized folds. Among them, 4 folds are
used for automatic feature construction to fit each decision
tree model in the EF, and the other is used as a validation set
to verify the validity of the automatic feature construction.
The training set and the validation set are used for the 5-fold
cross-validation during the evolutionary process to determine
the features. In our implementation, we adopt the absolute
deviation as the loss value, as shown in Eq. (2), where f rep-
resents a decision tree, Xj represents the j-th sample, and Yj

represents the j-th target values. A sample input to a decision
tree model will return a prediction value f (Xj). The differ-
ence between the predicted value and the true target value is
the prediction error Lj of the j-th sample. The prediction error
of all validation data points is recorded each time the deci-
sion model is built. This error is used as the fitness function
of the algorithm to guide the iterations of the algorithm.

L j � ∣
∣ f

(

X j
) − Y j

∣
∣ (2)

The well-performing GP individuals are stored in an
archive, and each GP individual in that archive is used to
construct a training set. Then, we trained a decision tree for
each constructed training set. At the end of the evolutionary
process, all these decision trees form a forest, i.e., a target

forest. At this point, we can construct valid features from this
forest for subsequent ensemble learning.

Multi-algorithm regression

In the multi-algorithm regression module, we leverage the
base regression models to build an ensemble surface rough-
ness prediction framework. We first trained ten base regres-
sion models and tuned the hyperparameters for each of them
to reach the optimal performance. In the experiment, we
found that some of the regression algorithms were under-
fitting in the experimental dataset. Therefore, we selected
six of them who are well trained and converged to build the
multi-algorithm regression module. The six selected models
are ETR (Geurts et al., 2006), RF (Breiman, 2001), XGBoost
(Chen & Guestrin, 2016), SVR (Awad & Khanna, 2015),
LASSO (Tibshirani, 1996) andGBR (Friedman, 2001). Table
1 lists the details of these models and their regression errors.
It should be noted that the experimental data are derived
from AWJP experiments based on the 3D-printed compo-
nents CoCr. Detailed descriptive information about the data
is given in Sect. 4.1. The training data are fitted by each algo-
rithm and the values of surface roughness are predicted by
each of them according to the test data. Specifically, we nor-
malized the raw data and then used the hold-out method to
initially validate the performance of each base model. In the
process of data segmentation, the raw data will be divided
into four folds, three of which will be used to train the base
model, and the remaining part of the data will be used to test
the trained model to obtain its prediction error. The above
process is repeated five times, and the average of the five
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Table 1 Different machine learning models

No. Regression Model Refs. MSE (μm) MAE (μm)

1 Extra Trees Regression (Geurts et al., 2006) 0.2054 0.2035

2 Random Forests (RF) (Breiman, 2001) 0.2458 0.1909

3 Extreme gradient boosting (XGBoost) (Chen & Guestrin, 2016) 0.2122 0.2372

4 Support Vector Regression (SVR) (Awad & Khanna, 2015) 0.1987 0.3420

5 Least absolute shrinkage and selection operator
(LASSO)

(Tibshirani, 1996) 0.2640 0.4319

6 Gradient Boosting Regression(GBR) (Friedman, 2001) 0.2640 0.4689

7 Linear Regression (Freedman, 2009) 0.4079 0.4173

8 Elastic Net Regression (ENR) (Zou & Hastie, 2005) 0.4221 0.5216

9 Ridge Regression (RR) (Hilt & Seegrist, 1977) 0.5489 0.5335

10 Stochastic Gradient Descent Regression (Shalev-Shwartz et al., 2011) 0.5755 0.5280

results are taken as the final prediction error of the current
base regression model. Finally, the prediction results of the
test dataset on each regression model and the correspond-
ing errors are recorded as the baseline performance of the
ensemble framework.

DE-ensemblemodule

Due to the very small size of the data and low dimensional
features, each base regression model easily underfits in the
training set, thus leading to very low prediction accuracy. In
contrast, the ensemble framework can integrate the output
results of multiple base regression models, so that the advan-
tages of each model complement each other. Therefore, we
employ an ensemble framework for surface roughness pre-
diction and propose using the DE algorithm to pursue the
best ensemble weights for each base regression model so
as to maximize the integration effect and results in the best
prediction accuracy.

DE algorithm, first proposed by Storn and Price in
1995 (Ahmad et al., 2021), is a population-based adap-
tive global optimization algorithm for solving real number
optimization problems. As a common evolutionary algo-
rithm, DE is widely used in various fields such as data
mining, pattern recognition, digital filter design, artificial
neural networks, and electromagnetism by its simple struc-
ture, easy implementation, fast convergence, and robustness.
The evolutionary process of DE is very similar to that of
GA, both includemutation, difference calculation, and selec-
tion operations. However, compared with GA, DE retains
the population-based global search strategy, and the sim-
ple mutation operation based on difference and one-to-one
competitive survival strategy reduces the complexity of the
genetic operation.

Since DE has a simple structure and is easy to imple-
ment, we use the DE algorithm as a search engine in this

module and design a simplified encoding mechanism for
the individual design of the DE algorithm according to the
problem to be optimized. This module is mainly responsible
for integrating and processing the output of multiple algo-
rithm modules, searching for the best weight assignment for
each base regression model through the DE-based simpli-
fied encoding mechanism, and integrating each regression
module according to the optimal solution obtained from the
search to obtain the final surface roughness prediction value.

Individual design

DE is a population-based heuristic search algorithm which
is very efficient in search the global optimal. In DE, each
individual in the population corresponds to a solution vector,
and each individual is regarded as a target vector, as shown
in Eq. (3), where D is the dimension of the target vector, and
NP denotes the number of individuals in the population.

−
xi �

(

xi , 1, xi , 2, . . . , xi , D
)

i � 1, 2, . . . , N P (3)

The individual design scheme of the algorithm is shown
in Fig. 3a. When applying DE to search the weights of each
regressionmodel, each individual usually represents aweight
assignment scheme that integrates each regression model.
Where αi denotes the specific weight assignment value of
the i-th regression model in that individual, i � 1,2,…,m,
and m denotes the number of base models, which is a tradi-
tional coding method as shown in Fig. 3b. In the traditional
encoding method, a population contains n individuals withm
dimensions in each individual, indicating that the algorithm
can provide a total of n weight assignment schemes for m
models.

However, during the evolution, a large number of indi-
vidual solutions are generated, and since this optimization
problem is a real number encoding problem, it may lead
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Fig. 3 Difference between the traditional encoding mechanism of DE and our simplified encoding mechanism

to an excessive dimensionality of the search space and thus
consume a large amount of computation time. Therefore,
we design a simplified encoding mechanism to tackle this
problem. This simplified coding mechanism reduces the
dimensions of the search space from D to 1, which speeds
up the search. In addition, it allows us to further improve the

efficiency of the algorithm by eliminating the need to spend
a lot of time and effort on tuning the hyperparameters (i.e.,
the size of the population). Figure 3b and c depict the dif-
ferences between the traditional encoding mechanism and
our simplified encoding mechanism of DE proposed in this
paper. In our proposed simplified encoding mechanism, the
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dimension of each individual is only one and it is a real num-
ber in the range [0,1], indicating the weight assignment of
the regression model corresponding to that individual. The
whole population corresponds to the set of weight assign-
ments of a complete ensemble framework, and the sum of all
individual values in the population is 1, indicating that the
weights of eachmodel sum to 1.Based on this design scheme,
an individual is a real number αi of length 1 (α∈[0,1]) and αi

denotes the weight of model i in the integration framework
as α. A population is a sequence of real numbers [α1, α2, α3,
…, αm−1, αm] of length 6 and

∑
αi � 1.

Crossover, mutation, and selection operators

Before the iteration of the algorithm, we first randomly gen-
erate a number of new individuals that satisfy the conditions
according to the individual design rules to form the initial
population. Next, the population is iteratively updated using
crossover, mutation, and selection operators to search for the
optimal solution. The evolutionary process ofDE is very sim-
ilar to that ofGA, containing the basic operations ofmutation,
crossover, and selection, but the specific definitions of these
operations are different from those of the genetic algorithm.
For the variation operation, the mutation operator generates
a mutation vector vi for each target vector xi (i.e., individ-
ual) according to Eq. (4), where NP denotes the number of
individuals in the population and r1, r2 and r3 are [1,NP] ran-
domly selected integers representing three randomly selected
individuals from the population. f is the scale factor and is
usually set to 0.8. xr2-xr3 is the difference vector.

−
vi � −

xr1 +F ∗
( −
xr1 ∗ −

xr2
)

, i � 1, 2, . . . , N P (4)

For the crossover operation, a new vector ui is generated
using the binomial crossover operator based on Eq. (5) for
each pair of target vector xi and variant vector vi, where randj
is a random number in [0, 1] following uniform distribution,
jrand is a randomly chosen integer between 1 and D, and CR
is a crossover control parameter and its range is in [0,1].

ui , j �
{

vi . j , i f rand j lt ; CR or j � jrand
xi , j , otherwise

, i � 1, 2, . . . , N P , j � 1, 2, . . . , D (5)

For the selection operation, we will compare the target
vector xi with the new vector ui based on the fitness objective
function f . The vector with a higher fitness value is selected
for the next iteration.

ui , j �
{

ui . j , i f f (ui ) ≥ f (xi )
xi , j , otherwise

, i � 1, 2, . . . , N P (6)

After a series of mutation, crossover, and selection opera-
tions, the population produces new individuals. This process
is repeated until the maximum number of iterations is satis-
fied and the algorithm stops.

DE-based ensemble

In the multi-algorithm regression module, we can obtain the
predicted values for each test sample in each base regression
model, and these predicted values are called response values.
Before the algorithm iteration, a number of individuals are
first randomly initialized to form a population. Each individ-
ual in the population represents a certain regression model
weight assignment, so the whole population corresponds to
a model weight assignment scheme. During the iteration of
the algorithm, the population is updated after evolutionary
operations such as crossover, mutation, and selection, result-
ing in new weight assignment schemes. TThe weight value
αm of model m can be obtained from the weight assignment
scheme formed by DE. The results of each base regression
model can be integrated. Combining the response value f m
and weight value αm of model m, the final surface rough-
ness prediction value of a certain sample can be calculated
according to Eq. (7). Then, the error between the predicted
and actual values of the sample is used as the fitness function
of DE to guide the DE algorithm for weight optimization
of the integration framework. The detailed workflow of the
ensemble calculation based on the DE algorithm is shown
in Fig. 4. The integration is determined as shown in Eq. (7),
where ŷ denotes the predicted surface roughness; f m is the
response value of each regression model; αm is the weight of
each model, and M is the number of models.

ŷ �
M

∑

m�1

αm fmsubject
M

∑

m�1

αm � 1 (7)

Interpretability analysis

Although machine learning algorithms such as neural net-
works have been successfully applied in various fields, it is
a black-box that prevents end-users from understanding why
such prediction results are made by the model. As a result, it
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Fig. 4 Flow chart of
DE-ensemble module
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is difficult for data-driven machine learning models to be
deployed and applied in many application fields, such as
biomedicine and autonomous driving. To fully understand
the decision basis of some models, the concept of inter-
pretablemachine learninghas beenproposed andbecomeone
of the hottest research areas inAI.Currently, themost popular
approach in interpretating machine learning is interpretable
analyses by looking at feature importance and feature rele-
vance.

Therefore, we leverage interpretability analysis methods
on the original features and the newly constructed features
to uncover the insightful information contained in the origi-
nal features and validate the usefulness of newly constructed
features. By synthesizing the results of the analysis, we tried
to identify the main processing parameters that affect the
surface roughness work.

Interpretability analysis based on impurity reduction
concept

The concept of impurity is derived from decision trees,
where a lower impurity reduction indicates a more reason-
able division of the corresponding branches in a decision
tree. The Information Entropy and Gini Index are two com-
mon impurity indicators, which are often used to measure
the effectiveness of feature selection. In the GP-based EF
algorithm, it first randomly constructs a number of features,
then calculates their importance scores based on impurity
reduction. Then, it ranks the constructed features according
to their importance scores. After that, the model constructs
new features from these important features by optimizing the
loss function so as to supervise the algorithm to search for
high quality features.Ultimately, the constructed features can
effectively improve the generalization ability of the model.
Based on the concept of impurity reduction, we rank the con-
structed features according to their importance. At the end,
by comparing the difference between the constructed fea-
tures and the original features, we can explain the effect of
the processing parameters corresponding to the feature on
the surface roughness.

Interpretability analysis based on Shapley theory

Shapley was proposed by Shapley (1953) for solving the
problem of contribution and benefit distribution in coopera-
tive games. The concept is derived from game theory, where
several gamblers cooperate to play a game, and how the final
benefit is distributed is determined by the contribution of
each gambler in the game. Now, borrowing this problem to
machine learning, each feature is equivalent to a gambler,
and the coefficient of the feature (under the linear model) is
equivalent to the contribution, so the coefficient multiplied
by the average value is the average contribution. For a single

instance xm, the contribution of the -th feature to the predic-
tion φij is the contribution of xij minus the average value,
which in the linear case is β jE(X).

Shapley additive explanation (SHAP) is a Python package
that can interpret the output of any machine learning model.
The idea of SHAP is to calculate the marginal contribution
of features to the model output and then interpret the black-
box model at both global and local levels. SHAP constructs a
linear model based on the best Shapley value in game theory.
For each sample, the machine learning model gives a predic-
tion value and SHAP considers all features as “contributors”
and the Shapley value is the value assigned to each feature
in that sample. SHAP represents the Shapley values as an
additive feature imputation method that expresses the pre-
dicted value of the model as the sum of the imputed values of
each input feature. The SHAP method is a typical post-hoc
model interpretation method, which is mainly used to pro-
vide a visual interpretation of the samples and features in the
model.

The Shapley theory differs from the impurity reduction
theory. In the node division process of decision tree, based
on the impurity reduction theory, themodelwill aim to reduce
the impurity and find a suitable feature and feature value to
make the result of this division can make the class attribution
clearer. Therefore, the idea is often applied to the construction
of new features. And Shapley theory is to study the contribu-
tion of current feature values to the model when the features
and the model are known.

Thus, in addition to using interpretable analysis based on
impurity reduction, we use the SHAPmethod to visualize the
original features aswell as the newly constructed features and
explain the impact of the new features constructed based on
the EF algorithm on the model performance by comparing
the differences in Shapley values.

Validation experiments

Validation experiment of abrasive water jet
polishing on 3D-printed CoCr alloy

CoCr alloy has been widely used as artificial implant owing
to its excellent corrosion resistance and superior mechanical
properties. For now, 3D printing has become more and more
popular in the manufacturing of customized CoCr implants.
However, the surface roughness after printing is very rough.
Post-processing is always required before use. In this study,
AWJP was used to polish the 3D-printed CoCr alloys, which
has been widely used in polishing many other complicated
surfaces made of different materials (Fähnle et al, 1998;
Wang et al., 2022; Wang et al., 2017a, b). Before this study,
a lot of trial and error had to be performed to obtain feasible
polishing parameters that would allow the machined surface
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Fig. 5 Experimental set-up for
abrasive water jet polishing

Table 2 Parameters setting of AWJP experiments

Polishing parameter Range

Feed rate (f) 10,15,20,25,30,40,60,80 mm/min

Fluid pressure (P) 4,5,6,7,8,9,10 bar

Tool offset (TO) 4,6,8,10,12,14 mm

Step distance (d) 0.1,0.2,0.3,0.4,0.5,0.6 mm

roughness to meet specific requirements. Therefore, there is
an urgent need to develop surface roughness prediction mod-
els to save time and cost for practical mass production.

The polishing equipment used in this study is ZEEKO
IRP200 polishing machine as shown in Fig. 5. To explore
the relationship between parameters of AWJP and surface
roughness, this study conducted AWJP experiments based
on 3D-printed components CoCr. The dimension of the sam-
plewas 42mm× 40.5mm× 10mm, and the polishing region
for each test was 6 × 3 mm. The polishing slurry used in this
study was 1000# aluminum oxide (FUJIMI Inc., Japan) with
the weight% of 10%. Sapphire nozzle with the diameter of
1 mm was used and the polishing slurry was impinged ver-
tically to the target surface. Key polishing parameters such
as feed rate, fluid pressure, stand-off distance, and step dis-
tance were considered and investigated in this study, while
others were kept constant. After polishing, the surface rough-
ness in surface mean height (Sa) was measured by ZYGO
Nexviewwhite light interferometer. Three different positions
were measured randomly to obtain the final experimental
results (Avg_Sa). 40 datasets were obtained under different
polishing conditions including feed rate, pressure, tool off-
set, and step distance. The detailed parameters are shown
in Table 2, and the experimental results are listed in Table
3.

Parameter setting

We randomly divided the above experimental data into train-
ing and test sets in appropriate proportions of 3:1 and
normalized the data according to Eq. (1). The normalized
training data are fed into the EF algorithm, and four folds are
used for automatic feature construction to fit each decision
tree model in the EF and the other is used as a validation
set to verify the validity of the automatic feature construc-
tion. After that, we used the grid search method to tune the
parameters based on the new training data to obtain the best
hyperparameters for eachmodel. Then,we performed regres-
sion prediction on the test dataset based on the best training
models. Finally, the prediction results of each regression
model were used as the input to the ensemble learning frame-
work based onDE,which calculates the integrated prediction
values by weighting the input according to the best weight
assignment scheme obtained from the search. We randomly
divided the data five times and repeated the above process,
and took the average of the five prediction errors as the final
prediction result. The error between the predicted and true
values was used as the fitness calculation function of DE to
guide the DE algorithm to search of a better solution, and we
used common error evaluation metrics such as mean square
error (MSE) and mean absolute error (MAE) to calculate
the error, respectively, whose detailed calculation is given by
Eqs. (8) and (9). And the units of both MAE and MSE are
“μm”.

In this paper, themaximumnumber of iterations ofDEwas
150,000 and the number of populations was 6. In addition,
to avoid the fluctuating effect of the randomness of the data
on the algorithm results, we repeated the experiments five
times and took the average of the five experiments as the
final experimental results.

MAE � 1

m

m
∑

i�1

|̂yi − yi | (8)
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Table 3 AWJP experiments data

No. Feed rate
(m/min)

Pressure
(bar)

Tool
offset
(mm)

Step
distance
(mm)

Avg_Sa
(um)

1 10 8 8 0.3 0.3362

2 20 8 8 0.3 0.5633

3 30 8 8 0.3 0.8086

4 40 8 8 0.3 1.6408

5 60 8 8 0.3 2.3625

6 80 8 8 0.3 2.2951

7 10 5 8 0.3 0.4358

8 10 6 8 0.3 0.6905

9 10 7 8 0.3 0.1513

10 10 8 8 0.3 0.2125

11 10 9 8 0.3 0.2211

12 10 10 8 0.3 0.2091

13 10 8 4 0.3 0.2547

14 10 8 6 0.3 0.2231

15 10 8 8 0.3 0.1800

16 10 8 10 0.3 0.2999

17 10 8 12 0.3 0.2727

18 10 8 14 0.3 0.6423

19 10 8 8 0.1 0.1034

20 10 8 8 0.2 0.1443

21 10 8 8 0.3 0.3773

22 10 8 8 0.4 0.2967

23 10 8 8 0.5 0.8901

24 10 8 8 0.6 1.4509

25 4 10 6 0.1 0.3798

26 4 15 8 0.2 1.6405

27 4 20 10 0.3 2.1245

28 4 25 12 0.4 2.5081

29 6 10 8 0.3 0.6506

30 6 15 6 0.4 1.7621

31 6 20 12 0.1 0.3846

32 6 25 10 0.2 1.1872

33 8 10 10 0.4 0.3705

34 8 15 12 0.3 0.3694

35 8 20 6 0.2 0.5596

36 8 25 8 0.1 0.6685

37 10 10 12 0.2 0.1065

38 10 15 10 0.1 0.0774

39 10 20 8 0.4 0.4767

40 10 25 6 0.3 0.5114

MSE � 1

m

m
∑

i�1

(ŷi − yi )
2 (9)

Results and discussion

Performance comparison before and after feature
construction based on the EF algorithm

As shown in Figs. 6 and 7,we compared the changes inmodel
performance before and after applying the EF algorithm for
feature construction (using MAE and MSE as a measure of
model performance). The blue and red bars in the figure indi-
cate the results of the five experiments of the ELDEA before
and after feature construction, respectively. The dark blue
dashed line indicates the average error of the five experi-
ments of the ELDEA before feature construction, and the
dark red dotted line indicates the average error of the five
experiments of the ELDEA after feature construction, which
visually demonstrates the effectiveness of feature construc-
tion using the EF algorithm. Specifically, its MAE decreases
from0.2425 to 0.2302,which is about 5.4%, and itsMSEalso
decreases from 0.1611 to 0.1137, which is about 41.6%. In
addition, the experimental results based on different data dis-
tributions demonstrate the higher robustness of the ELDEA
method.

To further verify the effectiveness of the EF algorithm, we
also compared the performance changes of each base regres-
sion model before and after applying the EF algorithm for
feature construction, as shown in Fig. 8a and b. It can be
found that applying the newly constructed features to most
of the base regression models achieves lower error predic-
tion results, which reveals the effectiveness of our proposed
feature construction method for improving the accuracy of
surface roughness prediction.

For the reason that the prediction performance of the
method based on EF feature construction is better than that
of the original method without feature construction, we had
the following analysis. As an evolutionary algorithm, the EF
algorithm performs automatic feature construction with the
goal of minimizing the prediction error, i.e., it uses the pre-
diction error as a fitness function to guide the direction of
evolution. The algorithm retains the features that can reduce
the prediction error and eliminates the features that are not
helpful for prediction in the process of iterative evolution,
so that the new features obtained in the end can effectively
improve the prediction performance compared with the orig-
inal features.
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Fig. 6 Performance comparison between before and after feature construction (MAE)

Fig. 7 Performance comparison between before and after feature construction (MSE)

Comparison of ELDEA and classical machine learning

We compared the prediction performance of the ELDEA
method with six classical regression algorithms on the AWJP
experimental data and used MAE and MSE as evaluation
metrics to measure the prediction performance of the meth-
ods to verify the effectiveness of our proposed ensemble
method. As shown in Table 4, the ELDEA method has the
best prediction results comparedwith the six classical regres-
sion methods, and its results are all better than those of the
underlying regressionmodel to varying degrees. Specifically,
through the weight optimization of the DE algorithm, the
mean values of MSE and MAE of the ELDEA compared to
the six classical regression algorithms are reduced by 0.3164
and 0.1682, respectively. In addition, we can also find that the
optimal values of MSE and MAE of the ELDEA compared
to the six basic regression models are also reduced by about
49.0% and 15.7%. This shows that the integration effect of
the ELDEA method is significant.

Using the MAE experiment on the AWJP dataset as an
example, the ELDEA gives the best results, the ETR algo-
rithm gives the second best results, and the GBR and LASSO
algorithms give theworst results. The integration result of the
ELDEA indicates that the optimal weights of the six regres-
sionmodels determined by the ELDEA, namely RF, LASSO,
XGBoost, ETR, GBR, and SVR, are 0.0451, 0.0056, 0.1742,
0.5432, 0.0061, and 0.2257. The ELDEA finds that the ETR
algorithm performed better on this experimental data, so the
weights of the ETR base regressionmodel were elevated dur-
ing the weight assignment process. Relatively, the GBR and
LASSO algorithms had the lowest final weight assignments
due to their poor performance.

The possible reason for that the ETRmodel weight is high
is: the features used by the ELDEA algorithm are constructed
by the EF algorithm, which constructs features by integrating
multiple decision trees, so the constructed features may be
more suitable for integrated decision tree-based models such
as ETRandRF. ETR is a decision-tree-based regression algo-
rithm that usesmultiple decision trees for prediction based on
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Fig. 8 Performance comparison
of each base regression algorithm
before and after feature
construction

randomly selected feature subsets. Compared to other deci-
sion tree-based algorithms, ETR uses more randomness in
constructing decision trees to avoid overfitting. The algo-
rithm is more stochastic. For a particular decision tree, the
prediction results with it are often inaccurate because its best
bifurcation attributes are chosen randomly, but multiple deci-
sion trees are combined to achieve good prediction results.
And since the sample size of the current experimental dataset
is inherently small, this randomness brings more possibili-
ties for the results, which may also be the reason why ETR
outperforms other algorithms.

The above results fully demonstrate the effectiveness of
the Integration framework of the ELDEA, i.e., our algorithm
is not only able to select the base regression model with
better performance and give it a larger weight assignment

ratio, but also to obtain a better prediction performance than
the optimal base model through the integration framework.

Comparison of ELDEA and neural network
algorithms

To further verify the performance of the proposed algorithm,
we compared the prediction performance of the ELDEA
method with three neural network algorithms, namely Artifi-
cial Neural Network (ANN), Convolutional Neural Network
(CNN), and Recurrent Neural Network (RNN) on the AWJP
experimental data and still usedMAE andMSE as evaluation
metrics to measure the prediction performance of the meth-
ods, the results are shown in Fig. 9. For the neural network
algorithms, experiments are conducted using the hold-out
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Table 4 Comparison of MSE &
MAE of different methods in
AWJP. (Unit: μm)

RF LASSO XGBoost ETR GBR SVR ELDEA

MSE 0.2111 0.6303 0.2093 0.1695 0.6704 0.6901 0.1137

MAE 0.3002 0.5852 0.3007 0.2664 0.6333 0.3042 0.2302

Bold values indicate the best results for the corresponding item

Fig. 9 erformance comparison
with neural network algorithms
before and after feature
construction

method based on the raw data and the feature reconstruc-
tion data, respectively. Specifically, we divided the data into
training and testing sets in a 3:1 ratio, and trained and pre-
dicted based on three neural network models. To ensure the
fairness of the comparison, we still used different random
seeds for five experiments, and took the average of the five
experiments’ results as the final prediction result. For ANN,

the activation function uses ReLU, the optimization algo-
rithm uses Adam, the regularization term coefficient is 0.01,
and the maximum number of training iterations is 200. For
CNN, the activation function uses ReLU, the optimization
algorithm uses Adam, the loss function is absolute error,
the network structure contains a fully connected layer, con-
volutional layer, and pooling layer, the window size of the
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convolutional layer is 8, and the epoch of training process
is 200. For the RNN, the activation function is ReLU, the
optimization algorithm is Adam, the loss function is abso-
lute error, the network structure contains a fully connected
layer, a GRU layer, and a pooling layer, and the units of the
GRU layer are set to 16, and the epoch of the training process
is 200.

From the results in Fig. 9a, it can be found that the MAE
of the ELDEA algorithm is the smallest on both the data
before and after feature construction compared to the other
three neural network algorithms, thus it can be shown that
the ensemble model can obtain better performance than the
neural network algorithm on this type of dataset.

In addition, to further verify the performance advantage
of the proposed algorithm, we also conducted a compara-
tive experiment by using MSE as an evaluation metric. The
results are shown in Fig. 9b, and it can be found that the
performance of the proposed algorithm is still significantly
due to the neural network algorithm. We analyzed the possi-
ble reasons for this phenomenon as follows: due to the small
amount of current experimental data, without the support of a
large amount of training data, the neural network algorithms
are prone to overfitting, and thus their prediction performance
is not necessarily better than that of the ensemble learning
methods.

Comparison of ELDEA and other algorithms

Similar to our proposed algorithm, the ELGA algorithm
(Wang et al., 2022) is an ensemble framework based on
evolutionary algorithms for surface roughness prediction, so
we compared the performance differences between ELDEA
and ELGA algorithms on the MJP experimental dataset of
3D-printed 316 L stainless steel. In the MJP experiments,
3D-printed 316 L stainless steel parts were polished by a
ZEEKO IRP200 machine with different process parameters.
After polishing, the surface roughness Sawasmeasured three
times and averaged to obtain the final Sa value. We obtained
43 experimental data items with different polishing param-
eters, including feed rate (f), fluid pressure (P), tool offset
(TO), step distance (d), and surface roughness (Saf). The
detailed experimental data are shown in Table 5.

We referred to the experimental setup of Wang et al.
(2022a, b) in their paper anddivided thedataset randomly into
training and testing sets in the ratio of 9:1, and used the ratio
ofMAEas the evaluation index, as shown inEq. (10). Finally,
ten experiments were run and averaged as the final result.
Smaller ratio of MAE indicates higher prediction accuracy
of the prediction method. In addition, we also compared with
other two ensemble learning algorithms, namely Averaging
and Stacking algorithms, and the results are shown in Table
6. It can be found that the prediction effect of the ELDEA

Table 5 MJP experiment data

f (mm/min) P (bar) TO (mm) d (mm) Saf (nm)

1 10 8 5 0.2 21

2 20 8 5 0.2 30

3 30 8 5 0.2 32

4 40 8 5 0.2 88

5 60 8 5 0.2 127

6 80 8 5 0.2 144

7 20 4 5 0.2 88

8 20 5 5 0.2 85

9 20 6 5 0.2 83

10 20 7 5 0.2 39

11 20 8 5 0.2 39

12 20 9 5 0.2 37

13 20 10 5 0.2 33

14 20 8 2.5 0.2 27

15 20 8 5 0.2 40

16 20 8 7.5 0.2 32

17 20 8 10 0.2 72

18 20 8 12.5 0.2 26

19 20 8 15 0.2 36

20 20 8 5 0.1 31

21 20 8 5 0.2 43

22 20 8 5 0.3 47

23 20 8 5 0.4 85

24 20 8 5 0.5 98

25 20 8 5 0.6 138

26 20 8 5 0.7 99

27 20 8 5 0.8 131

28 10 5 2.5 0.2 44

29 15 5 5 0.4 146

30 20 5 7.5 0.6 183

31 25 5 10 0.8 229

32 10 6 5 0.6 76

33 15 6 2.5 0.8 151

34 20 6 10 0.2 65

35 25 6 7.5 0.4 165

36 10 7 7.5 0.8 121

37 15 7 10 0.6 111

38 20 7 2.5 0.4 86

39 25 7 5 0.2 66

40 10 8 10 0.4 61

41 15 8 7.5 0.2 30

42 20 8 5 0.8 133

43 25 8 2.5 0.6 144
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Table 6 Comparison of the ratio of MAE among different ensemble
strategies

Ensemble Strategy The ratio of MAE

Stacking (Breiman, 1996) 0.261

Averaging (Liu & Kuo, 2016) 0.252

ELGA(Wang., 2022) 0.195

ELDEA(our method) 0.164

Bold value indicates the best results for the corresponding item

method is significantly better thanother three ensemblemeth-
ods.

The ratio of MAE � 1

m

m
∑

i�1

(|̂yi − yi |/ŷi ) (10)

Time complexity analysis of ELDEA

In this section, we examined the time complexity of ELDEA
starting from three parts: the EF-based automatic feature
constructionmodule, themulti-algorithm regressionmodule,
and the DE-based ensemble module, since they are the most
time-consuming parts of the whole algorithm. For the EF-
based automatic feature construction module, we assumed
that the time complexity of the model training process is
O(1), and then the overall time complexity of this module is
O(G1|P1|), whereG1 and |P1| represents the maximum num-
ber of iterations and the number of populations of the EF
algorithm, respectively. For the multi-algorithm regression
module, hyperparameter tuning is the most time-consuming
part of the module. We assumed that the time complexity of
the hyperparameter tuning process of a model is O(m), then
the overall time complexity of the module is n*O(m), and n
is the number of base models, which is a constant. There-
fore, the time complexity of the module can be simplified to
O(m). For the DE-based ensemble module, similar to the EF
algorithm, as an evolutionary algorithm, the time complex-
ity of the module is O(G2|P2|), where G2 and |P2| represent
the maximum number of iterations and the number of pop-
ulations of the DE algorithm, respectively. In summary, the
overall time complexity of the ELDEA algorithm is deter-
mined by max[O(G1|P1|), O(m), O(G2|P2|)].

Allmethodswere implemented in Python and the program
was run on a computer equippedwith an i9-9750H 2.60GHz
CPU and an NVIDIA GEFORCE RTX 3060 GPU. Table 7
shows the single run time and five average run times of the
ELDEA algorithm. (Unit: seconds)

Discussion of interpretability analysis results

Discussion of interpretability analysis based on impurity
reduction concept

In this section, we ranked the constructed features based on
the concept of impurity reduction and conduct interpretable
analysis for exploring the feature importance. The impor-
tance ranking of the constructed features is shown in Fig. 10,
containing the top 15 most important features among the
newly constructed features, where X0, X1, X2, and X3 repre-
sent feed rate, fluid Pressure, tool offset, and step distance,
respectively. It can be found that 13 of the first 15 impor-
tant features are related to feed rate, which indicates that the
machining parameter of feed rate has a significant effect on
the surface roughness. We also find that only a very small
number of the newly constructed features are related to tool
offset, which indicates that this machining parameter is not
the key factor for predicting surface roughness. Figure 10
shows that the most important feature is the product of feed
rate and fluid pressure. It can be speculated that the joint
action of the two parameters may have a greater effect on the
surface roughness, and in the subsequent machining exper-
iments, we can design more interactive experiments based
on the two machining parameters for verification. Compar-
ing the third important feature and the fourth one, we find
that the main difference is that the fourth important feature
adds the role of the product of feed rate parameter based on
the third feature, and the former feature is more important
than the latter. That indicates that, after adding feed date,
the combined effect of the three processing parameters has a
more significant effect on the surface roughness. This result
demonstrates the importance of the processing parameter
Feed Rate. In addition, the sum of two machining param-
eters, fluid pressure, and step distance, is noteworthy as an
important one. In future, we can explore the interaction of
these two machining parameters in conjunction with related
domain knowledge for exploring new insights for advancing
the polishing technologies.

Discussion of interpretability analysis based on Shapley
theory

In this section, we used the SHAP method based on Shap-
ley theory for further analyzing the original features in an
interpretable manner. For each feature, we selected the aver-
age of the absolute values of its Shapley values before and
after feature construction as the feature importance measure,
which is presented in the form of a bar chart in Fig. 11a and
b. Figure 11a represent the four features extracted from the
original data, which are four main processing parameters.
Figure 11b represent the top five most important newly con-
structed features in order of feature importance. Comparing
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Table 7 Running time of
ELDEA algorithm No. of experiments 1 2 3 4 5 Average

Running time (second) ≈253 ≈249 ≈221 ≈210 ≈267 ≈240

Fig. 10 Feature importance
ranking based on impurity
reduction concept

subplots (a) and (b), it can be found that more features with
higher Shapley values are constructed by the EF algorithm.
Compared with the original features, the newly constructed
features have better diversity and are more robust, there-
fore improving the prediction performance. For subplot (a)
in Fig. 11, we found that the feature importance ranking
obtained based on the SHAP method is largely consistent
with the results exhibited in Fig. 10, which further illustrates
the reliability of both interpretation methods. In addition,
slightly different from the results in Fig. 10, the results in
subplot (b) of Fig. 11 indicate that some of the newly con-
structed features do not contribute to the model based on the
calculation method of Shapley’s theory. Different methods
of calculating feature importance may have significantly dif-
ferent results for the same feature, and we need to explore
both methods further and combine the nature of the features
themselves toweighwhich features play amajor role inmod-
eling.

For each sample, we plotted the Shapley values for each
of its features, as shown in Fig. 12. The plot helps us to
better understand the overall pattern from a global view and
possibly identify predicted outliers. The figure contains all
the samples. Each point represents a sample. The horizontal
coordinates are the samples ranked by Shapley value. The
vertical coordinates are the features ranked by importance,
and the depth of the color indicates the magnitude of the
feature value (high in red, low in blue). It is worth noting that

the feature value here is different from the Shapley value and
is the value taken by the feature itself.

From Fig. 12, it can be found that the feed rate is the
most important. As the feed rate value increases, the corre-
sponding Shapley value also increases (i.e., the color of the
sample points gradually changes from blue to red as the x-
axis moves). When the feed rate is too low, the contribution
of this feature to the prediction model of surface roughness
is reduced, and even has a negative effect on the prediction
of surface roughness. Therefore, in the subsequent experi-
ments, we can set a minimum threshold value for feed rate
so that this processing parameter under condition that it is
not lower than this threshold value. This method can help us
reduce the number of experiments and thus improve experi-
mental efficiency. In addition, fluid pressure and step distance
are also the main influencing factors, and tool offset has lit-
tle effect on the surface roughness, which is consistent with
the analysis results in the previous section, thus further deter-
mining themain and secondary influencing factors of surface
roughness. The graph also shows that Fluid Pressure and step
distance are positively correlated with the prediction of sur-
face roughness in a certain range, i.e. the larger the value the
more significant the effect on surface roughness. In addition,
we can also find some outliers in the plot, which can help us
to detect outliers. We will analyze and explore these outliers
in the subsequent study.
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Fig. 11 Comparison of Shapley values of each feature before and after feature construction

Conclusions and future work

In this paper, a novel surface roughness prediction method
based on DE algorithm and ensemble learning is proposed
and applied to surface roughness prediction for abrasive
water jet polishing (AWJP). Our method uses six machine
learning models as the base models that form the ensem-
ble framework, namely RF, LASSO, XGBoost, ETR, GBR,
and SVR, which are responsible for modeling the relation-
ship between machining parameters and surface roughness.
First, a feature reconstruction method based on the EF algo-
rithm is used to reconstruct the features of the experimental

data, and this data is used for the training and prediction of
the base regression models. Then, the DE algorithm is used
to optimize the weight assignment of each model. For this
optimization problem, a simplified encoding mechanism is
proposed in this paper for the individual design of the DE
algorithm, which can further improve the search efficiency
of the DE algorithm. We validated the proposed method
on the AWJP dataset and compare the performance of the
method with other methods. The results showed that the
ELDEA has significant advantages over classical machine
learning algorithms and other ensemble learning algorithms.
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Fig. 12 Distribution of Shapley values for each sample

On the experimental dataset of AWJP, the ELDEA algo-
rithm reduces its MSE and MAE by about 33–84% and
14–64%, respectively, compared to the classical machine
learning algorithms. For the MJP experiments, the ELDEA
approach reduces the ratio of MAE by about 37%, 35%,
and 16%, respectively, compared to those obtained by other
three ensemble learning methods. Finally, the data features
are analyzed and discussed using an interpretable approach
to identify the main processing parameters that affect sur-
face roughness, and the results of the interpretable analysis
provide a theoretical reference for future experiments and
research.

In this paper, the ELDEA can receive different inputs
through an ensemblemodel and is expected to be transferable
to surface roughness prediction for other machining methods
such as turning and milling. In addition, the interpretable
methods used in the current study all perform interpretable
analysis from the level of features, by combining data and
models. The research on the self-explanation of the model
itself is yet to be further explored. In the future, we will aim
to combine the interpretability study of the model with the
interpretability study of the features and use a more compre-
hensive interpretability approach for analysis and discussion.
Therefore, future work will be devoted to investigating and
improving the ELDEA method so that it is expected to
become a general method for surface roughness prediction
with more comprehensive interpretability.
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