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Abstract
Resistance spot welding (RSW) is an important manufacturing process across major industries due to its high production
speed and ease of automation. Though conceptually straightforward, the process combines complex electrical, thermal,
fluidic, and mechanical phenomena to permanently assemble sheet metal components. These complex process dynamics
make RSW prone to inconsistencies, even with modern automation techniques. This motivates online process monitoring
and quality evaluation systems for quality assurance. This study investigates in-situ process sensing and neural networks-
based modeling to understand key aspects of RSW process monitoring and offers three contributions: (1) a comparison of
two data-driven modeling approaches, a feature-based Multilayer Perceptron (MLP) and a raw sensing-based convolutional
neural network (CNN), (2) a comparison of how electrical and mechanical sensing data affect the model’s performance,
and (3) an explanation of MLP behavior using Shapley Additive Explanation (SHAP) values to interpret the contribution of
sensing features to weld quality metric predictions. Both the MLP and CNN can predict weld quality metrics (e.g., nugget
geometry) and detect a process defect (i.e., expulsion) using in-situ current and resistance sensing signals. Including force
and displacement measurements improved performance, and the SHAP values revealed salient features underlying the RSW
process (e.g., displacement contributes significantly to predicting axial nugget growth). Future work will explore additional
architectural developments, explore ways to translate lab-developed models to production plants, and leverage these models
to optimize RSW processes and improve quality consistency.
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Introduction

Resistance SpotWelding (RSW) is a vital joining process for
sheetmetal. From automotive bodies to aircraft frames, RSW
is one of the oldest and most widespread automated manu-
facturing processes (Ma et al., 2013), clamping stackedmetal
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sheets between two electrodes and applying electrical current
to heat, liquefy, and merge them into one permanent assem-
bly. Instead of merging the entire mating surfaces into one
contiguous component like a laminate, RSW creates local-
ized spots of joined metal known as nuggets (Wang et al.,
2020). These nuggets are analogous to rivets, screws, or other
fasteners, but their mechanical and geometric properties
lack the uniformity of prefabricated fasteners. Even though
industrial welding robots can execute precise, repeatable
operations, RSW is an inherently complex and inconsistent
process. Minor changes in a material’s chemical composi-
tion, structural and geometric properties (Ao et al., 2020), and
sheet fit-up conditions, along with other process uncertain-
ties, influence the weld quality by affecting the thermo-fluid
dynamics. Other issues such as electrode tool degradation
and unreliable control systems could further exacerbate pro-
cess uncertainties. These process uncertainties lead to quality
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inconsistencies and process defects that hinder quality assur-
ance. This challenge motivates research into online quality
evaluation using in-situ process sensing and predictive qual-
ity modeling to automatically gauge weld quality on the
factory floor. Furthermore, modeling the latent connections
between process parameters, sensing data, and the resulting
weld quality is an essential step for future process optimiza-
tion to improve quality consistency.

In open-loop RSW process control, quality assurance
depends on this understanding of latent connections, or
process-quality relationships, e.g., how material sheet fit-up
conditions and process parameters affect weld quality. Some
recent efforts attempted to model the complex RSW pro-
cess dynamics through Finite ElementAnalysis (FEA) (Chen
et al., 2018; Vignesh et al., 2019). However, the process-
quality relationship modeling through FEA simulations is
subject to many assumptions and neglects the necessary con-
sideration of process uncertainties, making FEA inapplicable
to real-world welding production lines. In-situ process mon-
itoring provides a way to characterize process uncertainties
and hence can supplement process parameters to improve
process-quality relationship modeling and online prediction
of weld quality (El-Sari et al., 2021). Since RSW consists
of electrical, thermal, fluidic, and mechanical phenomena,
in-situ monitoring can be approached by measuring differ-
ent process aspects. Commonly investigated in-situ sensing
includes welding current, Dynamic Resistance (DR), force,
and electrode displacement. Temperature, geometry, and
chemical properties changematerial resistance, someasuring
DR captures important thermo-fluidic material fluctuations
during joining (Wang &Wei, 2000). Force and displacement
measurements capture similar information from a mechani-
cal perspective since the thermal effects also physically strain
the material (Batista et al., 2020).

Malformed nuggets can be revealed through identifying
abnormal signals causedby errant fit-up conditions or process
anomalies. For example, changes in electrode displacement
could reflect an expulsion—the sudden ejection of molten
metal out of the nugget—since material is lost from the
welding area (Xia et al., 2020). Similarly, the DR signal is
sensitive to abnormal sheet positioning, as improper sheet fit-
up conditions reduce the conductivity between the electrodes
(Zhou et al., 2021). To identify what specific information
from the in-situ sensing can identify process anomalies like
these, one important task is extracting features from raw
time series signals. These features, typically derived from
descriptive extrema values that delineate key process events,
are often manually defined using empirical knowledge. For
example, time domain features (e.g., starting values, peaks,
slope rates, areas under the curves) of resistance and dis-
placement signals vary with different sheet fit-up conditions
that include the edge proximity of the welding point and
large gaps between sheets (Zhou et al., 2021). Maximum

electrode displacement and how quickly it occurs can detect
shunting, a defect caused when the welding current par-
tially flows through a previous nugget (Xing et al., 2018).
Frequency domain features, extracted through the Fourier
transform or wavelet transformations, have also been inves-
tigated. Wu et al. (2018) used frequency analysis of force
measurements to detect expulsed welds, and Lee et al. (2020)
derived frequency features from DR to detect electrode mis-
alignment. Beyond manually defined, event-based features,
many data-driven techniques such as Principal Component
Analysis (PCA), isometric mapping, locally linear embed-
ding (Zhao et al., 2020a), and Linear Discriminant Analysis
(LDA) (Zhou et al., 2020) can compute abstract, dimension-
less features that are useful for assessing process anomalies.
Thus, with the proper features, predictive models can diag-
nose process inconsistencies and anomalies that affect RSW
quality.

While basic process anomaly detection is valuable, pre-
dicting weld quality metrics from the in-situ sensing signals
would be more beneficial. Xia et al. (2021) demonstrated
that the difference between initial and peak displacement
along with the displacement difference between the point of
heating termination and the point of electrode removal could
quantitatively predict the weld penetration through an empir-
ical model. Another study analytically linked 20 features
extracted from the DR signal to the weld nugget strength,
and the mean DR value was found to be most reflective of
nugget solidification (Zhao et al., 2021). These studies sup-
port the idea that a predictivemodel can estimateweld quality
metrics from relevant sensing features. However, the explicit
causal relationship between sensing features and weld qual-
ity is typically nonlinear and difficult to describe in terms
of physical and empirical models. Thus, many data-driven
predictive models leverage more advanced Machine Learn-
ing (ML) techniques. Zaharuddin et al. (2017) demonstrated
an adaptive neuro-fuzzy interface system that predicted weld
strength using manually-extracted DR features. Random for-
estwas applied byXing et al. (2017) to classify theDRsignals
to differentiate between cold, expulsed, or good welds. Both
time-domain and frequency-domain features were extracted
from the DR curves and fed into a Support Vector Machine
(SVM) and probabilistic neural network to predict weld
quality by Lee et al. (2020). The results demonstrated that
frequency-based features aremore effective in detectingmis-
alignment, while the highest prediction performance came
from a combination of both feature domains. Combining
DR features with welding parameters, El-Sari et al. (2021)
developed a Multilayer Perceptron (MLP) model to predict
nugget size, and data-driven features outperformedmanually
defined features. Similarly, Zhao et al. (2020b) showed that
DR features extracted by PCA surpassed manually defined
features as inputs for an extreme learning model predicting
nugget size. These promising studies strongly suggest the
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effectiveness of ML-based models for predicting RSW weld
characteristics when provided with salient features.

Some ML models work directly with the raw time series
sensing data, automatically determining relevant features.
Wang et al. (2017) investigated recurrent neural networks, a
Deep Learning (DL) method, to estimate the size of the Heat
Affected Zone (HAZ) from raw DR and power curves. Also
leveraging neural networks, Hwang et al. (2018) took current
and voltage time series data as the inputs for an adaptive res-
onance theory-based model to predict strength, nugget size,
and fracture shape. This evidence indicates that ML-based
processing of raw sensing data could discover and retain criti-
cal information that improves quality prediction yet would be
lost bymanually defined features. The tradeoff to thismethod
is interpretability. ML models, especially DL networks that
could contain hundreds of thousands of parameters, abstract
the raw sensing data into features that are no longer grounded
in physical explanations. This can make them less informa-
tive for understanding RSW process dynamics. Thus, while
automatic feature learning methods could achieve high accu-
racy, simpler models using physically-meaningful features
could be more explainable.

Recognizing the ongoing need to study the capabilities of
feature-based and raw sensing-based predictive models for
RSW process monitoring and quality assurance, this study
investigates the performance of neural network (NN) models
for predicting weld quality and detecting expulsions under
varying data conditions. The contributions of the paper’s
experiments and data analysis are threefold:

1. performance comparison of a feature-based Multilayer
Perceptron (MLP) model and a raw sensing-based Con-
volutional Neural Network (CNN) when predicting key
RSW quality metrics,

2. comparison of prediction performance between limited
sensing (current andDRmeasurement, available in a pro-
duction plant) and comprehensive sensing (i.e., current,
DR, force, and displacement), and.

3. an interpretable explanation of the feature-based MLP
model’s data-driven predictions via each feature’s con-
tribution to output quality metrics, quantified by Shapley
Additive Explanations (SHAP).

ComparingMLP and CNNmodels reveals the advantages
and disadvantages of manual feature extraction and auto-
mated feature learning with deep NNs. The performance
of these techniques can be domain dependent, so this study
experimentally evaluates their suitability for RSW processes
and provides guidance for future studies on in-situ pro-
cess sensing for NN-based quality prediction and process
anomaly detection. Furthermore, understanding how these
models behave on subsets of the sensing variables can inform

smart factory installations and upgrades for cost effective
solutions. Finally, the interpretability of NN models should
be addressed to reconcile data-driven models and physical
understanding, thereby increasing confidence in data-driven
models that may be deployed in production environments.
SHAP analysis and Shapley values provide this interpretabil-
ity through a theoretically sound methodology that assigns
model prediction contributions to the input features.

The remainder of this paper introduces the concepts of
in-situ process monitoring and features in "In-situ process
monitoring in RSW" section, surveys data-driven weld qual-
ity prediction and SHAP values in "Data-driven weld quality
metric prediction" section, describes the welding experi-
ments and NN training in "Experiments" section, presents
results and discussions in "Results and discussion" section,
and offers concluding remarks in "Conclusion" section.

In-situ process monitoring in RSW

In-situ sensing from the RSW process captures process
dynamics and uncertainties. The following section details
commonly studied sensing signals and explains their key
characteristics with respect to the physical phenomena of
RSW. Physically meaningful features are further chosen for
training the MLP model, along with a discussion comparing
feature-based and raw sensing-based analysis.

In-situ RSW sensing data

Commonly studied in-situ sensing for RSW process mon-
itoring include current, DR, electrode force, and electrode
displacement, since these electrical and mechanical signals
could capture part(s) of the compound process dynam-
ics. Figure 1 shows representative in-situ signal curves for
DR, force, and displacement sensing while highlighting key
points. Initially, DR decreases as the applied heat causes
surface contaminants to breakdown, effectively removing
resistance to the electric current (the initial point to A). The
resistance then rises due to the increased temperature of the
workpiece (point A to B) and slightly decreases when the
sheets are mechanically and electrically joined together and
a welding nugget forms (point B to C) (Wang &Wei, 2000).
The DR signal drops out when the electrical current has
been turned off to let the nugget solidify (point C to the
end). Force and displacement curves have similar physically
explainable points. During the initial stages of welding, the
heat causes the workpiece to expand, increasing the elec-
trode displacement and clamping force (point A to B). The
metal then softens, and the force of the electrode compresses
the workpieces. This plastic compression counteracts ther-
mal expansion, leading to a largely stable signal (point B to
C) (Ji & Zhou, 2004). Finally, both force and displacement
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Fig. 1 Sample in-situ RSW process signals with key points labeled

trend downwards when heat is removed and the metal cools
and contracts (point C to D) (Batista et al., 2020).

Physically meaningful RSW sensing features

While some studies include data-driven statistical features
(e.g., PCA) extracted from the in-situ sensing data, phys-
ically meaningful features derived from the key points
of the sensing data curves (see Fig. 1) facilitate building
explainable models with clear connections to the underlying
process. While statistical properties like variance, kurtosis,
and higher-order moments could be used, these features best
suit high-frequency periodic signals and lack the ability to
capture the distinct sections and trends of welding curves,
as shown in Fig. 1. To capture the welding process trends,
physically explainable features extracted from the DR curve
could be the average, final, and minimum resistance value
during heating (point A to C) (Zhao et al., 2021). Features
extracted from the displacement could include the change
from the initial to the maximum value and the difference
from the end of heating (point C) to solidification (point D)
(Xia et al., 2021). Based on this preliminary work, this study
derives a set of features from the key points of the curves
to capture a holistic view of the welding process. For the
DR signal, the extracted features include the initial value at
point A, the difference and rate of change from point A to
B, and the difference between points B and C. For force and
displacement curves, the extracted features include the ini-
tial value at point A, the difference and rate of change from
point A to B, the difference between point B and C, and the
difference and rate of change from point C to D. The average
measured current completes the set of 17 sensing features
which is then combined with the two process parameters of
welding current and time to total 19 physically meaningful
features (see Table 1).

Table 1 Summary of input features

Signal Features

Welding parameters Welding time, welding current

Current Mean

Dynamic resistance A, �AB, ∇AB, �BC

Force A, �AB, ∇AB, �BC, �CD, ∇CD

Displacement A, �AB, ∇AB, �BC, �CD, ∇CD

� denotes the difference and ∇ denotes rate of change between the
points

Feature-based versus raw sensing-basedmodels

Both feature-based models and raw sensing-based mod-
els have their advantages and disadvantages. As explained
previously,manually defined features convey key point infor-
mation of electrical and mechanical signals and could align
well with process dynamics. For example, the maximum
delta force (i.e., the first-order signal difference) is a good
indicator of expulsions, since the clamping force decreases
sharply due to the sudden expulsion and loss of internal
material, as shown in Fig. 2. The maximum delta force of
all normal welds is below 0.15 kN, while that of expulsed
welds exceeds 0.2 kN. Therefore, this physically motivated
feature design strategy can rely on more than abstract sta-
tistical correlations in the data. However, although manually
defined features offer physical interpretability and generaliz-
ability, extracting them may cause information loss. In other
words, the manually defined features cannot retain all the
information contained in the raw data. Raw sensing-based
models instead take the raw time series as the input and
learn to extract features that are relevant to the prediction
targets from a data-driven perspective. While these models
tend to achieve better performance than feature-basedmodels
(Zhao et al., 2020b), the automatically extracted features lack
physical interpretability. Hence, this study compares feature-
based models and raw sensing-based models, the two major
approaches for data-driven weld quality metric prediction.

Data-driven weld quality metric prediction

NN models, especially the DL variants, are state-of-the-art
ML techniques. Consequently, this study investigates two
NNmodels, MLP and CNN, to realize feature-based and raw
sensing-based data-drivenweld quality prediction and expul-
sion detection in RSW. Most NNs act as black-box models,
but SHAPvalues can provide some insight into each feature’s
contribution to the quality prediction.
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Fig. 2 Histogram of maximum change in welding force showing clear
separation between welds without expulsions (< 0.15 kN) and those
with expulsions (> 0.2 kN)

Multi-layer perceptron (MLP)

MLP represents the earliest and most widespread NN struc-
ture for linking discrete inputs to discrete outputs. MLP
connects layers of artificial neurons with nonlinear activation
functions to approximate complex input-output relation-
ships. The input-output relationship in a three-layer percep-
tron can be expressed as y = f

(
W (2) f

(
W (1)x)), where x

is the column vector of input features, y is the output, and
W (1) andW (2) represent the matrix of weights from the input
layer to the hidden layer and from the hidden layer to the
output layer, respectively. Function f adds nonlinearity to the
modeling, and popular nonlinear activation functions include
the sigmoid function, hyperbolic tangent function, and the
Rectified Linear Unit (ReLU). additional hidden layers can
be inserted to increase the network’s capacity for modeling
nonlinear systems.

Training an MLP is the process by which the network
weights are tuned to achieve the desired input-output function
that is empirically specified by a set of input-output pairs. A
loss function measures the discrepancy between the model
predictions and the expected outputs and allows training to
be formulated as an optimization problem:

θ̂ = arg min
θ

E(x, y)∼D
[L(y, gθ (x))

]
(1)

If gθ (x) represents the outputs predicted by a networkwith
parameters θ (e.g., the weight matrices W (1) and W (2)), the
goal is to find θ that minimizes the expected value of the loss
functionL evaluated across all pairs (x, y) of input features x
and ground truth labels y sampled from the training data dis-
tributionD. In otherwords, solving the optimization problem
will find the weights that minimize the error between the net-
workoutputs and the desired outputs across the entire training
data set. For regression problems (e.g., predicting welding
quality metrics), Mean Squared Error (MSE) suffices for

the loss function, while Binary Cross Entropy (BCE) is a
frequent choice for binary classification tasks (e.g., detect-
ing an expulsion defect). While analytically intractable, the
optimization solution to (1) can be approximated by com-
bining loss backpropagation that numerically computes the
gradient of the loss with respect to network parameters from
the model outputs back to the inputs and gradient descent
that iteratively applies this gradient to update the parameters:
θ ′
i = θi − η∂L/∂θi , where θi is the ith weight, η is the learn-
ing rate hyperparameter that controls the speed of parameter
adjustment, and θ ′

i is the updatedweight value. Common gra-
dient descent algorithms includeStochasticGradientDescent
(SGD) and more advanced variants like Adagrad, RMSProp,
or Adam.

Figure 3 outlines anMLP structure with two hidden layers
andReLUnonlinear activation that either predicts RSWweld
quality or detects expulsions from the 19 features specified
in Table 1. While the architecture remains the same for both
problems, a separate model is initialized and trained in each
instance with either four regression outputs or one classifica-
tion output. All four quality metrics are predicted using the
same representation from the preceding layer, forcing this
final hidden representation to summarize information about
all four aspects of the weld while not imposing any explicit
association or structure among the multivariate output. In
both cases, the model takes normalized features as inputs
to equally evaluate features with different ranges. Dropout
layers mitigate overfitting by probabilistically masking layer
outputs and forcing the network to rely on subsets of all the
neurons.

Convolutional neural networks (CNN)

While MLPs can perform classification and regression tasks
effectively, they remain dependent on the quality of the input
features. Other NN and DL architectures, such as Convolu-
tional Neural Networks (CNN), can automatically extract
salient features from raw sensing data. CNN structures
accommodate different data dimensionalities, and 1D-CNNs
can process time series signals. A typical 1D-CNN structure
consists of multiple 1D convolutional layers and 1D pool-
ing layers for feature extraction and an MLP for mapping
the extracted features to regression or classification outputs.
1D convolutional layers extract signatures and features by
filtering time series signals with trainable 1D kernels. Inter-
mediate outputs from successive layers represent more and
more abstract features extracted from the input. A 1D con-
volutional operation can be expressed as

zi , j =
∑

u, v
w

( j)
u, v · xsi+u, v (2)
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Fig. 3 The MLP structure used
for weld quality prediction and
expulsion detection, consisting of
two hidden layers, ReLU
activation, and dropout layers

where w
( j)
u, v is the uth weight value for vth input channel in

the jth kernel, xsi+u, v is the si+uth value of the vth input
channel, and zi , j is the ith value of the jth output channel.
Like MLP neurons, CNN neurons also apply a nonlinear
activation function (usually ReLU) to z before passing it to
downstream layers. As (2) illustrates, for s > 1 the CNN
reduces the spatial dimension of the input, allowing later
layers with the same kernel size to aggregate features into
more abstract representations. Pooling operations, such as
maximum pooling or averaging pooling, can further reduce
the feature size:

z′i , j = max
u=1,2, ..., S−1

zsi+u, j (3)

where S is the max pooling window size, s is the stride,
zsi+u, j is the si+uth value of the jth channel, and z′i , j is the
pooled value in the ith index of the jth output channel. Max
pooling enables downstream layers to focus solely on the
strongest patterns present in the input. After several succes-
sive 1D-CNN and pooling layers, the output is flattened into
a feature vector z which can be used by an MLP for the final
classification or regression task.

Like training MLPs, training a CNN requires solving an
optimization problem to find certain network parameters
(including convolutional kernel weights and MLP weights)
that minimize a task-dependent loss function (e.g., MSE or
BCE). The gradient of the loss with respect to the convo-
lution parameters is easily calculated, allowing CNNs to be
trained with the same backpropagation and gradient descent
algorithms used for MLPs. As a result, CNNs can be effec-
tive automatic feature extractors for detecting trace patterns
within 1D time series data for a downstream classification
and regression task.

Figure 4 shows a CNN structure that takes time series
sensing data togetherwith process parameters to predict weld
quality metrics and detect expulsions. As with theMLP, each
application initializes a separate instance of the same CNN
architecture with either four regression outputs or one clas-
sification output, and no explicit structure is assumed among
the four multivariate regression outputs besides using the
same hidden representation from the previous layer. Three
convolutional blocks consisting of 1D convolution with a

stride of 2 and kernel size of 3, ReLU activation, and batch
normalization successively double the channels (8 ♦ 16 ♦
32) while dividing the signal length by two. The time series
is zero padded to ensure all inputs have the same length.
A linear layer maps the outputs of the last CNN block into
16 features for downstream tasks. Current and time process
parameters flow through the upper branch of the network to
produce 8 features that are concatenated with the 16 convolu-
tional features. A final series of fully connected layers maps
these 24 features to the weld quality metrics or expulsion
prediction.

Feature importance using Shapley values

While DL models achieve high accuracy and good perfor-
mance on a wide array of tasks, the models themselves are
black boxes that lack interpretability which would explain
how the model arrived at a prediction. One helpful approach
to improve interpretability is to determine howeach input fea-
ture affects themodel’s output. For linearmodels that express
the output as a weighted sum of input features, interpreting
the features is straightforward since each feature’s weight
indicates its importance (Lundberg & Lee, 2017; Štrumbelj
& Kononenko, 2014). In contrast, most highly-capable, non-
linear ML models have no straightforward interpretation.
However, their interpretability can be improved by linearly
approximating them for individual examples to produce local
linear explanations (Štrumbelj &Kononenko, 2014). In other
words, an interpretable approach could assign values to indi-
vidual features that linearly sum to the model’s output and
represent how each feature contributed to the prediction. This
can be achieved with Shapley values from cooperative game
theory (Shapley, 1951).

A cooperative game consists of a set of players and a
characteristic function that defines the value of any coali-
tion (subset) of possible players. In ML the “players” are the
features, and the characteristic function value is the model’s
predictionwhen trained on the features in the coalition. How-
ever, retraining the model on all coalitions of features is not
feasible. Instead, the model’s prediction with some features
removed can be approximated by the expected value of the
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Fig. 4 CNN-based architecture
for predicting weld quality or
detecting expulsions

model prediction across all values of the “removed” fea-
tures in the training data (i.e., averaging out the removed
features). Let x ′ be a binary vector of all ones with length∣∣x ′∣∣ and hx

(
x ′) be a mapping such that x = hx

(
x ′). Let

z′ be a binary vector (with
∣∣z′

∣∣ nonzero elements) describ-
ing which features in x are “playing” in a coalition, and
fx

(
z′

) = E
[
f
(
hx

(
z′

))∣∣z′S] be the expected value of the
model across all remaining potential coalitions when the
nonzero elements S of z′ are fixed. Then, the SHAP defi-
nition of the Shapley value for model interpretation is

φi ( f , x) =
∑

z′⊆x ′

∣
∣z′

∣
∣(

∣
∣x ′∣∣ − ∣

∣z′
∣
∣ − 1

)

|x ′|
[
fx

(
z′

) − fx
(
z′\i)]

(4)

where z′\i is the coalition with the ith feature removed
(Lundberg & Lee, 2017). This value represents the mean
change inmodel output when a feature is added to an existing
coalition and the prediction is marginalized over the remain-
ing excluded features. The value of an empty coalition is the
mean model prediction across all training examples, and the
local linear prediction becomes

f (x) = g
(
x ′) = φ0 +

|x ′|∑

i=1

φi x
′
i (5)

Unfortunately, computing the SHAPvalues in (5) from (4)
remains computationally prohibitive for combinatoric rea-
sons. Shapley sampling values,Kernel SHAP, andDeepLIFT
offer three alternatives for efficiently estimating the Shapley
values defined by SHAP (Štrumbelj & Kononenko, 2014;
Lundberg & Lee, 2017). Kernel SHAP extends Local Inter-
pretable Model-Agnostic Explanations (LIME) to produce
proper Shapley values, and Deep LIFT estimates Shapley
values via backpropagation through network layers (Ribeiro
et al., 2016; Shrikumar et al., 2017). In this study, Shapley
values associated withMLP feature-based modeling are esti-
mated with Deep LIFT.

In Deep LIFT, a multiplier is the contribution of a dif-
ference �x from a reference input x0 to the difference in
a specific target neuron’s output �t from the reference out-
put value, normalized by the input difference (i.e., a “finite
gradient” of the target neuron with respect to the input):

m�x�t = C�x�t

�x
(6)

If a single layer separates the input neuron and the target
neuron, the multiplier can be written as

m�x�t =
∑

i

m�x�yi m�yi�t (7)

which is the sum of multipliers across all possible paths from
the input to the target neuron. This “chain rule for multipli-
ers” enables input-to-output multipliers to be found through
backpropagation (Shrikumar et al., 2017). To avoid asym-
metries that might destroy information when multipliers are
backpropagated, Deep LIFT proposes separate calculations
of the positive and negative differences between the input
and output. Consider a neural network operation y = f (x)
(e.g., linear layer, activation function, pooling, etc.) with an
input difference �x = �x+ + �x− and output difference
�y = �y+ + �y−. The contributions of �x+ and �x− to
�y+ and �y− can be written

�y+ = 1

2

(
f
(
x0 + �x+)

− f
(
x0

))

+ 1

2

(
f
(
x0 + �x− + �x+)

− f
(
x0 + �x−))

�y− = 1

2

(
f
(
x0 + �x−)

− f
(
x0

))

+ 1

2

(
f
(
x0 + �x+ + �x−)

− f
(
x0 + �x+))

(8)

If �x+ and �x− are two “players” in a game with char-
acteristic function f (x), �y+ is computed as the Shapley
value of �x+ since the change in model output is averaged
across adding the �x+ to all possible coalitions (i.e., coali-
tion #1 when�x− is not present and coalition #2 when�x−
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is already present). Similarly, �y− functions as the Shapley
value of �x−. The multipliers for the function f (x) can be
obtained via

m�x+�y+ = �y+

�x+ ; m�x−�y− = �y−

�x− (9)

These can be backpropagated from the network outputs to
inputs to compute the multipliers of the input features. The
Shapley values for input feature xi with respect to network
output y can then be approximated as:

φxi = φ+
xi + φ−

xi = m�xi+�y+�x+
i + m�x−

i �y−�x−
i (10)

If the features can be approximated as independent and
the model is approximated as linear, the reference input x0

should be E[x] to estimate SHAP values consistent with
(7) (Lundberg & Lee, 2017). Thus, Deep LIFT can estimate
the SHAP definition of Shapley values efficiently, providing
explanations for model predictions. Importantly, the values
depend on both the model and the data, so care should be
taken when drawing broad conclusions—they explain the
contributions of features present in the data to the model’s
predictions but are not necessarily reflective of any physi-
cal causation underlying the studied process. While they are
primarily a local linear approximation technique, averaging
SHAP value magnitudes across the data set can reveal the
mean contributions of features for the problem at hand and
offer a more interpretable assessment of complex NN mod-
els.

Experiments

To evaluate and compare MLP and CNN for RSW weld
quality prediction and expulsion detection, weld experiments
were conducted under different sheet fit-up conditions and
process parameters to generate both sensing data and weld
quality labels. In the experimental setup, a FANUCR-2000iC
robotic arm held a CENTERLINE RSW gun driven by a
WT6000s Medium Frequency DC weld controller with a
1 kHz inverter frequency. The gun contained two copper
zirconium (CuZr) C15000 electrodes with 6-mm tips that
were redressed every 15 welds to maintain their geometry.
Experiments consisted of 113 trials: 42 trials used a con-
stant welding time of 150 ms for welding currents ranging
from 4 to 9 kA, and the remaining 71 trials tested welding
times from 10 to 150 ms with currents of 5 kA and 8 kA, as
shown in Table 2. All trials were performed on two 150 mm
by 38 mm by 0.8 mm sheets of bare DP590 steel. Multiple
sensors collected current, secondary voltage, electrode force,
and electrode displacement data through a ZHOUFAN weld
monitoring system that produced 1-ms averages of 500-kSPS

sensing data. Attached to the electrode shank, a MEATROL
Rogowski coil rated at 0.5% accuracy measured the welding
current, and voltage was measured with probes across the
upper and lower electrode holders. A HEIDENHAIN linear
encoder with 0.5-µm accuracy collected displacement data,
and a Kistler surface strain sensor (2% accuracy) monitored
the welding force. Data was collected during both the active
welding time and the subsequent holding period, and nugget
thickness, nugget diameter, HAZ diameter, and indentation
depth were labelled after the weld was completed (Table 2).

The MLP and CNN from Figs. 3 and 4, respectively, are
trained on the experimental data to detect expulsions and pre-
dict the weld quality metrics (i.e., nugget diameter, nugget
thickness, HAZ diameter, and indentation depth). Four train-
ing data variations evaluate how different data perspectives
impact the performance of both models: training with and
without force and displacement information provides insight
into the model’s capability with different sensor inputs, and
both scenarios are run with and without trials with less than
or equal to 60 ms of time series data to assess the impact of
including partially formed nuggets. The choice of 60 ms was
due to it being the approximate time when measured force
and displacement stabilize, as discussed on Fig. 1. Thus, the
four data scenarios are All Sensing Data (ALL), All Sensing
Data from Trials > 60 ms (ALL-60), Current and Resistance
Data (CR), and Current and Resistance Data from Trials > 60
ms (CR-60). Since very few expulsions occur in the data set,
expulsion detection training applies 10x oversampling to the
minority (expulsion) class to mitigate the negative impact of
imbalance between expulsion and non-expulsion samples.

Data preprocessing normalizes the process parameters,
features, and time series data to the range [0, 1]. When
training the CNN, all signals are zero padded to the longest
length in the data set since the length of the raw time series
depends on the welding time. Each sensor forms one channel
of the CNN input. Both the MLP and CNN use the MSE loss
function for predicting weld quality values and BCE when
detecting expulsions. Five-fold cross validation evaluates the
model performance considering the limited quantity of data,
and five random seeds capture variability in model initial-
ization. All experiments are optimized with Adam (learning
rate of 0.001 for MLP and 0.0001 for CNN) on a workstation
with an NVIDIAGPU. For weld quality prediction, the CNN
trainer uses early stopping on the validation loss to prevent
overfitting with a maximum of 1500 passes through the data,
while the MLP training runs for a constant 3000 epochs to
avoid local minimums.

Results and discussion

Repeating the four data combinations and five folds across
five random seeds generates 100 trained models for weld
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Table 2 Process parameters and
trials for multi-condition welding
experiments

Condition Force (kN) Current (kA) Time (ms) Count

Standard 2.6 4–9 10–150 25

Edge proximity 3 mm 2.6 4–9 10–150 26

Edge proximity 6 mm 2.6 4–9 150 6

Initial gap 1 mm 2.6 4–9 150 6

Initial gap 2 mm 2.6 4–9 10–150 24

Off normal 3° 2.6 4–9 150 6

Off normal 6° 2.6 4–9 20–150 20

quality prediction and 100 trained models for expulsion
detection for both MLP and CNN architectures.

MLP feature-based prediction versus CNN raw
sensing-based prediction

The ALL and ALL-60 columns of Tables 3 and 4 show the
MLP and CNN performance with the full suite of avail-
able sensing data. Twenty-five values—five folds repeated
for each of five seeds—provide mean and standard deviation
information for each entry. Performance metrics include the
coefficient of determination R2, Root Mean Squared Error
(RMSE), and relative error (RMSE scaled by the mean tar-
get value).

Both the MLP and CNN achieved a best relative error
below 16% when using all the sensing data (ALL or ALL-
60). Figure 5a and b present the ALL and ALL-60 relative
error as the first two bars in each variable group for MLP
and CNN, respectively. When using all the welding exper-
iments and sensing data (ALL), the MLP model achieves
slightly lower relative error when compared to excluding
the trials shorter than 60 ms (ALL-60). This may indicate
that the selected features remain robust and informative even
for partially incomplete welds. Furthermore, the MLP offers
approximately a 5-point advantage in relative error over the
CNN for nugget geometry when using ALL. This also sup-
ports the idea that the MLP features may be more robust due
to their purposeful design from a physical understanding of
the RSW sensing curves shown in Fig. 1.

Interestingly, while recurrent neural networks like Long
Short-Term Memory (LSTM) are often suitable for time
series sensing data, exploratory experiments with a bidirec-
tional, three-unit LSTM demonstrated significantly worse
performance than both theMLP and CNN. Despite including
memory gates, theLSTMstillmaybe struggling to remember
information from throughout the sequence since key points
could occur at different times in different experiments. Future
work could incorporate an attention mechanism to better
highlight the sequence elements most relevant to the qual-
ity predictions.

In contrast, the CNN appears to struggle to learn good
features when the short trials are present (ALL), resulting in
worse performance than the MLP. The short trials increase
the variation in the time series training data and could make
it harder for the CNN to identify consistent trends in the data
and learn features automatically. Additionally, since the time
series are zero-added, the short-duration input signals con-
tain mostly zeros. Thus, the valid information from the start
of the signal could be quickly attenuated through the suc-
cessive CNN layers and surrounded by “features” extracted
from the zero padding. However, when the problematic short
trials are removed, the CNN model noticeably improves and
reduces the relative error on nugget geometry by more than
5 points and HAZ relative error by 1.1 points. This supports
the conclusion that CNN can perform well when the qual-
ity and variation of the input data are consistent enough for
automatic feature learning.

Figure 6 shows the expulsion detection validation accura-
cies for the MLP and CNN models for ALL and ALL-60 as
the first two bar groups. With all the welding experiments
and sensing data (ALL), both the MLP model and CNN
reach higher than 95%accuracy, and theCNNachieves 100%
detection. Removing the 60 ms and shorter trials diminish
the accuracy. With those trials excluded, the relative rate
of expulsions in the data set increases since no expulsions
occurred in trials less than 100 ms in length. Therefore, this
increase in relative expulsion frequency could accentuate the
misclassification error for the MLP model that was seen for
ALL, reducing its accuracy on ALL-60. The CNN also expe-
riences reduced accuracy for ALL-60, but its 100% accuracy
for ALL indicates that this may not be related to the relative
frequency of expulsions in the training data. Instead, it could
be caused by the variations in the splitting of folds for training
and validation. The data set is already limited, so removing
the short trials could produce new training folds that contain
fewer expulsion examples to learn from, hurting the overall
performance. Future work should explore additional meth-
ods for mitigating the impact of limited expulsion examples
and improving detection accuracy.
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Table 3 Weld quality prediction
and expulsion detection results
using MLP for different
combinations of data

Quantity Validation
metric

MLP

ALL ALL-60 CR CR-60

Nugget
diameter

R2 0.924 ± 0.042 0.862 ± 0.086 0.906 ± 0.069 0.876 ± 0.082

RMSE
(mm)

0.451 ± 0.128 0.530 ± 0.203 0.503 ± 0.158 0.488 ± 0.161

RMSE /
Mean
(%)

15.0 ± 4.6 15.6 ± 7.9 16.8 ± 5.8 14.1 ± 5.9

Nugget
thickness

R2 0.912 ± 0.053 0.818 ± 0.114 0.840 ± 0.085 0.745 ± 0.160

RMSE
(mm)

0.130 ± 0.034 0.160 ± 0.056 0.181 ± 0.045 0.188 ± 0.060

RMSE /
Mean
(%)

15.9 ± 4.0 18.3 ± 9.2 22.4 ± 6.2 20.9 ± 8.4

HAZ
diameter

R2 0.939 ± 0.023 0.894 ± 0.085 0.952 ± 0.026 0.914 ± 0.047

RMSE
(mm)

0.276 ± 0.058 0.292 ± 0.115 0.246 ± 0.081 0.276 ± 0.086

RMSE /
Mean
(%)

6.1 ± 1.3 5.9 ± 2.4 5.4 ± 1.9 5.6 ± 2.0

Indentation
depth

R2 0.802 ± 0.270 0.848 ± 0.193 − 0.488 ± 2.622 − 0.367 ± 1.489

RMSE
(mm)

0.026 ± 0.006 0.029 ± 0.014 0.071 ± 0.028 0.085 ± 0.025

RMSE /
Mean
(%)

1.6 ± 0.4 1.8 ± 0.9 4.5 ± 1.8 5.4 ± 1.7

Expulsion Accuracy
(%)

96.0 ± 8.2 93.9 ± 12.4 75.3 ± 11.4 64.2 ± 20.7

Bolded values are the best performance for a given quantity

All sensing data versus current and resistance data

In production plants, collecting force and displacement data
is restricted by cost and the technical difficulty of widespread
installation and consistent calibration in the factory environ-
ment. Thus, current and DR may be the only information
available for predictive models. The final two columns of
Tables 3 and 4 record theMLPandCNNperformancemetrics
when excluding force and displacement sensing data from
training (CR and CR-60). While the relative error increases,
both the MLP and CNN can still reach relative errors below
21%. Figure 5 also includes the CR and CR-60 results for
comparisonwith theALLandALL-60 results.Nugget geom-
etry predictions suffer by about 2 to 6 points when the MLP
is restricted to CR data, although excluding the shorter welds
(CR-60) improves relative error for both nugget diameter and
nugget thickness. Indentation depth suffers a clear increase
in relative error for both CR and CR-60, likely attributable
to the highly informative nature of the excluded force and
displacement data for this quantity. With respect to HAZ
diameter prediction, the MLP model trained on CR nearly

matches the performance for ALL and ALL-60, and this may
be because HAZ diameter predictions are less impacted by
excluding the axial perspective offered by force and displace-
ment.

The CNN experiences similar outcomes, with nugget
geometry predictions displaying increased relative error
while HAZ diameter predictions show less variation. As with
the MLP, relative error for indentation depth increases since
the salient information from force and displacement signals
is no longer present. However, while both theMLP and CNN
experience reduced performance without force and displace-
ment data, the differences are often slight, especially for the
CNN. This indicates that current and resistance alone may
provide enough information for adequately low relative error
when predicting weld quality metrics.

SHAP value analysis of feature contribution

Analyzing the MLP feature contributions with Shapley val-
ues provides additional insight into the correlations learned
by theMLP. Figure 7 plots the top three Shapley values for the
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Table 4 Weld quality prediction
and expulsion detection results
using CNN for different
combinations of data

Quantity Validation
metric

CNN

ALL ALL-60 CR CR-60

Nugget
diameter

R2 0.858 ± 0.120 0.887 ± 0.055 0.859 ± 0.143 0.871 ± 0.089

RMSE
(mm)

0.588 ± 0.173 0.475 ± 0.106 0.582 ± 0.167 0.493 ± 0.149

RMSE /
Mean
(%)

19.7 ± 6.2 13.6 ± 4.0 19.4 ± 5.0 14.1 ± 5.5

Nugget
thickness

R2 0.849 ± 0.106 0.860 ± 0.089 0.842 ± 0.091 0.821 ± 0.123

RMSE
(mm)

0.166 ± 0.053 0.134 ± 0.038 0.173 ± 0.042 0.151 ± 0.037

RMSE /
Mean
(%)

20.8 ± 7.6 14.9 ± 5.6 21.6 ± 6.5 16.7 ± 5.2

HAZ
diameter

R2 0.854 ± 0.077 0.818 ± 0.107 0.839 ± 0.082 0.826 ± 0.077

RMSE
(mm)

0.414 ± 0.104 0.398 ± 0.117 0.438 ± 0.112 0.394 ± 0.103

RMSE /
Mean
(%)

9.1 ± 2.4 8.0 ± 2.6 9.6 ± 2.6 7.9 ± 2.3

Indentation
depth

R2 0.792 ± 0.319 0.813 ± 0.238 0.127 ± 0.716 − 0.145 ± 1.188

RMSE
(mm)

0.028 ± 0.011 0.032 ± 0.016 0.069 ± 0.030 0.084 ± 0.036

RMSE /
Mean
(%)

1.8 ± 0.7 2.0 ± 1.0 4.3 ± 1.9 5.4 ± 2.3

Expulsion Accuracy
(%)

100.0 ± 0.0 97.8 ± 7.5 82.9 ± 17.4 78.6 ± 22.5

Bolded values are the best performance for a given quantity

Fig. 5 Weld quality prediction relative error (RMSE scaled by the mean target value) for a MLP and b CNN

MLP when using all features to predict weld quality metrics
(ALL). The SHAP method attributes high average contribu-
tions to Displacement �CD (i.e., across the holding period)
for nugget geometrymetrics.During this period, the displace-
ment sensor detects how the metal contracts during cooling,
providing information about the final size of the nugget. The
Shapley values also show that the average measured current

has a higher contribution to nugget diameter than to nugget
thickness. Current would be more informative for predict-
ing the diameter versus thickness since it provides insight
into the heat flux entering the weld that affects the radial
growth of the nugget; axial growth can be better predicted
from data that more directly relates to nugget thickness such
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Fig. 6 Expulsion prediction accuracies for MLP and CNN models
across the data scenarios

as force (e.g., Force�AB) and displacement (e.g., Displace-
ment �CD). In addition, Fig. 7 indicates that HAZ diameter
predictions are most affected by input current, average of
measured current, and time. This can be understood since
current influences the heat flux, and time controls how long
that heat is applied. Therefore, these variables together cor-
relate to the total energy injected into the weld to create the
HAZ.

When short trials are removed, SHAP analysis attributes
increased impact to the current features (see Fig. 8). Input
current and average ofmeasured current remain roughly con-
stant since current is an RSW process parameter. Therefore,
when all trials are included (Fig. 7), these constant values are
paired with many different nugget geometries as the growth
is halted at various points. The lack of one-to-one mapping
means that current cannot resolve the geometry of a partially
formed nugget. However, once the nugget has enough time to
approach its terminal geometry, the RSW current parameters
correlate well with this final size, allowing them to contribute

more to the prediction in the ALL-60 case. Displacement
�CD retains a slightly above average contribution to the
nugget thickness but is not considered as influential given
the more well-defined relationship between nugget geome-
try and average of measured current when short trials are
removed. As for ALL, both time and current play an impor-
tant role in predicting theHAZdiameter and nugget diameter,
as the radial diameter growth correlates better with the total
input energy determined by time and current than the axially
focused force and displacement data.

Figure 9 plots the top three mean Shapley values for MLP
features when trained on only current and resistance sensing
data and process parameters (i.e., CR). Resistance �AB sig-
nificantly contributes to predicting nugget thickness, which
can be understood since resistance during this melting and
heating phase will be dependent on the axial thickness of
the nugget. The Shapley value for Resistance �BC indicates
that it contributes most to predicting the indentation depth.
This follows an understanding that decreasing resistance at
the end of the molten period will be correlated with the total
contact area between the electrode and sheet metal, which
increases as indentation depth increases. As with ALL-60,
time and current features combine for the largest contribution
to nugget diameter, and the total energy information carried
by these parameters appears to contribute most to both radial
nugget growth and HAZ diameter.

Removing shorter trials from the MLP training produces
the Shapley values shown in Fig. 10 for the CR-60 case.
The contribution of time is diminished since the durations
are more uniform, and thus time no longer plays as crucial a
role in predicting the nugget size. However, current remains
a significant contributor to HAZ diameter in keeping with

Fig. 7 Top three mean SHAP value magnitudes for MLP features when using ALL data
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Fig. 8 Top three mean SHAP value magnitudes for MLP features when using ALL-60 data

Fig. 9 Top three mean SHAP value magnitudes for MLP features when using CR data

the ALL, ALL-60, and CR cases, and factors heavily in pre-
dicting the non-axial metric of nugget diameter. In contrast,
earlier parts of the resistance curve (e.g., Resistance A and
�AB) show larger Shapley values for the related metrics of
nugget thickness and indentation depth than in previous sce-
narios. Longer duration trials will have more fully formed
nuggets, and therefore early parts of the sensing curves can
be useful without the possibility of the weld being terminated
prematurely.

This SHAP value analysis provides insight into how the
trained MLP model perceives the contribution of input fea-
tures to the output prediction. While the results can broadly
inform feature selection in future models, the primary value

ofSHAPanalysis is verifying that the features deemed impor-
tant by themodelmirror the empirical physical understanding
of RSWprocess fundamentals. Dependent on both themodel
architecture and training data, the SHAP values provide
an interpretable explanation to ensure that the tested MLP
model learned physically meaningful relationships and pro-
vide broad insights into feature impact that can influence
future studies onRSWprocess optimization. Further analysis
with additional welding experiments andmodel architectures
should be performed to solidify any generalizations broadly
connecting specific features to weld quality metrics.
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Fig. 10 Top three mean SHAP value magnitudes for MLP features when using CR-60 data

Conclusion

This study evaluates and compares the performance of a
feature-based MLP and raw sensing-based CNN when pre-
dicting RSW weld quality metrics and detecting expulsions.
The models are trained with two types of inputs—all sensing
(i.e., using all current, DR, force, and displacement signals)
and with only current and resistance signals—to determine
the impact of different sensing combinations on prediction
performance. Both the MLP and CNN can perform at a simi-
lar level when predicting nugget metrics and expulsions. The
MLP achieves 14.1% relative error on nugget diameter pre-
diction, 15.9% on nugget thickness, 5.4% on HAZ diameter,
and 1.6% on indentation depth; the CNN reaches 13.6% rel-
ative error on nugget diameter prediction, 14.9% on nugget
thickness, 7.9% on HAZ diameter, and 1.8% on indenta-
tion depth. Excluding force and displacement signals slightly
reduces the accuracies but still generates comparable predic-
tion performance. The CNN model could achieve the lowest
relative error when shorter trials with incomplete nugget
formation were removed, indicating that data quality and
consistency are critical for automatic feature learning meth-
ods. Analyzing Shapley values for the MLP model reveals
the contributions from each input feature to the model’s out-
put and can be validated against the physical understanding
of RSW process dynamics. For example, displacement from
the holding period contributes significantly to nugget geom-
etry prediction since it reflects how the metal in the weld
region contracts to its final size. Future work should explore
additional architectural tuning that could improvemodel per-
formance, explore ways to translate lab-developed models
effectively to production environments, and leverage these

models to optimize RSWprocesses and improve quality con-
sistency.
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