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Abstract
With the prevalence of deep learning and convolutional neural network (CNN), data augmentation is widely used for enriching
training samples to gain model training improvement. Data augmentation is important when training samples are scarce. This
work focuses on improving data augmentation for training an industrial steel surface defect classification network, where the
performance is largely depending on the availability of high-quality training samples. It is very difficult to find a sufficiently
large dataset for this application in real-world settings.When it comes to synthetic data augmentation, the performance is often
degraded by incorrect class labels, and a large effort is required to generate high-quality samples. This paper introduces a novel
off-line pre-augmentation network (PreAugNet) which acts as a class boundary classifier that can effectively screen the quality
of the augmented samples and improve image augmentation. This PreAugNet can generate augmented samples and update
decision boundaries via an independent support vector machine (SVM) classifier. New samples are automatically distributed
and combined with the original data for training the target network. The experiments show that these new augmentation
samples can improve classification without changing the target network architecture. The proposed method for steel surface
defect inspection is evaluated on three real-world datasets: AOI steel defect dataset, MT, and NEU datasets. PreAugNet
significantly increases the accuracy by 3.3% (AOI dataset), 6.25% (MT dataset) and 2.1% (NEU dataset), respectively.

Keywords Data augmentation · Synthetic sample generation · CNN · Surface defect classification · Decision boundary ·
PreAugNet

Introduction

Artificial neural networks have led to significant achieve-
ments in the field of supervised learning algorithms to solve
data classification problems (Abiodun et al., 2018; Meireles
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et al., 2003; Saritas & Yasar, 2019). A variety of probability-
based algorithms such as learning vector quantization and
probabilistic neural networks (Burrascano, 1991; Mao et al.,
2000) have beenwidely used for supervised statistical pattern
classification-based models. The models aim to learn feature
representations of a class region related to competitive learn-
ing algorithms.However, using this straightforward approach
for high-dimensional features comes with a huge computa-
tional complexity and time. Nowadays, in the era of deep
learning, convolutional neural networks (CNN) as typical
feed-forward neural networks have performed remarkably in
the various computer vision systems including image classi-
fication (He et al., 2016; Krizhevsky et al., 2017; Simonyan
& Zisserman, 2014; Tan & Le, 2019) object detection (Liu
et al., 2016; Redmon et al., 2016; Ren et al., 2015) seman-
tic segmentation (He et al., 2017; Ronneberger et al., 2015),
etc. One of themost challenging supervised learning applica-
tions of CNN in the manufacturing industry is product defect
recognition which has been extensively studied. In order to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-023-02109-0&domain=pdf
http://orcid.org/0000-0002-0401-8473


1234 Journal of Intelligent Manufacturing (2024) 35:1233–1246

train a deep neural network model for real-world industrial
use, probably the first immediate task is to collect sufficient
labeled data. Without high-quality training data, overfitting
will mostly occur, which causes the learned model to be
highly biased to the seen samples but not be able to generalize
against unseen data. It is well-known that regularization tech-
niques can alleviatemodel overfitting, including the extended
techniques of (Choe et al., 2020; Ghiasi et al., 2018; Singh &
Lee, 2017) and batch normalization (Krizhevsky et al., 2017).
Various heuristic techniques such as weight decay and early
training stopping can reduce overfitting by penalizing param-
eter norms. Despite the practical values of these heuristics,
the training of large network models for complex real-world
industrial applications still demands a large amount of high-
quality data.

Data augmentation is an effective approach to battle
model overfitting (Shorten&Khoshgoftaar, 2019). Data aug-
mentation is the process of supplementing and enriching
available data for better generalization during training. For
most computer vision problems, image transformations such
as rotating, cropping, scaling, noise perturbation, or color
adjusting are popular means to substantially improve data
amount (Hernández-García & König, 2018). When dealing
with natural images, rotating, flipping, and scaling trans-
formations are de facto approaches used during training.
Unfortunately, not all transformations are useful for every
dataset or problem. For example, all categories in CIFAR10,
CIFAR100and ImageNet datasets should be invariant to hori-
zontal flips, since the mirror of an object is typically visually
valid (e.g., a mirrored car is still a good training sample).
However, not all image transformations are valid for prob-
lems such as character recognition (LeCun et al., 1998),
where non-existing symbols or symbol label change after
transformation (e.g., a flipped ‘6’ becomes ‘9’) can harm
model training.

In the process of augmentation paradigm, there aremainly
three ways in which augmentation techniques can be applied,
namely off-line augmentation, on-line augmentation, and
hybrid methods. Off-line augmentation user has access to
screening the augmented results but needs to concern about
the quality of new samples. On other hand, on-line aug-
mentation provides virtually infinite samples during training,
however without ground truth for validation. Numerous
image recognition works apply off-line augmentation by
producing synthetic images (Bowles et al., 2018; Frid-Adar
et al., 2018) to effectively improve model training and alle-
viate over-fitting. However, the new synthetic samples are
still generated from the modeling of existing samples, thus
they are typically not sufficiently diverse. It is common that
incorrectly augmented transformations can induce features
far away from the original sample, which harms model train-
ing. Since there is no easy way to find out but to check model
effectiveness at the end of training, the evaluation of data

augmentation can be very time-consuming in the real-world
setting. In this work, our major goal is to develop an effi-
cientmethod that can provide insight on the selection process
of off-line data augmentation sample generation, such that
more diverse and representative samples can be generated to
improve target model training.

Specifically, we develop an off-line data augmentation
optimization approach that can effectively improve the
screening of augmented samples to boost model training.
We choose the industrial surface defect classification as
the targeted application for evaluation. We construct an
independent, lightweight data augmentation network named
pre-augmentation network (PreAugNet) that consists of a
data augmentation generator, a feature extractor, and a data
management module.Motivated by the idea of effective clas-
sification of support vector machine (SVM) in determining
decision boundary (Vapnik, 1999), We design an SVM clas-
sifier that predicts the label of a generated sample based on its
extracted features. This process iterates in updating the new
samples regarding the SVM decision boundary being mod-
eled that are related to the data augmentation transformation
process.

• We propose a lightweight PreAugNet that improves the
off-line data augmentation for training a defect classifi-
cation model. The pre- augmentation network learns to
extract features from input sample images and produce
proper transformations to generate new sample images for
data augmentation.

• We design an SVM decision boundary analysis to screen
and iteratively update the samples produced from the
PreAugNet to ensure the suitability of the transformed
samples for target network training.We show how the iter-
ative estimation and updating of class decision boundaries
can be very effective in screening and producing diverse
augmentation samples that generalize better.

• Extensive experiments are performed to evaluate the per-
formance of the PreAugNet against other state-of-the-art
online and offline data augmentation methods. Specifi-
cally, we use ResNet (He et al., 2016) as the target network
that is trained on three real-world datasets, namely AOI,
MT, and NEU datasets for steel surface defect inspec-
tion. PreAugNet significantly increases the classification
accuracy by 3.3% (AOI), 6.25% (MT) and 2.1% (NEU),
respectively.

The rest of this paper is organized as follows: "Related
work" section discusses related works. "Methodology"
section introduces the principle of pre-augmentation net-
work, augmentation generator, and the SVMdecision bound-
ary update process. "Experimental results" section describes
experimental results and performance analysis. "Conclusion"
section provides discussions and the conclusion.
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Related work

Data augmentation

As a highly effective method to tackle data limitations, data
augmentation has been successfully designed in many cases.
Extensive works on real-time image augmentation offermas-
sive efforts in image classification (Shorten & Khoshgoftaar,
2019). Augmentation with Cutout (DeVries & Taylor, 2017)
shows the simple regularization techniqueof randomlymask-
ing out square regions of input during training that can be
used to improve the robustness and overall performance of
CNN. In order to enhance the regularization strategy of the
network, augmentation with Cutmix (Yun et al., 2019; Zhang
et al., 2017) uses cut and paste operation on the patch area
from the source image to the training image. Another popular
data augmentation method for training CNN is random eras-
ing (Zhong et al., 2020a, 2020b), where it randomly selects
a rectangle region in an image and erases its pixels with
random values. With this simple learning principle, these
augmentation methods regularize CNN better. In the case
of surface defect, evaluating traditional augmentation meth-
ods shown in (Farady et al., 2021) where the various data
augmentationmethods including pixel-level and spatial-level
used to evaluate the accuracy results. For creating additional
training samples from existing data, (Farady et al., 2022;
Wong et al., 2016) shows the benefit of creating synthetic
samples via combining the two approaches of data warping
and synthetic over-sampling. Data warping methods gener-
ate samples through transformations that are applied in the
data-space, while synthetic over-sampling creates samples
according to the feature-space. The generative adversarial
networks (GAN) (Goodfellow et al., 2020) are widely used
in producing new realistic samples of certain data or class.
By training using adversarial examples monitored by the
discriminator, the generator of GAN can synthesize realistic-
looking images that are sufficiently different from theoriginal
images (Liu & Tuzel, 2016; Zhu et al., 2017).

Industrial defect inspection

Steel surface defect inspection has received increased atten-
tion for ensuring quality control of industrial products
(Czimmermann et al., 2020; Kumar, 2008; Luo et al., 2020;
Ngan et al., 2011). Currently, most deep learning models for
image recognition use transfer learning concepts to train the
model on new dataset. It then becomes a popular solution
to reduce training time in modern deep learning models and
defect datasets (Abu et al., 2021; Pan et al., 2020; Zhang et al.,
2021a).With transfer learning, instead of starting the learning
process of CNN model from scratch on small training data.
In the following works (Marino et al., 2020; Zhang et al.,

2022, 2021a, 2021b, 2021c), the networks exploit the trans-
fer learning knowledge of a model that has learned from the
training on a sufficiently large dataset. Additionally, domain
adaptation (Saito et al., 2020; Yang et al., 2021) approaches
have been implemented in many industrial cases such as
machinery fault diagnosis. Surface defect detection is usually
performed against complex industrial scenarios, which ends
up as a challenging problemwith hard usage constraints. Sur-
face defects are the main cause of low-quality steel products.
Steel surface defect recognition and classification approaches
have improved significantly since the debut of deep learn-
ing with many advantages in the past decades (Chen et al.,
2020; Cheon et al., 2019; Huang et al., 2020a, 2020b; Park
et al., 2016). In recent years, exploring the benefit of machine
learning algorithms emerged when CNN features have been
successfully integrated with a basic superior classifier such
as the support vector machine (SVM) (Vapnik, 1999). The
works (Elleuch et al., 2016; Kang et al., 2017; Niu & Suen,
2012) can classify both linear and nonlinear problems with
SVM kernel functions. In (Chen et al., 2020; Li et al., 2017),
image data are successfully enhanced using CNN to produce
better classification results. Many developments from these
hybridmethods emerge in caseswhen the amount of available
data is limited, which is particularly true for industrial defect
inspection. As shown in (Joshi et al., 2020; Sun et al., 2019;
Xue et al., 2016), the CNN structure has been well-suited
to deal with non-natural images with quality and scalability
issue.

Data augmentation for defect inspection

Many applications regarding industrial image processing
face barriers of severe data scarcity. The works of (He
et al., 2019a, 2019b; Jain et al., 2022) overcome the short-
age of defective samples by adopting GAN for effective
data augmentation. In addition to generating images with
an autoencoder, (Yun et al., 2020) proposed a combination
convolutional variational autoencoder (CVAE) algorithm to
address the insufficient imbalance data. In the discriminative
training of GAN (Zhong et al., 2020a, 2020b), the computa-
tional cost of the generator increases, which tends to overfit
to real data where data augmentation should be avoided.
Regarding applying GAN data augmentation for industrial
defect datasets, the GAN generator can learn a complex dis-
tribution from the limited available dataset. However, how
useful the synthetic samples in regarding model training is
questionable. GANs might not be able to cover the entire
diversity of defect types, as the available defect samples in
the first place can be already very scarce.

In contrast to the previous approaches, in this work, we
designed an effective data augmentation approach based on
feature enhancement that goes hand-in-hand with their class
decision boundary that are crucial for training the target
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network. Our approach leverages CNN features that will
be refined in an SVM decision boundary representation,
such that new data augmentation samples can be created via
data-driven learning and iteratively update. This way, our
approach can create diverse but representative samples, that
the target network has mostly not seen before to boost train-
ing its performance.

Methodology

We start with the main idea of introducing a Pre-
AugmentationNetwork (PreAugNet) to performoff-line data
augmentation that can improve the training of the target
network model for industrial defect recognition. We first
describe the PreAugNet with a detailed module design and
then explain the data flow regarding the splitting, sam-
pling, and collecting of the augmented samples inside the
PreAugNet in "Off-line pre-augmentation network" section.
We describe how the PreAugNet updates the sample decision
boundary during the sample search process in "The decision
boundary update process for augmentation sample screen-
ing" section. Finally, we discuss the target network settings
and how the augmented samples are added to improve its
training in "Target network" section.

Off-line pre-augmentation network

Figure 1 shows the architecture of the proposed PreAugNet,
which is attached to a target network for training with data
augmentation. PreAugNet produces new transformed sam-
ples via an augmentation generator, where the samples are
screened to ensure that they gain representative and diverse
features that are sufficiently different from the original sam-
ples. The generated samples are merged with the original
samples for target network training.

The PreAugNet consists of four parts: (1) a data manage-
ment module, (2) the augmentation generator, (3) the feature
extractor, and (4) the augmentation sample classifier. The
data management module manages data distribution includ-
ing data splitting, collection, sample dropping, and merging
for target network training. The data management module
controls the data flow inside the PreAugNet and data pre-
processing of the target network. It also plays an important
role in maintaining a balance between the synthetic sam-
ples vs. the desired amount of total training samples. The
augmentation generator produces a diverse set of new trans-
formed images/samples, which will be screened and picked
in the next step. The feature extractor consists of a standard
CNN that extracts high-dimensional features from the orig-
inal images. The augmentation sample classifier is an SVM
that performs classification based on the extracted features
and estimates the decision boundary to gauge the quality and

suitability of the generated samples. Figure 2 illustrates the
proposed PreAugNet data augmentation pipeline jointlywith
the training of the target model.

The augmentation generator G in Fig. 2 performs image
transformations to the original samples to generate images
in different sizes and shapes. Both affine transformations
in the spatial domain and color intensity adjustments in the
pixel domain are incorporated for data augmentation selec-
tion. Those image transformations are effective means for
data augmentation as they align with variations in the phys-
ical world. In reality, the same defect can occur at various
sizes and locations on the steel surface with different illumi-
nation and viewing conditions. This way, the augmentation
generator can effectively generate realistic new samples that
are suitable for model training. Surface defect images often
exhibit very few amounts of information as features. Thus,
a robust feature extractor is essential for acquiring repre-
sentative feature vectors from defective samples. We use
Inception-v3 (Szegedy et al., 2016) to extract features, with
the same configuration for both the original and augmented
images. The deep structure of Inception-v3 at the last fully
connected layer retrieves 2048-dimensional features, which
are fed into the classifier for boundary classification.

Figure 3 describes the augmented sample update process
within the PreAugNet. Consider a dataset X = {xi , yi }N

i=1,
where xi is an input image, yi the associated class label,
N the number of samples. Denote X

′
for the set of newly

generated images, and α for the percentile of new sam-
ples w.r.t. the number of original samples. In this setup, the
augmentation generator G takes input dataset X and pro-
duces augmented samples X

′
, namely, G = X → X ′. The

augmentation process typically consists of multiple oper-
ations such as hue saturation adjustments, adding various
noise types (random, multiplicative, and additive Gaussian),
removing high-frequency components via jpeg compression,
randomly drop channel of the input image and image blur-
ring, i.e., G = {a1, a2, ..an}. These image transformations
are important as they provide the source of variability for
image augmentation.

As shown in Fig. 3, the augmentation generator G is able
to produce a large amount of images.However, not all the out-
puts of G are useful for training the target network. In order
to control the distribution and variation of new generated
samples, we apply a selection process to collect only “good”
sampleswith the concept of the decision boundary of anSVM
classifierC. In the first iteration of the pre-augmentation net-
work, data management module performs a “drop-select”
function based on a ratio α. The ratio α controls the targeted
number of new samples selected as correct results from the
classifier C. While the rest of misclassified samples will be
dropped, the data management module starts to recalculate
the minimum number of new samples x

′
to fulfill the needs

of the target network. In this phase, the next iteration starts
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Fig. 1 Overview of the proposed
off-line PreAugNet to improve
data augmentation for the
training of an industrial defect
classification network

Fig. 2 The PreAugNet data augmentation as an integrated pipeline for target network training

and will automatically repeat the process until the specified
condition is reached.

The decision boundary update process
for augmentation sample screening

We construct a feature similarity measure by a classifier C,
where, in the case of given a high dimensional feature from
X and X ′ samples. We aim to obtain an optimal boundary
separation between X and X ′ for each class by learning the
similarity degree and relationship among the features. We
formulate the problem of searching the samples on the pre-

dicted result of the classifier C =
{

x
′
, y

′
i

}N

i=1
with SVM.

The basic idea is mapping the input feature vector into a
high-dimensional space and generating a maximal distance
of the separation boundary.

As shown in Fig. 4, in the process of searching the bound-
aries, the SVM classifier learns the n-dimensional features
(x , y) from both the training set and new samples in feature-
space and calculates themaximumboundarymargin between
the newobservation samples of the class label in one iteration.
When the pre-augmentation network updates this process for
n-iteration times, at the same time classifier automatically
produces another correct sample with their respective labels.
As illustrated in Fig. 4, the boundary line of SVMwill adjust
to new generated samples and find the optimum with the
input samples. In this condition, the classifier simply marks
the output sample x

′
as 1 (red) and 0 (black) for the correct

samples andmisclassified samples respectively (as illustrated
in Fig. 3). In other words, the classifier C not only provides
the class label of x

′
but also the misclassified position of x

′

for the new sample in y
′
i classes. Thus, our data management
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Fig. 3 The boundary update process in the pre-augmentation network.
The original image x is transformed to x

′
via augmentation generator

Gwhich contains several augmentation methods {a1, a2, a3, . . . an} In
the next iteration, classifier C updates the sample decision boundary
according to new augmented images and performs the class prediction

of the new input samples. The output of theC specifies a new sample x
′

to be collected into the sample pool or discarded for all classes. The red
x’ represents the correct class and black x

′
is the discarded sample. The

update process inside PreAugNet continues until the predetermined α

ratio of the target network matches

Fig. 4 Illustration of the boundary update of two class data observa-
tions for new generated samples x

′
(red and black) under 2-dimensional

and linear conditions. The dashed line represents the boundary of the

classifier C where the boundary line dynamically moves according to
new samples input for each iteration update (Color figure online)

module performs the “drop-select” function on the classifier
results C for next iteration where all the 1’s (red) output will
only be selected and stored into sample pool.

Target network

The target network as shown in Figs. 5 is the network model
that demands data augmentation. Experiments are designed
to evaluate how the variousways of data augmentations affect

the training of this target network. For industrial defect recog-
nition, we use the ResNet (He et al., 2016) model as our
target network. Specifically, we use the same configuration
as the original ResNet18 structure, including the loss func-
tion, batch normalization, and optimizer.

In the baseline method, the target network is trained with-
out using any augmentations at pre-processing and testing
stage. The only change is in the adjustment of the input image
size which is adjusted to the original model implementation.
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Fig. 5 Structure of the ResNet18 as target network for defect classifica-
tion. During the training process, the input images for training consist
of a combination of the original images and the collected samples from

the screened augmented samples. The training process is the same as the
original ResNet-18 training pipeline, except for the data augmentation
introduced in this paper

In order to control the number of augmentation samples, we
define the α ratio where the ratio is cumulative augmented
images in a single training process. We set the α ratio in per-
cent of the original image and limit the ratio to no more than
the original data. This ratio concept is applied for both online
and off-line pre-augmentations.

Experimental results

Dataset and training details

We perform the experiments on three challenging real-world
industrial steel surface defect datasets to evaluate the pro-
posed method: (1) the Automatic Optical Inspection (AOI)
steel defect dataset,1 (2) the Magnetic Tile (MT) surface
defect dataset (Huang et al., 2020a, 2020b), and (3) the NEU
defect dataset (He et al., 2019a, 2019b). The AOI dataset
is a private dataset that contains five types of steel surface
defect: void defect, horizontal defect, vertical defect, edge
defect, and particle defect. The MT and NEU datasets are
well-known public datasets and are widely used for defect
classification and detection. The MT dataset contains five
types of defect: blowhole, break, crack, fray and uneven. The

1 https://aidea-web.tw/topic/701e1e79-84ff-49a5-86ee-a7f01c24c6f7.

NEU dataset contains six defect classes: crazing, inclusion,
patches, pitted surface, rolled-in scale and scratches. The red
boxes of Fig. 6 highlight steel defects in these datasets, which
is visually quite similar to the steel background. Images are
grayscale and the information provided by the defect samples
is typically scarce.

Table 1 summarizes the number of defect images of the
three datasets. Note that the number of defect samples is
extremely low when compared with other image classifi-
cation datasets such as ImageNet or COCO for different
applications. The three datasets show two challenging con-
ditions in the industrial use case. First, all datasets contain
small-scale training data and lack of surface defect image
representations. For instance, AOI defect dataset consists of
five classes of defects with a total image for the whole raw
data is 1854 images and similarly in NEU dataset also con-
sists of 1800 images. TheMTdataset consists of 1344 images
where only 392 defect images available. Secondly, the imbal-
ance data of the three datasets cause additional challenging.
Collecting a specific type of industrial defect sample is not
an easy task, since the same type of defect does not fre-
quently appear in a production line. It reflects in AOI and
MT datasets where distribution data among the classes is
not in the same average amount of images. In the case of
AOI andMT datasets, imbalanced data distribution has obvi-
ously become a problem for defect recognition and detection.
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Fig. 6 Sample images of each
class from the AOI industrial
inspection dataset. Red boxes
highlight steel defects (Color
figure online)

Table 1 Details and data
statistics of the three industrial
inspection datasets used for
experimental evaluation

AOI MT NEU

Number of defect images 1854 392 1800

Number of defect classes 5 5 6

Defect image distribution class-1 (492) class-1 (115) class-1 (300)

class-2 (100) class-2 (85) class-2 (300)

class-3 (378) class-3 (57) class-3 (300)

class-4 (240) class-4 (32) class-4 (300)

class-5 (644) class-5 (103) class-5 (300)

class-6 (300)

However, the NEU dataset shows another real problem that
all classes have the same low number of images (300 defect
images/class) and equally distributed.

We implement the proposed methods in PyTorch. Exper-
iments are performed on a workstation with Linux and
NVIDIA RTX 2080i GPU. Baseline experiments are per-
formed with the original settings, where the AOI, MT, and
NEU datasets are directly processed by the baseline model
without augmentation. In the next round, online augmen-
tations take part for training based on α ratio to transform
images in one single online augmentationmethod. The online
augmentation performs random operations of transformation
to original images during the training process. On the other
hand, the off-line pre-augmentation network runs augmenta-
tion operation from the Albumentation (Buslaev et al., 2020)
library to produce all samples inside the augmentation gen-
erator G that runs separately from the target network.

Evaluation Metrics The effectiveness of our proposed
method on target network is examined in terms of final pre-
diction accuracy for unseen test images.Comparedwith other
classification methods, accuracy (%) is used to perform the
evaluation of the prediction result. The accuracy is defined
as the ratio of the number of test images correctly classified
to the number of all test images in the target network.

Evaluation results

We next present experimental results of the PreAugNet with
ResNet-18 target network on the AOI, MT, and NEU defect
inspection datasets. Since the pre-augmentation network and
target network are independent, we can separately train
the baseline and pre-augmentation network. We prepare the
pre-augmentation network to perform searching samples in
parallel, where the data management automatically collects
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Table 2 Defect classification accuracy results (%) on AOI dataset with
different approaches for data augmentation.

Method Accuracy (%) Improvement
(�)

Baseline 95.10 –

General on-line augmentation 95.60 0.5

PreAugNet (class-2) 97.10 2.0

PreAugNet (class-2 and
class-4)

97.70 2.6

PreAugNet (all class) 98.20 3.1

All pre-augmentation methods boost the prediction accuracy including
the method of adding samples to imbalance and low distribution data
(class-2 and class-4)

the samples. The number of the correct samples from the
classifier will be added to target network before performing
the off-line augmentation.

Results on AOI dataset

The AOI dataset consists of 1854 images from five types of
defects. As shown in Table 1, horizontal defect class-2 (100
images) and edge effect class-4 (240 images) have signifi-
cant differences in terms of image distributions. In the case
of AOI defect dataset, we conduct two scenarios to prove
our off-line pre- augmentation network. The first scenario,
we tackle the imbalance problem by adding more samples
for the lowest class. At the initial stage of experiments, we
adjust images from class-2 as the main source for generat-
ing new samples. Data management in the pre-augmentation
network distributes only images from class-2 to the augmen-
tation generator. The augmentation generator specifically
generates new samples from class-2 with ratio α ≤ N of
original images. Since class-2 consists of 100 images, pre-
augmentation network updates the searching process 7 times
before reaching themaximum number of new samples. In the
next phase, we try to generate another sample from another
lower class. For class-4 our pre-augmentation network needs
5 iterations update to produce a similar number of sam-
ples. We present the result of pre-augmentation from the two
classes in Table 2.We assume that the number of updates pro-
cess heavily depends on the amount of original images. The
more resources we have the faster searching process will be.
As we can see in Table 2 adding new samples for imbalance
class data improves the accuracy of the target network.

The goal of the second scenario for AOI dataset is aiming
to balance all the classes. This is the typical pre-augmentation
scenario where the goal of this approach is to generalize data
distribution among the classes. In this case,we primarily gen-
erate more samples with more augmentation methods to the
lower class and randomly set less transformation methods in

Table 3 Comparison test accuracy (%) on MT dataset across different
data augmentation methods

Method Accuracy (%) Improvement
(�)

Baseline 92.50 –

General on-line
augmentation

96.20 3.70

PreAugNet 97.50 5.0

higher class images. As the result, all classes share the same
number of samples in the target network. The effect of this
approach is the dataset will share the same average number
of images. In practice, we carefully train pre-augmentation
network for all classes and set the limit of α in the data
management module to match with the target sample dis-
tributions. With this scenario, the new samples from our
pre-augmentation network successfully achieved better accu-
racy about 3.1% of AOI dataset compared to the baseline.

Results on the MT dataset

MT dataset is a typical steel dataset with 5 defect classes
and the defect types (foreground) are very close to the back-
ground. Since MT dataset has a small number of defect
images for all classes, then pre-augmentation network will
be directed to produce more samples from all class distribu-
tions. The augmentation generatorG produces more samples
of the color transformation methods from class with a lower
number to class with a higher number of images.We train the
pre-augmentation network according to α ratio for all class
distributions where we set α from 0.1 to 0.9 of the original
image distributions (Figs. 7, 8).

In the target model prediction results as presented in Table
3, after adding samples from pre-augmentation network the
final accuracy increased about 5% at the maximum α ratio
(0.7). Despite that on-line augmentation yielded the highest
accuracy about 3.7% of the baseline, Pre-augmentation con-
sistently matches or outperforms the baseline with alteration
to all lists of α ratios employed. In the scenario with same
α ratio for all classes in Fig. 9, we also found that the new
samples from pre-augmentation network surpassed the base-
line after α= 0.2 and achieve better accuracy at higher ratios.
It seems that relatively small number of samples in the MT
training dataset are not generalized well but with larger ratio
and more samples added, pre-augmentation is become more
robust across general on-line augmentation.

Results on the NEU dataset

Because NEU dataset is composed of equally distributed
images for all classes, the off-line Pre-augmentation strategy
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Fig. 7 Sample images of each
class from the MT industrial
inspection dataset. Red boxes
highlight steel defects (Color
figure online)

Fig. 8 Sample images of each
class from the NEU industrial
inspection dataset. Red boxes
highlight steel defects (Color
figure online)

for NEU dataset may differ substantially from AOI and MT
datasets. In NEU dataset, our pre-augmentation network is
focused on generating new samples by increasing the number
of samples for all classes equallywherewe set the same initial
α ratio for all classes during the pre-augmentation training.
The pre-augmentation network simply generates new sam-
ples for all classes in the same manner for all α ratios. In
details, the augmentation generator produces new samples

in several stages by determining the types and number of
transformations accordingly that it requires several updates
in the process of collecting new samples in sample pool. That
means, even though during the process of updating the new
samples in classifier the number of iterations required is not
the same for each class, but at the end of searching process
all classes will get the same number of new samples.

Our testing results are shown in Table 4. As can be seen
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Fig. 9 Test accuracy (%) on AOI, MT and NEU defect datasets. Comparisons across baseline, default on-line augmentation, Pre-augmentation and
combination method with different α ratios

Table 4 Comparison test accuracy (%) on NEU dataset across different
data augmentation methods

Method Accuracy
(%)

Improvement
(�)

Baseline 97.40 –

General on-line augmentation 98.40 1.0

PreAugNet 99.20 1.80

Synthetic data augmentation
(Jain et al., 2022)

99.11 –

Our pre-augmentation network is trained across all classes and com-
bined with on-line augmentation surprisingly managed to outperform
synthetic data augmentation with GAN

from the results, PreAugNet improves the overall accuracy
over the general augmentation and synthetic GAN method
(Jain et al., 2022). Secondly, applying Pre-augmentationwith
α ratio 0.8 achieves the highest accuracy of NEU dataset
about 1.8% compared to baseline.

Experiment on the combination of augmentation methods

This section evaluates whether the off-line pre-augmentation
network and on-line augmentation combined improves the
prediction result. In combination augmentation mechanism,
we randomly perform augmentation on the new samples
and original samples during training. We re-train the tar-
get network for every 10% additional samples and capture
the highest accuracy. We present several different α ratios
for two different augmentation approaches: off-line pre-
augmentation and general on-line augmentation method.
Figure 9 demonstrates how the increasing number of sam-
ples affect the accuracy of target network for all datasets. The
accuracy of target network constantly matches or improves
frombaseline and general augmentation. The performance of
off-line pre-augmentation and combination methods are par-
ticularly good on the AOI dataset, the improvement occurred
in the addition of new samples starting from the small ratio.
In other words, these results show that ourmethod can indeed
enlarge the defect samples in target network to produce better
accuracy. The new samples from pre-augmentation network
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Table 5 Comparison test
accuracy (%) across all datasets
with combination of general
augmentation and PreAugNet
methods

Method AOI MT NEU

Acc. (%) Improv. (�) Acc. (%) Improv. (�) Acc. (%) Improv.
(�)

Baseline 95.10 – 92.50 – 97.40 –

General
augmentation

95.60 0.5 96.20 3.70 98.40 1.0

PreAugNet
(combination)

98.40 3.3 98.75 6.25 99.50 2.10

Acc accuracy, Improv improvement

are more robust than default random on-line augmentation.
This phenomenon is in line with our assumption that the
pre-augmentation network only distributes samples that have
been correctly selected based on the boundary in the classi-
fier so that the new generated samples are more robust and
useful for the target network (Table 5).

In Fig. 9, it can be seen that not all pre-augmentation com-
bination produces better results compared to single on-line
augmentation. Result on MT dataset, the combination meth-
ods produce unstable accuracy at higher α ratio. We found
that the combination method produces lower than baseline at
α ratio (0.3, 0.4). We assume this phenomenon occurs due to
lack of data in sample pool so that some samples forwarded
from pre-augmentation are identical. We also found that if
the original class data was too small, the pre-augmentation
network required more updates to reach the expected ratio
than other classes. These multiple updates affect the search-
ing time on our pre-augmentation network.

Limitations

We next discuss limitations regarding our method. First, we
note that the arbitrary image transformation is not preferred
in the augmentation searching process, since the augmenta-
tion generator needs to produce a lot more samples before
an acceptable sample can be found. Likewise, the time-
consuming for searching boundary is heavily depending on
the total input sample to classifier. As a result, when the
number of transformed samples is larger than the original
image, we split the input samples in batches to be fed into the
SVM classifier. Furthermore, due to various transformations
in augmentation generator G, the preparation of new sam-
ples can be very challenging to achieve in small iterations.
Since the position boundary heavily depends on the quality
of features, low-quality samples can weaken the searching
process or even failed to improve the decision boundary. If
this happens, re-running the process for another iteration can
typically resolve the issue.

Conclusion

In this work, we design the Pre-Augmentation Network
(PreAugNet) for generating and screening augmented sam-
ples to improve data augmentation in training a target
network. The PreAugNet iteratively retrieves CNN features
from the raw samples to improve the generated samples,
where the updating process is governed by an SVM classifier
with decision boundary analysis. This way, the new samples
produced from the PreAugNet are much more diverse and
suitable for effective data augmentation. The effectiveness
of this approach is evaluated on the industrial defect recog-
nition problem over three real-world datasets. We compare
our PreAugNet with multiple data augmentation approaches,
and we also compare our end-to-end pipeline with mul-
tiple state-of-the-art surface defect classification methods.
Extensive experiments show that the PreAugNet with a stan-
dard ResNet-18 target network can achieve 3.3% accuracy
improvement on the AOI dataset, 6.25% on the MT dataset,
and 2.1% on the NEU dataset. Results demonstrate the effec-
tiveness of the PreAugNet data augmentation in improving
the training of a defect classification network.

Future work

Joint training solutions have great potential in reducing train-
ing costs and time for real-world applications. Future work
includes tighter integration of the proposedpre-augmentation
network with the target network, such that better training
performance might be obtained. Also, our approach can be
deployed in other real-world applications where data scarcity
remains the bottleneck.
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